Cooling rate dependence of the properties for Ti$_{110}$Al$_{14}$V$_4$ alloy investigated by *ab initio* molecular dynamics

Jia Song a, Luyu Wang b, Ding Fan a, Liang Zhang a,*, Wenheng Wu a, Zhibin Gao a,*

a Shanghai Engineering Research Center of 3D Printing Materials, Shanghai, Research Institute of Materials, Shanghai 200437, China
b College of Artificial Intelligence and E-commerce, Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou 311599, China
c State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China

A R T I C L E I N F O

Article history:
Received 18 June 2021
Revised 15 September 2021
Accepted 16 September 2021
Available online 20 September 2021

Keywords:
ab initio molecular dynamics
Ti$_{110}$Al$_{14}$V$_4$ alloy
Cooling rate
Structural evolution
Kinetic property

A B S T R A C T

The structural evolution and kinetic properties of Ti$_{110}$Al$_{14}$V$_4$ alloy under two constant cooling rates are comprehensively studied by *ab initio* molecular dynamics simulations. A variety of statistical methods are used to progressively analyze the changes in local atomic structure with temperature under different cooling rates. It is revealed that for slow cooling, the icosahedron and face-centered cubic (FCC) cluster dominate in the melt before the system transforms into a body-centered cubic (BCC) crystalline phase at a temperature of about 1600 K. For fast cooling, the system melts from 2600 to 1600 K, then turns into solid glass at 1400 K, and finally forms a crystalline and amorphous mixture. This is a process in which the icosahedron competes with the FCC structure, indicating that the Ti$_{110}$Al$_{14}$V$_4$ alloy has a very poor glass-forming ability because of the fragility of Ti$_{110}$Al$_{14}$V$_4$ liquids at high temperature. Furthermore, under a fast cooling rate, the self-diffusion coefficient obeys the Arrhenius function at high temperature but conforms to the mode coupling theory when approaching the critical temperature. Finally, through the five-fold local symmetry parameters and viscosity, a direct relationship between structure and dynamics is established, confirming that structural evolution is the root cause of slow dynamics. This discovery provides a new perspective on the structural mechanism of dynamic arrest in the Ti$_{110}$Al$_{14}$V$_4$ melt.

1. Introduction

Titanium and its alloys are widely used in modern industries and daily life because of their excellent corrosion resistance, bio-compatibility, and high strength-to-weight ratio [1]. Among titanium alloys, Ti-6Al-4 V (TC4) is the most popular and is the preferred material for industrial applications of selective laser melting (SLM) manufactured products [2]. The SLM process involves melting and solidification of metal materials. It is well known that the macroscopic properties of metallic materials are essentially determined by their different microstructures, which in turn are largely influenced by the melt and cooling rates during solidification [3–6]. For a sufficiently fast cooling rate, an amorphous structure is formed through non-equilibrium thermodynamic processes, even for a monoatomic metal, while a slow cooling rate favors the formation of a crystalline structure [4]. Furthermore, the coexistence of crystalline and amorphous structures is favored under intermediate cooling rates, and the proportion and distribution of the two structures depend on the cooling rate [6,7]. However, solidification is an extremely intricate physical phenomenon spanning a broad range of spatiotemporal scales, [8,9] and it is difficult to experimentally observe the nucleation and growth process for a supercooled melt in *situ* at the atomic level [10–12]. These reasons prevent us from thoroughly understanding the solidification process of TC4 melt.

Fortunately, these drawbacks have been conquered with the rapid development of computers. In 1953, Metropolis et al. introduced a computational simulation to study liquid metal, which pioneered the use of computers in the field of material design [13]. Since then, an increasing number of researchers have explored the microstructure of metallic melts by computational simulation, especially molecular dynamics technology. Xu et al. [14] used molecular dynamics with a new semi-empirical embedded atom potential to investigate the composition and temperature dependence of static and dynamic structures in Ni$_x$Nb$_{1-x}$ ($x = 50–70$ at.%). They found that the fraction of the perfect icosahedron was small in the liquid state but rose sharply during cooling and was dominant at 300 K. In addition, the self-diffusion coefficient and shear viscosity were insensitive to the Ni-Nb alloy composition. Ma et al. [15] employed *ab initio* molecular dynamics

