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Abstract-In recent years, with the development of GPU, 
based on the general purpose computation on graphics 
processors has become a new field. NVIDIA’s CUDA is a 
hardware-software architecture that enables high-
performance computing developers to use the computati- 
onal power and memory bandwidth of the GPU in a 
familiar programming environment –the C programming 
language. Aiming at the processing of GPU, this paper 
provides the formal description for data parallel mode, a 
detailed description of the CUDA programming mode 
and the principle of optimization. It shows by the 
comparative experiment that CUDA owns strongly of the 
ability to the parallel processing and provides new 
methods and ideas to GPGPU. 
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I.      INTRODUCTION 
Recently,graphic processing units(GPUs) originally  

purposed for graphic application have emerged as the 
most powerful computing .NVIDIA’s CUDA is releas- 
ed to enable high-performance computing becoming 
easier[1][2][3]. CUDA treats the GPU as a dedicated 
coprocessor of CPU, and allows the same codes to run 
on the different GPU cores. CPUs own multi-cores ,but 
GPUs own many cores. CUDA is a extension of the C 
programming language, and completing the program 
for the implementation of the chip don’t  need to learn 
the specific commands of displaying chips. The most 
advantage of CUDA is that it greatly reduces the use of 
GPU programming the threshold of entry. As long as 
programmers master C language, people are able to 
write a CUDA program. 
 

CUDA includes the main functions[4][5] : 
• providing standard C language in the GPU; 
• supporting the CUDA parallel computing to  

providing a unified hardware and software of 
the solution; 

• owning the library of  FFT and BLAS; 
• supporting the direct access to the driver 

procedures; 
• standard numerical FFT and BLAS library; 
• for calculating the special CUDA driver. 
The features of CUDA computing combine the 

characteristics of GPU through a standard C language 
to create the thread applications. How much can GPU 
computing speed up a real-world science? Researchers 
and companies  finished speedups ranging from 10 to 
100 by using CUDA , across domains from 
computational chemistry to physics model, to CT and 
MRI, to sorting and searching . 

 
 The rest of the paper is organized as follow. Sec 2 

presents the data parallel model of the formal 
description.Sec.3 provides  the CUDA programming  
model.Sec4 proposes several methods to optimize 
performance. Experimental results are presented in 
Sec5, and we conclude the paper in Sec6. 

 

II. DATA PARALLEL MODEL OF THE FORMAL 
DESCRI-PTION 

 
CUDA is a model based on data parallel. It is 

particularly suitable for parallel computing , which 
structure can be used to support a very high processing 
speed of this calculation. For practical applications, this 
article uses the formal  description for the data parallel 
model. 
 

A.  Formal definition of data parallel 
 

Assuming the size of data set size is l .The data set is:  
}1....3,2,1,0|{ −== lifF i                     (1) 
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where is a single data. There are some types of 
operations:  
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under the operation . indicates the data parallel 
processing in  tuple. 
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Definition: Data set is divided into l / parts 

according to certain rules, and each part is composed by 
the same operations, then: 
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Figure 1 can be used to describe: 

 
Figure 1 Data parallel model 

B.  Time Function of Data parallel 
 

)),(( kkk TfNtime that is a function of time in 

dealing with the implementation of the data .  In 
order to the convenience of computing , assuming  the 
same size of the data spends the same time to process, 
then  

kf

)),((

....)),(()),((

1

10

jli

jiji

TfNtime

TfNtimeTfNtime

−=

==
  

Parallel processing in the data model is defined, we 
can see that every data is processing by the m  types of 
operations. Under ideal circumstances, data-parallel 
processing time is 
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Data processing time is proportional to the data set 
size for the smallest unit of data. Then 
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Therefore, the time function t can be transformed into: 
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C.  Formal definition of task parallel 
 

Definition: The same or different data on different 
nodes are imposed by different operations. These 
operations are independent on each other. We express 
the task parallel with PV. 
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D. Time Function of task parallel 
 

In the task parallel processing mode, the data size is 
.We allocate the operations to the nodes. And the 

number of operations and nodes are m. Processing the j 
node on the execution time is . In an 

ideal case, then : 
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 The task parallel processing time is 
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Through this analysis, the following conclusions can 
be: data parallel is more suitable for large-scale data 
processing than task parallel. 

III BACKGROUND AND RELATION WORK 
This section presents the basic concept of the 

CUDA of programming model. 

