Science Project

No entries were found.
Project number Project name Project origin Start time Roles Project kind
2022QFY10-03 核反应堆用新型V-Ti-Cr体系合金材料制备关 键技术与应用研究 陕西省科技厅区域创新能力引导计划 2022-01~2024-12 负责人 Vertical project
2019-15 尾煤活化制备高比表面积活性炭及其应用研究 榆林市科技局自由探索类项目 2020-01~2021-12 负责人 Vertical project
2018JQ5008 磷化硼填充树脂基新型热管理材料的低成本制备及热性能研究 陕西省基金 2018-1~ 负责人 Vertical project
/ 炭微球负载石墨烯填充热界面材料的制备及导热性能研究 西安交通大学基本科研业务费自由探索项目 2018-1~ 负责人 Vertical project
51572111HZ 电场驱动锌离子迁移原位形成锑化锌梯度材料及其热稳定性 国家自然科学基金项目 2016-1~ 骨干成员 Vertical project
11472209 再生碳纤维增强点阵金属泡沫铝复合材料的静动态力学行为及其强韧化机制研究 国家自然科学基金项目 2015-1~ 骨干成员 Vertical project
/ 金属三明治板三维点阵约束高性能混凝土的抗侵彻行为及机理研究 西安交通大学“新教师科研支持计划” 2014-4~ 负责人 Vertical project
2014gjhz06 非晶Si-C-O/F(Cr)合金的制备及性能研究, 西安交通大学基本科研业务费 国际科技合作项目 2014-4~ 负责人 Vertical project
2015KTCL01-13 煤化工领域微纳多孔陶瓷过滤元件及组件的设计与制备关键技术 陕西省科技统筹创新工程计划项目 2014-1~ 骨干成员 Vertical project
hsm1305 RPC混凝土填充金属点阵三明治板的抗侵彻行为研究 江苏省高端结构材料重点实验室开放基金 2013-9~ 负责人 Vertical project
2013T60874 高性能混凝土填充金属三明治板的抗侵彻行为及机理研究 中国博士后特别资助 2013-6~ 负责人 Vertical project
51202181 活化辅助造孔多孔炭反应形成碳化硅的硅化机理及结构调控 国家自然科学基金项目 2013-1~ 负责人 Vertical project
2012M511997 中间相炭微球活化成孔制备反应烧结碳化硅及其形成机制 中国博士后面上项目 2012-5~ 负责人 Vertical project

Research Fields

2023

[1] Qichen Tian, Yuanbin She, Yangguang Zhu, Dan Dai, Mingjiao Shi, Wubo Chu, Tao Cai, Hsu-Sheng Tsai, He Li, Nan Jiang, Li Fu, Hongyan Xia*, Cheng-Te Lin* and Chen Ye*. Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors. Sensors 2023, 23, 2870.

[2]Jiajun Hu, Jing Qin, Ziyi Zhou, Zhongqi Shi, Kang Peng, Kai Gao, Hongyan Xia*. Facile synthesis of BP powder via molten salt method and their photoelectrochemical properties[J]. (Doi: 10.1016/j.ceramint.2023.01.050)

[3]Jiajun Hu, Tianran Zhang, Laili Wang, Zhongqi Shi*, Hongyan Xia*. Constructing sandwich–structured poly(vinyl alcohol) composite films with excellent thermal conductive and electrical performance[J]. (Doi: 10.1021/acsami.2c20668)

2022

[1]Jiajun Hu; Xinguang Hou; Ting Yang; Yi Wang; Kang Si; Hongyan Xia*. Thermal management performance of polyvinyl alcohol composite with boron phosphide decorated reduced graphene oxide[J]. Composites Part A, 2022, 155: 106847. (SCI: 000793797700003)

[2]胡佳军,王凯,侯鑫广,杨婷,夏鸿雁*. 熔盐法合成高导热磷化硼及其热管理性能研究[J]. 无机材料学报,2022, 37(09): 933–940. (SCI: 000855187600002EREF)