*Corresponding authors.
E-mail addresses: lzhang0126@hotmail.com (L. Zhang), zhibin.gao@sjtu.edu.cn (Z. Gao).

https://doi.org/10.1016/j.molliq.2021.117604
0167-7322/© 2021 Published by Elsevier B.V.
Finally, the dynamic properties of the Ti110Al14V4 melt are analyzed by the static structure factor and Voronoi tessellation. The variation of local atomic structure with temperature is statistically evaluated by AIMD simulations to study the effect of the cooling rate on the microstructure and mechanical properties of TC4 alloy. The results showed that the increase of cooling rate reduced the degree of crystallization of tungsten, while the higher cooling rate inhibited the crack nucleation in cooling tungsten because of faster stress relaxation, which provided a promising method for the preparation of hybrid-structured tungsten with desirable mechanical properties. Hou et al. [4] studied the cooling rate dependence of solidification for liquid aluminum by a large-scale molecular dynamics simulation [4]. It was found that a fast cooling rate preferred amorphous structures with icosahedral features, while face-centered cubic (FCC) structures were formed by a slow cooling, at an intermediate rate, the coexistence of FCC and hexagonal close-packed (HCP) clusters was dominant. With the same method, Zhang et al. [3] researched the local structures of molten iron and their role in the nucleation process under various cooling rates. The simulation results revealed that the nucleation of iron was divided into three stages: first, there was a competition between icosahedral and crystalline clusters in supercooled melts; second, the transformation of the atomic configuration from icosahedron to crystal resulted in the growth and formation of medium-range order (MRO); third, the nucleation of body-centered cubic nuclei originated from the core of steady MRO clusters. In conclusion, molecular simulation is a useful tool to explore the details of the solidification process of metal melts.

From the above statements, it can be found that the cooling rate is an important factor affecting the local microstructure of metal melts during solidification. The local atomic clusters not only provide the necessary atoms for crystal nucleation but also determine the nucleation path. However, the local structure of TC4 alloys and their effect on nucleation remain unclear. Therefore, it is of great significance to study the evolution of the atomic clusters under different cooling conditions. For the first time, considering our computer resource, a Ti110Al14V4 alloy with a mass fraction similar to that of TC4 alloy is designed to approximately shed light on the solidification mechanisms of molten TC4 alloy under two cooling rates by AIMD simulations. The simulated density of Ti110Al14V4 alloy under two cooling rates is calculated first at different temperatures and compared with experimental values. Moreover, the variation of local atomic structure with temperature is statistically analyzed by the static structure factor and Voronoi tessellation. Finally, the dynamic properties of the Ti110Al14V4 melt are discussed via self-diffusion coefficients and viscosity.

2. Methodology

AIMD simulations of the Ti110Al14V4 alloy are implemented by the Vienna Ab-Initio Simulation Package (VASP) [16–20]. The exchange-correction energy of the electron is treated by the generalized gradient approximation (GGA) in the form of the Perdew-Burke-Erzenhof (PBE) functional [21,22]. The electron–ion interaction is approximated by Projector-Augmented-Wave (PAW) pseudopotentials [23,24]. In this study, the maximum cutoff value for Ti, Al, and V are 222.3, 240.3, and, 263.7 eV, respectively, so the maximum cutoff value of this alloy is 263.7 eV. The energy cutoff is set to 500 eV for accurate simulation, which is 1.9 times the maximum cutoff value of this alloy. The energy convergence criterion of the electronic self-consistency is set to 10^{-6} eV per atom [25]. Newton's equation of motion is solved through Verlet's algorithm with a time step of 3 fs. Spin polarization is used in the simulation because Ti, Al, and V contain unpaired electrons in their valence shells.