A.  The CUDA of programming model 
 

The first generation of GPGPU requires that non-
graphics application is mapped through the graphics 
application. Recently, one of the major GPU vendors—
NVIDIA released their new parallel programming 
model, named Compute Unified Device Architecture  
(CUDA) that extends the C programming language. 
Another GPU vendor AMD announced Close To 
Metal(CTM) programming model that uses an assembly 
language for application development. Intel provides 



Larrabee, a new mutli-core GPU architecture for GPU 
computing.  
 

Currently, CUDA is the best available programming 
model, and is the most widely accepted model. Since 
the release of CUDA, it has been used for a large 
number of applications[6][7][8][9]. For these reasons, 
we choose to use CUDA in our research. 

 
CUDA programming model of the GPU itself has 

great ability to parallel processing. The CUDA 
programming model allows developers to exploit 
parallelism by writing natural. In the CUDA 
model ,GPU is viewed as a co-processor, to perform a 
large number of parallel threads. A source program 
consists of the host code and the kernel code. The host 
code is run on the CPU, and the kernel code is executed 
on the GPU.  Matrix addition will serve as a simple 
example. In order to implement two N*N matrices on 
the CPU in C programming language, we should write 
a two nested loop: 

 void addMatrix (int *a , int b, int *c,int N) 
{ 
 int index; 
 for(int i=0;i<N; i++){ 
 for(int j=0;j<N; j++) 
 { 
  index=i*N+j; 
  c[index]=a[index]+b[index]; 
  } 
 } 
} 
  int main() 
{  
   …….. 
   addMatrix(a,b,c,N);  

return 0; 
} 

In the CUDA, we write a C function, called a kernel 
that computes one element in the Matrix. We use 
CUDA to rewrite ,only to modify the computing on 
GPU. 
__global__ void addMatrix(int *a,int *b,int *c,int N) 
{ 
 int i=threadIdx.x; 

int j=threadIdx.y; 
int index=i+j*N; 
c[index]=a[index]+b[index]; 

} 
Void main() 
{ 
     ……………. 
 dim3 blocksize(N,N); 
   addMatrix<<<1,blocksize>>>(a,b,c,N); 

} 
Here the _global_ declaration indicates a kernel 

function that run on the GPU. The <<< N,N>>invokes 
a group of threads run in parallel. 

 
CUDA provides three key abstractions—hierarchical 

thread blocks, shared memory and barrier synchroniza- 
tion-that provide a clear parallel structure. Many levels 
of threads provide fine-grained data parallelism and 
nested within coarse-grained data parallelism . 

 B.  Thread blocks 
 

Thread blocks are a group of co-ordination of threads 
through high-speed shared memory to share effectively  
data in parallel. More specifically, the users can specify 
in the kernel synchronization point, and all of thread 
blocks achieve synchronization point to hang . Thread 
blocks contain up to 512 threads on an NVIDIA ‘s 
architecture GPU[11][12]. Performing the same cores 
have the same dimensions and size of the thread blocks 
which can be combined into a  grid. Each thread by the 
thread ID to identify. To help address based on its 
thread ID, the application can be threaded into a block 
of any size specified one-dimensional, two-dimensional 
or three-dimensional array of threads and the use of one, 
two or three index components to identify each thread. 
For example, the size of the thread for the two-
dimensional block (Bx, By), the index for the (x, y) of 
the thread ID for the thread (x + yBx). Therefore, the 
GPU on the above-mentioned operative require only a 
slight modification can be achieved. 
__global__ void addMatrix(int *a,int *b,int *c,int N) 
{ 

 int i=blockIdx.x*blockDim.x+threadIdx,x; 
     int j=blockIdx.y*blockDim.y+threadIdx.y; 
     int index=i+j*N; 
       if(i<N&&j<N) 
 { 
   c[index]=a[index]+b[index]; 
 } 
} 
Void main() 
{ 
     ……………. 
 dim3 dimBlock(16,16); 
 dim3 dimGrid(N/dimBlk.x,N/dimBlk.y); 
   addMatrix<<<dimGrid,dimBlk>>>(a,b,c,N); 
} 

Here a thread block size of 16*16=256 threads. A 
grid is created with blocks to have one thread per 
matrix element as before. The threads in each thread 
block are run in parallel.  