2021

[1]Jiajun Hu; Hongyan Xia*; Xinguang Hou; Ting Yang; Kang Si; Yi Wang; Laili Wang; Zhongqi Sh i ; Enhanced thermal management performance of nanofibrillated cellulose composite with highly th ermally conductive boron phosphide, Journal of Materials Chemistry A, 2021, 9(47): 27049-27060

[2] Hongyan Xia*; Jiajia Li; Kai Wang; Xinguang Hou; Ting Yang; Jiajun Hu; Zhongqi Shi ; Super ior wear resistance of epoxy composite with highly dispersed graphene spheres, Advanced Composite s and Hybrid Materials, 2021, /: /

2020

[1]Jiajia Li, Jiajun Hu, Kai Wang, Hongyan Xia*. Coal slime waste: a promising precursor to develop highly porous activated carbon for  supercapacitors. Carbon Letters  https://doi.org/10.1007/s42823-020-00138-w

[2]J. Hu, J. Li, K. Wang, H.Y. Xia*. Self-assembly Nb2O5 microsphere with hollow and  carbon coated structure as high rate capability lithium-ion electrode materials. Electrochimica Acta 331 (2020) 135364

[3]H. Xu, Y. Wang, R. Chen, Y. Bai, T. Li, H. Jin*, J.P. Wang*, H.Y. Xia*. A green-synthetic spiderweb-like Si@Graphene-oxide anode material with multifunctional citric acid binder for high energy-density Li-ion batteries. Carbon 157 (2020) 330-339.

2019

[1] B.Z Ge, J.B. Z.Q. Shi, H.L. Wang, H.Y. Xia, G.J. Qiao. Integration of multi-scale defects for optimizing thermoelectric properties of n-type Cu1-xCdxFeS2 (x=0-0.1). Nanoscale 11(2019) 17340-17349.

[2] B.Z. Ge, Z.Q. Shi*, C.J. Zhou, J.B. Hu, G.W. Liu, H.Y. Xia, J.T. Xu, G.J. Qiao. Enhanced thermoelectric performance of n-type eco-friendly material Cu1-xAgxFeS2 (x=0-0.14) via band gap tuning. Journal of Alloys and Compounds 809 (2019) 151717

[3] H.Y. Xia*, J.J. Hu, J.J. Li, K. Wang. Electrochemical performance of graphene-coated activated mesocarbon microbeads as a supercapacitor electrode. RSC Adv. 9 (2019)7004–7014.

[4]B.Z. Ge, J.B. Hu, Q. Wang, H.Y. Xia, S.J. Xu, Z.Q. Shi. Cu1.75Te nanowires as building blocks to fabricate bulk materials with enhanced thermoelectric performance. DOI: 10.1080/10667857. 2019.169927

[5] N. A. Rongione, M. Li, H. Wu, H. D. Nguyen, J. S. Kang, B.Y. Ouyang, H.Y. Xia, Y.J. Hu. High- Performance Solution-Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery. Adv. Electron. Mater. 2019, 5, 1800774.

[6] M. Li, Z.H. Qin, Y. Cui, C.Y. Yang, C.Y. Deng, Y.B. Wang, J. S. Kang, H.Y. Xia, Y.J. Hu. Ultralight and Flexible Monolithic Polymer Aerogel with Extraordinary Thermal Insulation by A Facile Ambient Process. Adv. Mater. Interfaces 2019, 6, 1900314.

2018

[1] Y.Y. Zhao, W.M. Wang, H.Y. Xia, J.P. Wang. Preparation of siliconized graphite by liquid silicon infiltration of porous carbon materials.  Materials Science Forum 922(2018)55-61.

[2] X.Y. Zhang, Z.Q. Shi* , X. Zhang, K. Wang, Y.Y. Zhao, H.Y. Xia, J.P. Wang. Three dimensional AlN skeleton-reinforced highly oriented graphite flake composites with excellent mechanical and thermophysical properties. Carbon 131 (2018) 94-101.