110 Ti, 14 Al, and 4 V atoms are randomly distributed in a cubic box with standard periodic boundary conditions, as shown in Fig. 1. The mass fractions of Ti, Al and V in this alloy are 90.0%, 6.46%, and 3.54%, which are similar to the TC4 alloy with approximately 90.0 wt% for Ti, 6.0 wt% for Al and 3.5–4.5 wt% for V, respectively [26,27]. Only the Γ point is considered to sample the Brillouin zone. The Ti110Al14V4 configuration is heated to 2600 K, about 35.21% above the experimental value of 1923 K for the TC4 alloy, [27] to avoid the memory effect from the initial random structure. The molten alloy is then cooled stepwise down to 2400, 2200, 2000, 1800, 1600, 1400, 1200, 1000, and 800 K under two constant cooling rates of 1.33 × 10^{13} and 10^{15} K/s, denoted as v_1 and v_2, respectively. After quenching down to the desired temperature, the Ti110Al14V4 supercells are subjected to molecular dynamics simulations in the NpT ensemble with a constant number, pressure, and temperature [28]. The temperature is controlled by the Langevin thermostat with a friction coefficient of 2 ps^{-1} for all atoms and 10 ps^{-1} for the lattice degrees of freedom. A mass of 5 amu is used for the lattice degrees of freedom. A total of 5000 steps (15 ps) for the NpT ensemble simulations are performed, and the final 2000 steps are selected to estimate the equilibrium volume. Eventually, the calculated equilibrium volume is used as an input configuration in the following 10,000 steps of the NVT ensemble simulations (constant number, volume, and temperature) with a Nosé-Hoover thermostat controlling temperature [29]. The first 8000 steps are used to relax the system to reach thermal equilibrium, and the remaining 2000 AIMD steps are used to analyze the structural and kinetic properties.

3. Results and discussions

3.1. The density of the Ti110Al14V4 alloy

Fig. 2 shows the simulated densities evaluated from the NpT ensemble simulation and experimental densities derived from
The static structure factor, $S(q)$, is an important physical quantity for describing the properties of liquid and overcooled liquid. The total static structure factor (TSSF) for Ti$_{110}$Al$_{14}$V$_4$ is defined as the weighted summation of all partials from the AIMD trajectory. [31]

$$S(q) = \sum_i \sum_j \frac{c_i c_j f_i f_j}{(\sum c_i)^2} S_i(q)$$

in which c_i (or c_j) is the composition of the components, f_i (or f_j) is the neutron scattering length of the corresponding particle, and $S_i(q)$ is a partial static structure factor. The evolution of TSSF for Ti$_{110}$Al$_{14}$V$_4$ at two constant cooling rates over the temperature range of 2600 to 800 K is shown in Fig. 3. The variations in the main peaks under the two cooling rates are similar: with decreasing temperature, the shape becomes narrower, the peak value gradually shifts to a higher q, and the amplitude increases. The information means that the disorder degree of liquid Ti$_{110}$Al$_{14}$V$_4$ decreases and the order degree increases. The second peak of the two cooling rates is quite different when the temperature is below 1600 K. For slow cooling, the second peak decomposes into two separate peaks, which can be indexed to a body-centered cubic (BCC) structure. [32] For fast cooling, the second peak starts to split into two sub-peaks at 1400 K. The relationship between the positions of the sub-peaks and the main peaks can be used to characterize the different types of short-range order (SRO). [33] Table 1 lists the main position (q_{main}), first sub-peak (q_{first}), second sub-peak (q_{second}) and the q_{first}/main and q_{second}/main ratios can be calculated to approximately 1.72 and 1.92, respectively, at various temperatures, corresponding to the icosahedral (ICOS) cluster. [33] Based on the peak shapes and ratios of different peak positions, it is concluded that the ICOS structure is formed by rapid cooling of the Ti$_{110}$Al$_{14}$V$_4$ melt, while the BCC structure is formed by slow cooling. Upon rapid cooling to 800 K, the TSSF pattern exhibits some changes. The value of the second sub-peak becomes larger than that of the first sub-peak. It is speculated that some new structures are formed. To determine the new structure and the percentage of each structure during the cooling process, Voronoi tessellation analysis is discussed in the next section.