 



C.  Shared memory 
 

In the CUDA architecture, the memory is divided 
into two categories: system memory and device 
memory. GPUs as a result of the computing of the 
equipment  read and write memory faster than system 
memory. So it is responsible for the computing of the 
kernel function call before the division is not only the 
needs of system memory for data, but also the device 
memory to the memory for the thread to read and write 
operation. 

 
CUDA threads in the implementation process can 

access multiple data memory space, as shown in Figure 
2. Each thread has a private local memory. Each thread 
block has a shared memory, the memory block for all 
threads are visible, and  the block has the same life 
cycle. Ultimately, all threads can access the same global 
memory. 
 

 
Implementing on the device only through the 

following several threads memory: registers, local 
memory, shared memory, global memory, constant 
memory and texture memory. Combined in the matrix 
example, an independent thread to run effectively, but 
there is no thread to know which elements can be 
access by other threads. CUDA solve to this problem  
through the shared memory to be completed. Kernel 
data store in shared memory. Threads in the same 
thread block are carried out through the shared memory 
to communicate only by a thread block to deal with 
more than one processor, so the presence of shared 
memory on the chip, resulting in a very express 
memory access. Because of multi-processor registers 
and shared memory block  allocated to the thread of all 
threads, so each group of multi-processor can handle 

the number of kernel threads in each block depends on 
the number of  registers and the number of shared 
memory. If every multi-processor does not have enough 
available memory to register or to share at least one 
thread processing block, the implementation of the 
kernel will not start. At present, the shared memory size 
of 16K bytes. 
 

D. Barrier synchronization   
 

Threads within a block can collaborate with each 
other through a number of shared memory to share 
data and to coordinate the implementation of 
synchronous memory access. More specifically, you 
can call __syncthreads()inner core function which is 
specified in the synchronization point. __syncthreads ()  
play the role of the fence, and block all the threads 
here have to wait for further processing. To achieve 
effective collaboration, shared memory should be close 
to low-latency memory of the processor 
core.__syncthreads ()  should be lightweight, and a 
block all threads are must reside in the same processor 
core.  

Once threads in the same memory space to operate in 
parallel, we must provide a mechanism to ensure that a 
thread do not read a result before another thread has 
finished writing it. CUDA provided in __syncthreads () 
built-in function to guarantees such a purpose. 
__syncthreads () function is an atomic operation that 
block all of the thread must be synchronized in order to 
continue. 

IV PERFORMANCE OPTIMIZATION 
 

   GPU performance is very good, but to a large 
extent the performance should be restricted by the 
structure of the algorithm. In the use of CUDA, the data 
structure and memory access performance of the GPU 
have a great impact on, and sometimes play a decisive 
factor. 

   Performance is optimized from three main aspects:   
 optimizing the largest parallel implementation; 
 optimizing memory in order to make the most 

use of memory band-width; 
 to optimize the use of instructions to get 

maximum throughput of instructions. 
 

 Follow to sum of squares as an example of 
performance optimization. 

  _global_ static void SquareSum1(int*num,int 
*result) 

{ 

thread 

Per-thread local memory 

Per-block shared memory 

block 

Grid1 

Grid0 

Global 
memory 

Figure 2 hierarchical memory 



 int sum=0; 

      clock_t start=clock(); 

for(int i=0;i<DATA_SIZE;i++) 

{ 

 sum+=num[i]*num[i]; 

} 

clock time=clock()-start; 

*result=sum; 

} 

In the program, don’t use in parallel processing. we 
remove computing on the CPU to implement.  

 

Comparison of the experimental test results, as 
shown in table I: 

TABLE I.  THE PERFORMANCE TEST RESULTS 

 CPU GPU 

time/s 0.15 0.27 

throughput(GB/s) 0.0267 0.0148 

 

We can see clearly that performance is bad on GPU. 
The main reason is that the architecture characteristics 
of GPU caused. In CUDA, copying  data from the CPU 
to the GPU memory is called global memory. There is 
no cache in GPU. And the global memory access time 
latency is very long. It spends several hundred cycles . 
In the program, we use only a thread, so every time it 
read the data in global memory and the data must be 
read and compute before the next operation. This 
version of the program spend about 407Mcycles.  

 

GeForce 8600GT and the frequency of the 
implementation unit is 1.5GHZ. This process takes 
about 0.27 seconds or so. From the table, we can see 
that in the calculation of square and, using CPU would 
be faster than the GPU, which is calculated because  the 
square  do not need much computing power. It is almost 
limited by memory bandwidth. 