2017

[1] K. Zhang, Z. Shi, X. Zhang, Z. Zhang, B. Ge, H. Xia, Y. Guo, G Qiao. Molten salt synthesis of continuous tungsten carbide coatings on graphite flakes. Ceramics International 43(2017) 8089-8097

[2] H Jin, Z Shi, X Li, Y Li, H Xia, Z Xu, G Qiao. Effect of rare earth oxides on the microstructure and properties of mullite/hBN composites. Ceramics International 43(2017) 3356-3362

[3] H. Jin, Y.F. Li, Z.Q. Shi, H.Y. Xia, G.J. Qiao. Effect of Y2O3 on the sintering, mechanical and dielectric properties of mullite/h-BN composites. Materials Science Forum 848 (2017) 28-31

2016

[1] H.Y Xia, K. Wang, S.H. Yang, Z.Q. Shi, H.J. Wang, J.P. Wang. Formation of graphene flowers during high temperature activation of mesocarbon microbeads with KOH. Microporous and Mesoporous Materials 234 (2016) 384-391.

[2] K. Zhang, Z.Q. Shi, H.Y. Xia, K. Wang, G.W. Liu, G.J. Qiao, J.F.Yang. Preparation and thermophysical properties of directional SiC/Cu-Si composite via spontaneous infiltration. Ceramics International 42(2016)996-1001.

[3] C. Wang, M. Chen, H. Wang, X. Fan, H.Y. Xia. Fabrication and thermal shock resistance of multilayer γ-Y2Si2O7 environmental barrier coating on porous Si3N4 ceramic. Journal of the European Society 36(2016)689–695

[4] X. Fan, H. Wang, M. Niu, L. Su, D. Zhang, J. Zhou, J. Fan, J. Shi. Effects of different sintering additives on the synthesis of γ-Y2Si2O7 powders. Ceramics International 42(2016) 14813-14817

2015

[1] H.Y. Xia, X. Zhang, Z.Q. Shi, et al. Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites. Mater. Sci. Eng. A 639(2015) 29-36.

[2] C.Y. Ni, R. Hou, H.Y. Xia*, et al. Perforation resistance of corrugated metallic sandwich plates filled with reactive powder concrete: Experiment and simulation. Composite Structures 127(2015) 426–435.

[3] K. Wang, C.J. Zhou, D. Xia, Z.Q. Shia, ,C. He, H.Y. Xia, et al. Component-controllable synthesis of Co(SxSe1−x)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano energy 18(2015)1-11.

[4] Y.Y. Shao, H.Y. Xia, R. Tang, Z.Q. Shi, J.F. Yang, J.P. Wang. A low cost preparation of C/SiC composites by infiltrating molten Si into gelcasted pure porous carbon preform. Ceramics International  2015,41:(5)6478-6487.

[5] K. Zhang, H.Y. Xia, B. Wang, Z.Q. Shi, X.Z. Zhang, G.W. Liu, G.J. Qiao. Preparation and thermal-physical properties of three dimensional bicontinuous SiC/Cu-Si composite. Materials Science Forum 2015,804:187-190

[6] K. Wang, Z.Q. Shi, Y.Y. Wang, Z.G. Ye, H.Y. Xia, G.W. Liu, G.J. Qiao. Co3O4 nanowires@MnO2 nanolayer or nanoflakes core-shell arrays for high-performance supercapacitors: the influence of morphology on Performance. Journal of Alloys and Compounds 2015,624:85-93.

[7] K. Wang, D. Xi, C.j. Zhou, Z.Q. Shi, H.Y. Xia, G.W. Liu, G.J. Qiao. CoSe2 necklace-like nanowires supported by carbon fiber paper: a 3D integrated electrode for the hydrogen evolution reaction. Journal of Materials Chemistry 3(2015) 9415-9420.