3.3. Voronoi tessellation analysis

Since the three-dimensional structure information provided by statistically average RDFs is limited, the Voronoi tessellation method is used to further explore the short-range arrangement of atoms. The Voronoi polyhedron is expressed by Schlafli’s notation, $<n_1 n_2 n_3 n_4>$, where n_i is the number of faces with i vertices [34–36]. The Voronoi indices of perfect BCC, FCC, and ICOS are $<0, 6, 0, 8>$, $<0, 12, 0, 0>$, and $<1, 0, 12, 0>$, respectively. It has been previously reported that the preference of a polyhedron depends on the effective atomic radius ratio between solute and solvent, R^*. With decreasing R^*, the preferred polyhedral changes from a Frank-Kasper polyhedron ($R^* > 1.2$) to an icosahedron ($R^* < 0.902$), then to a bi-capped square Archimedean antiprism polyhedron ($R^* < 0.835$), and finally to a tricapped trigonal prism packing type polyhedron ($R^* < 0.732$). [37] In this study, R^* varies between 0.888 (V/Ti) and 1.021 (Al/Ti), predicting icosahedral dominance in the Ti$_{110}$Al$_{14}$V$_4$ melt. The top 16 populated Voronoi indices at various temperatures during different cooling processes are shown in Fig. 4. For fast cooling, in the melt state, the clusters prefer to form polyhedra with Voronoi indices of $<0,
Fig. 3. Temperature dependence of the TSSF for Ti110Al14V4 alloy under two cooling rates: (a) 1.33 \times 10^{13} and (b) 10^{15} K/s. (Note that, for clarity, each curve has been vertically displaced from the curve below.)

Table 1
The main position \(q_{\text{main}}\) first sub-peak \(q_{\text{first}}\), second sub-peak \(q_{\text{second}}\) and the \(q_{\text{second}}/q_{\text{main}}\) ratio from 1400 to 1000 K.

<table>
<thead>
<tr>
<th>(T (K))</th>
<th>(q_{\text{main}} (\AA^{-1}))</th>
<th>(q_{\text{first}} (\AA^{-1}))</th>
<th>(q_{\text{second}} (\AA^{-1}))</th>
<th>(q_{\text{second}}/q_{\text{main}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>2.72</td>
<td>4.70</td>
<td>5.19</td>
<td>1.91</td>
</tr>
<tr>
<td>1200</td>
<td>2.71</td>
<td>4.65</td>
<td>5.20</td>
<td>1.72</td>
</tr>
<tr>
<td>1400</td>
<td>2.71</td>
<td>4.64</td>
<td>5.22</td>
<td>1.71</td>
</tr>
</tbody>
</table>

0, 12, 0>, <0, 1, 12, 0>, <0, 2, 8, 2>, <0, 2, 8, 4>, <0, 3, 6, 3>, <0, 3, 6, 4>, <0, 3, 6, 5>, <0, 4, 4, 6>, <1, 3, 4, 5, 1>, and <1, 3, 5, 4, 2> in the solid glass; some new polyhedra are formed, <0, 6, 0, 8>, <0, 4, 4, 7>, <0, 5, 2, 6>, <0, 5, 2, 8>, <0, 1, 4, 3, 5, 2>, and <0, 4, 4, 5>, for slow cooling, in the melt state, the preferred polyhedron is basically consistent with fast cooling, whereas in solids, the polyhedra are <0, 6, 0, 8>, <0, 4, 4, 6>, <0, 5, 2, 6>, <0, 1, 5, 1, 5, 2>, <0, 1, 5, 1, 6, 2>, and <0, 1, 4, 3, 5, 2>.