A. Process in parallel 
 

There is only one thread to use and there is no  cache 
in the global memory. Following the use of multi-
threads to avoid the enormous costs of latency. When a 
large number of threads start, then when a thread to 
read memory, the beginning of time to wait for the 

results, CPU immediately switches to the next thread 
and read the next memory location. In theory, with 
enough threads  can hide the latency. In order to 
parallel, the array can be divided into blocks, and each 
block calculates values. At the end , the result is by 
adding all of blocks . 
_global_ static void SquareSum1(int *num,int *result) 
{ 
 int sum=0; 
     int tid=threadIdx.x; 
     int size=DATA_SIZE/THREAD_NUM; 
     clock_t start=clock(); 

for(int i=tid*size;i<(tid+1)*size;i++) 
{ 
 sum+=num[i]*num[i]; 
} 
*result=sum; 
clock time=clock()-start; 

} 
 

DATA_SIZE is the size of the array. 
THREAD_NUM is the number of threads. The number 
of threads is 256. After compiling the implementation, 
using the processing in parallel need 8.2Mcycles.The 
bandwidth is about 536MB/s with the GeForce 
8600GT . 

B.  Optimizing memory in order to make the most use 
of memory band-width. 
 

Optimizing memory in order to get the most  use of 
memory bandwidth to transmit high-bandwidth data. 
Between the CPU and device the transmission of data is 
much lower than between global memory and the 
device. Therefore we minimize to transfer data between  
CPU and device. Different types of memory have 
different access patterns. the effective bandwidth may 
also be an order of magnitude worse, and optimize the 
memory of the next visit is to take advantage of the best 
model. GPU is a DRAM .The best way is continuous 
access mode. The model make thread0to read the first 
figure and thread1 to read the second figure and so on.  

_global__ static void SquareSum1(int *num,int 
*result) 

{ 
 int sum=0; 
     int tid=threadIdx.x; 
     int size=DATA_SIZE/THREAD_NUM; 
     clock_t start=clock(); 

for(int i=tid*size;i<DATA_SIZE;i+=THREAD_NUM) 
{ 
 sum+=num[i]*num[i]; 
} 
*result=sum; 



clock time=clock()-start; 
} 
 
The above program need 2.1Mcycles.It is faster. than 

the first version to use CUD. The speed has been 
improved. There is a better performance. If increasing  
the number of threads to 512,  the implementation of 
the reduction  to 1.7M cycles. The current bandwidth is 
3.54GB/s, which is larger than the previous version.   
But there is a gap between the bandwidth and the actual 
memory bandwidth. 

 
 
 
 
 
 
 
 
 

Figure3. the use of throughput 
Figure 3 gives the block of threads  is 256 and 512 to 

compare the memory bandwidth. We can see that when  
threads increase and the bandwidth increases . 

C.  Optimizing the use of instructions to get maximum 
throughput of instructions. 
 
   Optimizing the command is that we don’t use the 
command with a low throughput, such as use single 
precision instead of double precision. As a result of 
SIMD, in the CUDA programming, it is necessary to 
avoid to use the branch prediction. For example, if 
stream will be interrupted by the procedure, we used  
the replacement of equivalent sentences. 
 
   For example, if(a>0){b+=a; c-=a}.The sentence is 
modified: d=(a>0); b+=a*d; c-=a*d. Rewritten the 
program and the source program is equivalent. Avoid –
ing to use statements  interrupts a program.  
 

V. EXPERIMENTAL RESULT 
 

All experiments use CUDA platform: GPU: GeForce 
8600GT;CPU: pentium Dual E2160 1.8GHZ。CUDA 
parallel experiments use to rewrite and the implement- 
tation of the CPU . 

TABLE II.  EXPERIMENT RESULT  

             
 
 

 
 

 
From Table II, we can see that the calculation based 

on the GPU than the CPU greatly improve. This shows 
that GPU is more suitable for large-scale computing 
than CPU.  

VI CONCLUSIONS 
Along with pioneering the field of application and 
development of GPU-based computing will become 
increasingly common maturity. CUDA-based high-
performance scientific computing, data parallel 
processing to speed up the ability to make cheap to 
build high-performance computing platforms become a 
reality. 
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