[8] C. Wang, H. Wang, X. Fan, J. Zhou, H.Y. Xia, J Fan. Fabrication of dense β-Si 3 N 4-based ceramic coating on porous Si 3 N 4 ceramic. 35(2015)1743–1750.

2014

[1] H.Y.Xia, W.B. Wang, Z.Q.Shi. Mechanical properties of reactive powder concrete with ultra-short brass-coated steel fibres. Magazine of Concrete Research 67(2014)308-316.

[2] 夏鸿雁, 侯润等. 高性能混凝土填充金属三明治夹层波纹板的抗侵彻性能. 硅酸盐学报 42(2014)75-78.

[3] H.C. Shao, H.Y. Xia*, G.W. Liu, G.J. Qiao, Z.C. Xiao, J.M. Su, et al. Densification Behavior and

Performances of C/C Composites Derived from Various Carbon Matrix Precursors. Journal of Materials Engineering and Performance 23(2014): 133–141.

[4] M. Chen, C. Wang, H.J. Wang, L.Fan, H.Y. Xia, Z.Q. Shi. Fabrication of hierarchically porous Si3N4 foam ceramics with stamen-like cell structure. Materials Letters 128(2014)156-159.

2013

[1] H.Y. Xia, J.P. Wang, J.P. Lin, G.W. Liu, G.J. Qiao. Thermal conductivity of SiC ceramic fabricated by liquid infiltrating molten Si into mesocarbon microbeads–based preform. Mater. Charact. 82(2013) 1–8.

[2] H.Y. Xia, J.P. Wang, Z.Q. Shi, G.J. Qiao. Reciprocating friction and wear properties of mesocarbon microbeads–based graphite and siliconized graphite. J. Nucl. Mater. 433(2013) 341–344.

[3] H.Y. Xia, G.J. Qiao, S.L. Zhou, J.P. Wang. Reciprocating friction and wear behavior of reaction–formed SiC ceramic against bearing steel ball. Wear 303(2013)276 – 285.

2012年及以前

[1] H.Y. Xia, J.P. Wang, Z.Q. Shi, G.W. Liu, G.J. Qiao. Sliding wear behavior of mesocarbon microbeads based carbon materials. Wear 274– 275(2012) 260–266.

[2] H.Y. Xia, J.P. Wang, B. Huang, et al. The influence of ball-milling on improving the performance of mesocarbon microbeads based carbon blocks. Mater. Sci. Eng. A 529(2011)282-288.

[3] H.Y. Xia, J.P. Wang, G. Liu , et al. Effect of nano-SiC on the sintering behavior and properties of calcined carbon derived from mesocarbon microbeads. J. Nucl. Mater. 403 (2010)42-47.

[4] H.Y. Xia, J.P. Wang, H. Jin, et al. Fabrication and properties of reaction-formed SiC by infiltrating molten Si into mesocarbon microbeads-based carbon preform. Mater. Sci. Eng. A 528(2010) 283-287.

[5]夏鸿雁, 王继平, 黄斌, 乔冠军. 中间相炭微球为炭源反应形成SiC陶瓷及其结构与性能[J]. 固体火箭技术. 2011,34(4):514-519.

Patent

No entries were found.
Patent Name Application Number xjtu.gr.patent.type Application Date
一种熔盐法制备高导热磷化硼的方法 ZL201911012596.6 Invention 2021.04.20
一种高分散石墨烯树脂基复合材料及其制备方法和应用 ZL 2019109431636 Invention 2019.09.25
一种表面富含花瓣状石墨烯的活性炭的制备方法 ZL 200610480464.6 Invention 2016.06.27
反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法 ZL201510465513.4 Invention 2015.08.01
一种多孔碳化硅球形粉末的制备工艺 ZL201510487102.5 Invention 2015.08.01
以中间相炭微球为炭源的反应烧结碳化硅陶瓷的制备方法 ZL 2009 1 0219518.3 Invention 2009.12.16
一种高强高密各向同性炭滑板的制备方法 ZL 2009 1 0219517.9 Invention 2009.12.09