To analyze the structural evolution of the Ti110Al14V4 melt under different cooling rates in detail, these preferred polyhedra are classified into four categories according to Zhang et al. [3,32]: (a) <0, 3, 6, 4> and <0, 3, 6, 5> are considered to be FCC-like clusters; (b) <0, 6, 0, 8> represents BCC-like clusters; (c) <0, 0, 12, 0> and <0, 3, 6, 3> are considered to be ICOS-like clusters; (d) the remaining Voronoi indices are unknown structures. For slow cooling from 2600 to 1800 K, the percentage varies from 9.47% to 13.38% for the ICOS-like cluster and from 5.1% to 10.15% for the FCC-like cluster. At 1600 K, the percentage of ICOS-like clusters goes down dramatically to 0, while the percentage of FCC-like clusters, <0, 6, 0, 8>, rapidly rises to 37.19%. The percentage of some FCC-like clusters drops to 0, such as <0, 3, 6, 4>, and <0, 3, 6, 5>, and that of the other FCC-like cluster, <0, 4, 4, 6>, increases to 17.19%. In addition, some unknown structures appear, such as 8.26% <0, 5, 2, 8>, 7.73% <0, 5, 2, 6>, 4.34% <0, 1, 4, 3, 5, 2>, and 4.83% <0, 1, 5, 1, 6, 2>. As the temperature further cools to 800 K, the percentage of FCC-like clusters goes up to 75.8%, the percentage of FCC-like clusters reduces to 6.14%, and the percentage of unknown structures drops to 4.25% for <0, 5, 2, 8, 3.00% for <0, 5, 2, 6>, 1.74% for <0, 1, 5, 1, 5, 2>, and 1.60% for <0, 1, 5, 1, 6, 2>. The populations of <0, 4, 4, 6>, <0, 5, 2, 6>, <0, 1, 5, 1, 5, 2>, and <0, 1, 5, 1, 6, 2> increase at the beginning of crystallization but decrease as the degree of crystallization increases, revealing that these polyhedra play an important role in the crystallization process of the Ti110Al14V4 melt. Notably, a small portion of these clusters remain in the system at the end of crystallization and may serve as defects. For fast cooling, from 2600 to 1600 K, the percentage of ICOS-like and FCC-like clusters varies between 9.47 and 19.05% and 5.1–18.34%, respectively. ICOS-like and FCC-like clusters are prevalent in the Ti110Al14V4 melt, and the percentage of ICOS-like clusters is higher than that for the FCC-like clusters at the beginning but gradually approaches the latter with decreasing temperature. In the temperature range of 1400–800 K, the percentage of ICOS-like clusters slightly decreases from 20.27% to 19.50%, while that of FCC-like clusters increases from 32.93% to 36.35%. FCC-like (<0, 6, 0, 8>) and unknown clusters (<0, 5, 2, 8> and <0, 5, 2, 6>) are formed, and their percentages vary from 1.79 to 7.73%, 3.03 to 6.09%, and 2.36 to 4.76%, respectively. It follows that the system is a mixture of crystalline and amorphous structures dominated by FCC-like and ICOS-like clusters in this temperature range.

In summary, for slow cooling, ICOS-like and FCC-like clusters dominate in the melt before the system transforms into a crystalline BCC phase at a temperature of approximately 1600 K. For fast cooling, the system melts from 2600 to 1600 K, turns into solid glass at 1400 K, and then finally forms a crystalline and amorphous mixture. The whole process is dominated by ICOS-like and FCC-like clusters. There are more ICOS-like clusters than FCC-like clusters in the melt, but the opposite is true in the mixture. The simulation snapshots from the melt at 2200 K to solid at 800 K under two cooling processes are displayed in Fig. 5.

Compared with the Cu-Zr-Al alloy, even at a very high cooling rate of 10^{15} K/s, the Ti110Al14V4 alloy still does not form amorphous structures but forms a mixture of amorphous and FCC-like clusters and gradually forms a BCC structure with a further decrease in temperature, which indicates that the alloy has a poor glass-forming ability (GFA). As previously reported, fragility is related to the GFA, where stronger liquids generally have a higher GFA than fragile liquids [40,41]. The strength of the liquid can be
preliminary determined by the structural index, $S(q)$. The height of the first peak in $S(q)$, marked as $S(q_1)$, changes with temperature under fast cooling, as shown in Fig. 6. Three distinct regions of behavior are observed for the growth of $S(q_1)$ with decreasing temperature: (1) at high temperature, the rate of change in $S(q_1)$, $\frac{dS(q_1)}{dT}$, is -5.09×10^{-4} K$^{-1}$; (2) below 1400 K, the $\frac{dS(q_1)}{dT}$ becomes -0.97×10^{-4} K$^{-1}$. The small rate of change is to be expected because there is no structural variation below 1400 K on laboratory timescales; (3) the intermediate region is an experimentally unreachable area linking the other two regions that require an acceleration in the development of $S(q_1)$. The $S(q_1)$ pattern of the Ti$_{110}$Al$_{14}$V$_4$ alloy under fast cooling is matched with that of fragile liquid. Therefore, from the perspective of structural signature, it can be concluded that Ti$_{110}$Al$_{14}$V$_4$ alloy is a fragile liquid at high temperature and has a poor GFA.

3.4. Self-diffusion coefficients

Additional information about structure evolution can be obtained by investigating the atom movement during cooling. For example, the dynamic properties of Ti$_{110}$Al$_{14}$V$_4$ alloy are studied by calculating the mean-square displacement (MSD) as a function of time using the following equation,

$$
\langle R_z^2(t) \rangle = \frac{1}{N_s} \sum_{i=1}^{N_s} |R_{z,i}(t + \tau) - R_{z,i}(\tau)|^2
$$

where N_s is the total atomic number of z species, $R_{z,i}$ is the coordinates of atom i, and τ is the arbitrary origin of time. Fig. 7 displays the total MSD at the two cooling rates at different temperatures. Obviously, there are three regions: (i) For an extremely short period at first, all MSD traces increase in a quadratic form with relaxation time because of the ballistic motion of the atoms. At the same temperature, the slopes for the MSD are similar for both cooling rates, meaning that atoms move uniformly during this period; (ii) For the intermediate time period, at high temperature, intersections with the linear diffusion region are detected after ballistic growth, while at low temperature, due to the so-called "cage effect", plateaus appear in the MSD curves and become more prominent with decreasing temperature. The caging
effect is such that each atom is surrounded by an efficient cage formed by its neighbors, which limits the movement of the atom in a range close to its original position. From the Fig. 7, it is observed that during the intermediate time period, the MSD values remain at about 0.2 Å² after 1400 K for \(v_1 \) and 1600 K for \(v_2 \), indicating the occurrence of \(\beta \)-relaxation [44]. The different \(\beta \)-relaxation temperatures must be related to the structural heterogeneity; (iii) After a period of \(\beta \) relaxation, for a fast cooling rate, MSD trajectories present weak linear growth with time below 1400 K, as shown in the inset of Fig. 7b; that is, the atoms escape from the cage and diffuse for a short distance. For a low cooling rate, however, even after a sufficiently long time, when the temperature is lower than 1600 K, the MSD oscillates around an average, as illustrated in the inset of Fig. 7a, which means that the atoms cannot break free from the cage and are confined to the vicinity of the original position, with only thermal vibration. As temperature varies from 1600 to 800 K, the mean values are 0.36, 0.32, 0.25, and 0.23 Å². The oscillating MSD curves also confirm that Ti110Al14V4 has already solidified at these temperatures.

Consequently, the total diffusion coefficients \(D \) are evaluated from the slope of the MSD curve based on the Einstein relation,

\[
D = \lim_{t \to \infty} \left(\frac{R_i^2(t)}{6t} \right)
\]

Previously, some scholars have indicated that the MSD value should be greater than 4 Å² to obtain statistically significant diffusion information, otherwise, quantitative prediction of atomic self-diffusion coefficient is limited [45]. Therefore, we only calculate the total diffusion coefficients from 2600 to 1800 K for a slow cooling rate and from 2600 to 1600 K for a fast cooling rate in this study. The temperature dependence of the total self-diffusion coefficients under two cooling rates is shown in Fig. 8. It is obvious that in the temperature range of 2600–1800 K, the self-diffusion coefficients at the two cooling rates decrease with decreasing temperature and conform to the Arrhenius formula with an \(R^2 \) value of 0.99. The order of magnitude of the simulated data agrees with the assumption reported by Semiatin et al. [46] By fitting \(\ln D \) and \(1/T \) to a linear function, as illustrated in the inset in Fig. 8, the activation energies of the alloy is obtained at 39.23 kJ/mol for \(v_1 \) and 43.63 kJ/mol for \(v_2 \), which is slightly less than the value of 52.8 kJ/mol reported by Iida [47]. The lower the activation energy, the faster the atoms move, which explains the higher self-diffusion coefficients at the lower cooling rate from the viewpoint of energy. Then, with a further decrease in temperature, the self-diffusion coefficients decrease faster than that predicted by the Arrhenius formula. This change means that the dynamics of homogeneous viscous flows at high temperatures begin to become uneven. At this time, the self-diffusion coefficients of Ti110Al14V4 melt can be fitted by the mode coupling theory (MCT) formula, [43,44] which is also known as the extended Arrhenius formula,

\[
D = a(T - T_c)^r
\]

where \(T_c \) is the critical temperature at which liquid relaxation bifurcation occurs and \(r \) is the critical exponent. As a result, \(T_c \) is fitted to be 1506.7 K, after which the liquid is no longer ergodic, and \(r \) is approximately equal to 0.70.

To further explore the relationship between the local atomic structure and dynamics, a five-fold symmetry parameter \(W \) is introduced and defined as, [41,48]

\[
W = \sum_i \left(f_i^5 \times P_i \right)
\]

where \(P_i \) represents the fraction of polyhedron type \(i \), and \(f_i^5 \) is the fraction of the 5-edged polygon in the Voronoi polyhedron and obtained by the following formula,

\[
f_i^5 = \frac{n_i^5}{\sum_{k=3,4,5} n_k^k}
\]

where \(n_i^k \) denotes the number of \(k \)-edged polygons in Voronoi polyhedron type \(i \). The change of \(W \) with temperature in the Ti110Al14V4 alloy at two cooling rates is shown in Fig. 9. Visibly, from
2600 to 800 K, W of fast cooling increases with decreasing temperature, rapidly increases when the temperature approaches T_c and slightly increases after T_c, while W of slow cooling shows a tendency to gradually decrease with decreasing temperature after 1800 K and is almost 0 at 800 K. Beyond that, the fast cooling has more ICOS-like clusters and a larger W value compared with slow cooling, which is responsible for dynamical slowing during the fast cooling process for Ti$_{110}$Al$_{14}$V$_4$ alloy. This is because ICOS-like clusters often interpenetrate with each other, and these interpenetrating ICOS-like clusters have strong spatial correlation and produce stable string-like networks, thus reducing the melt dynamics [43,44].

3.5. Viscosity

To clarify the relationship between the kinetics and structure, the shear viscosity of the Ti$_{110}$Al$_{14}$V$_4$ melt, another key transport property describing the dynamics of liquid, is calculated by the Stokes-Einstein-Sutherland (SES) equation,

$$\eta = \frac{k_B T}{2\pi D_a d_a} \tag{9}$$

in which η is the shear viscosity of the alloy melt and d_a is the solvodynamic diameter. Apparently, the viscosity estimated via the SES equation is related to the self-diffusion coefficients and solvodynamic diameter, where the self-diffusion coefficients have been precisely calculated in Section 3.4, and the solvodynamic diameter is represented by the first peak position of radial distribution functions. At the fast cooling rate, the first peak position of radial distribution functions is between 2.81 and 2.83 Å over the temperature range of 2600–1600 K.

Fig. 10 shows the temperature dependence of the viscosity for the Ti$_{110}$Al$_{14}$V$_4$ melt above the critical temperature of 1506.7 K under a fast cooling rate. As the temperature is close to T_c, the viscosity increases sharply and does not follow the Arrhenius function, meaning dynamic deceleration during a fast cooling rate. The degree to which the viscosity reveals non-Arrhenius behavior is usually parameterized by fitting T and η to a Vogel-Fulcher-Tammann (VFT) formula,[41,48]

$$\eta = \eta_0 \exp\left(\frac{D^* T_0}{T - T_0}\right) \tag{10}$$

where η_0 is the viscosity at infinite liquidus temperature, T_0 is the temperature at which η becomes infinite, and D^* is a measurement index for the liquid fragility. D^* is a suitable parameter for assessing the fragility of liquids because the VFT formula follows more Arrhenius-like behavior as D^* increases, consistent with stronger (less fragile) liquids. [48] In this study, the fitted value of D^* is 0.227, which is fairly small compared to other alloys, meaning that the Ti$_{110}$Al$_{14}$V$_4$ melt is a fragile liquid. As mentioned earlier, the more fragile the liquid, the weaker the GFA. Thus, we can draw a conclusion from a kinetic point of view that the Ti$_{110}$Al$_{14}$V$_4$ alloy has a weak GFA. In addition, the five-fold symmetry parameters (W) at a fast cooling rate are displayed for further exploration. As shown in Fig. 10, the changing trends of W and η with temperature are similar above T_c. Therefore, it is speculated that the change of viscosity may be related to the evolution of the basic structure [41,48,49].

To build a quantitative relation between η and W, the power law $(1-W) \sim (T-T_1)^{\alpha}$ is used to fit W as a function of temperature, as shown in the inset of Fig. 11. [50] The fitted value of T_1 is 1387.5 K, which is almost the same as that of T_0 at 1388.8 K. T_1 and T_0 are approximately equal to 0.92 times T_c. Therefore, by replacing T_0 in the VFT formula with T_1, the temperature can be eliminated, and a direct relationship between W and η can be obtained,

$$\eta = \eta_0 \exp\left(\frac{B}{(1-W)^{\alpha}}\right) \tag{11}$$

![Fig. 9. Temperature dependence of W for the Ti$_{110}$Al$_{14}$V$_4$ alloy at two cooling rates.](image)

![Fig. 10. The variation of η with temperature under two cooling rates above T_c and W versus temperature at a fast cooling rate. The fitted value of T_0 is 1388.8 K.](image)

![Fig. 11. The viscosity η as a function of W. The inset shows the temperature dependence of W.](image)
where α reflects the sensitivity of viscosity changes to local structural changes. As shown in Fig. 11, the simulated data are fitted well by Equation (11), and the statistical correlation parameter R^2 is 0.98. The fitted value for α is 13.43, which is much larger than 1, indicating that small changes in structure can lead to significant changes in viscosity. In conclusion, structural evolution is the fundamental driver for dynamic deceleration, and the “hidden” structural changes resulting in the extremely dynamic variation of supercooled liquids can be distinctly described by the structural parameter W.

4. Conclusions

In this work, AIMD simulations are used to investigate the structural evolution and transport characteristics of the Ti$_{110}$Al$_{14}$V$_4$ alloy under two constant cooling rates. The density is first calculated from AIMD simulations in the NpT ensemble, which changes with temperature. At high temperatures, the AIMD density is almost unaffected by the cooling rate and is close to the experimental value. As the temperature decreases, there is a sudden change in the AIMD density between 1600 and 1800 K under a slow cooling rate but only a kink at 1400 K under a fast cooling rate.

After that, the trajectory of the system generated by the AIMD simulations is analyzed by static structure factor and Voronoi tessellation. These analytical methods reveal step by step the structural evolution of Ti$_{110}$Al$_{14}$V$_4$ alloy at different cooling rates. For slow cooling, the ICOS-like and FCC-like clusters dominate in the melt before the system transforms into a crystalline BCC phase at a temperature of about 1600 K. For fast cooling, the system is a melt from 2600 to 1600 K, turns into solid glass at 1400 K, and finally forms a mixture of crystalline and amorphous structures. The whole process is dominated by ICOS-like and FCC-like clusters. There are more ICOS-like clusters than FCC-like clusters in the melt, but the opposite is true in the mixture. In summary, even at a very high cooling rate of 10^{15} K/s, the Ti$_{110}$Al$_{14}$V$_4$ alloy still does not form amorphous structures but forms a mixture of amorphous and FCC-like clusters because at high temperatures, the Ti$_{110}$Al$_{14}$V$_4$ melt is a fragile liquid with a poor GFA.

From the perspective of kinetic properties, there are three conclusions. First, due to the more ICOS-like clusters in the melt, the self-diffusion coefficient of fast cooling is less than that of slow cooling. Moreover, under a fast cooling rate, the self-diffusion coefficient obeys the Arrhenius function at high temperature but conforms to the MCT when approaching the critical temperature. Eventually, a simple and straightforward relation between structure and dynamics is established by five-fold local symmetry parameter W and viscosity η, confirming that structural evolution is the underlying reason for the dynamic slowdown. Our findings provide a new perspective on the structural mechanism for dynamic arrest in Ti$_{110}$Al$_{14}$V$_4$ melt.

Acknowledgments

The authors acknowledge the support from the Natural Science Foundation of China (Grant No. 12104356). This author would like to deeply appreciate the support from the Technical Innovation Projects (Project Number 215G-13) and Shanghai Science and Technology Plan Program (Project Number 20D1417200). We acknowledge support from the HPC Platform, Xi’an Jiaotong University.

References

9