
Formal Description and Optimization Based
High –Performance Computing on CUDA

Huacheng Zhao Bo Li Jingjing Liang

College Of Electronic and College Of Electronic and College Of Electronic and
Information Engineering, Information Engineering, Information Engineering,
xi’an JiaoTong University xi’an JiaoTong University xi’an JiaoTong University
Shaanxi,China Shaanxi,China Shaanxi,China
Z151614650@126.com boblee@xjtu.edu.cn liangjingj4@sina.com

Abstract-In recent years, with the development of GPU,
based on the general purpose computation on graphics
processors has become a new field. NVIDIA’s CUDA is a
hardware-software architecture that enables high-
performance computing developers to use the computati-
onal power and memory bandwidth of the GPU in a
familiar programming environment –the C programming
language. Aiming at the processing of GPU, this paper
provides the formal description for data parallel mode, a
detailed description of the CUDA programming mode
and the principle of optimization. It shows by the
comparative experiment that CUDA owns strongly of the
ability to the parallel processing and provides new
methods and ideas to GPGPU.

Keywords- formal description；CUDA; Optimization

 design

I. INTRODUCTION
Recently,graphic processing units(GPUs) originally

purposed for graphic application have emerged as the
most powerful computing .NVIDIA’s CUDA is releas-
ed to enable high-performance computing becoming
easier[1][2][3]. CUDA treats the GPU as a dedicated
coprocessor of CPU, and allows the same codes to run
on the different GPU cores. CPUs own multi-cores ,but
GPUs own many cores. CUDA is a extension of the C
programming language, and completing the program
for the implementation of the chip don’t need to learn
the specific commands of displaying chips. The most
advantage of CUDA is that it greatly reduces the use of
GPU programming the threshold of entry. As long as
programmers master C language, people are able to
write a CUDA program.

CUDA includes the main functions[4][5] :
• providing standard C language in the GPU;
• supporting the CUDA parallel computing to

providing a unified hardware and software of
the solution;

• owning the library of FFT and BLAS;
• supporting the direct access to the driver

procedures;
• standard numerical FFT and BLAS library;
• for calculating the special CUDA driver.
The features of CUDA computing combine the

characteristics of GPU through a standard C language
to create the thread applications. How much can GPU
computing speed up a real-world science? Researchers
and companies finished speedups ranging from 10 to
100 by using CUDA , across domains from
computational chemistry to physics model, to CT and
MRI, to sorting and searching .

 The rest of the paper is organized as follow. Sec 2

presents the data parallel model of the formal
description.Sec.3 provides the CUDA programming
model.Sec4 proposes several methods to optimize
performance. Experimental results are presented in
Sec5, and we conclude the paper in Sec6.

II. DATA PARALLEL MODEL OF THE FORMAL
DESCRI-PTION

CUDA is a model based on data parallel. It is

particularly suitable for parallel computing , which
structure can be used to support a very high processing
speed of this calculation. For practical applications, this
article uses the formal description for the data parallel
model.

A. Formal definition of data parallel

Assuming the size of data set size is l .The data set is:
}1....3,2,1,0|{ −== lifF i (1)

(This project is supported by the Electronic Information Industry
Foundation of China under the Government)

mailto:Z151614650@126.com
mailto:boblee@xjtu.edu.cn

where is a single data. There are some types of
operations:

if

 (2) }1...1,0|{ −== mjpP j

)1..2,1,0)(,(−= mkTfN kkk

kT PV
n

is that the data

under the operation . indicates the data parallel
processing in tuple.

kf

Definition: Data set is divided into l / parts

according to certain rules, and each part is composed by
the same operations, then:

n

)),(),...,,(),,((
110 110 TfNTfNTfNPV

ninii −−= (3)

where . PTffff iiii n
⊆=

−
,.......

110 U UU
Figure 1 can be used to describe:

Figure 1 Data parallel model

B. Time Function of Data parallel

)),((kkk TfNtime that is a function of time in

dealing with the implementation of the data . In
order to the convenience of computing , assuming the
same size of the data spends the same time to process,
then

kf

)),((

....)),(()),((

1

10

jli

jiji

TfNtime

TfNtimeTfNtime

−=

==

Parallel processing in the data model is defined, we
can see that every data is processing by the m types of
operations. Under ideal circumstances, data-parallel
processing time is

t= (4) ∑
−=

=

1

0
*/

mj

j

nl)),((
0 jij TfNtime

Data processing time is proportional to the data set
size for the smallest unit of data. Then

)),((0 jj TfiNtime = (5))),((*/1 jij TfNtimen
Therefore, the time function t can be transformed into:

t= l / n * （1/n） * . (6) ∑
−=

=

1

0

mj

j

)),((jij TfNtime

C. Formal definition of task parallel

Definition: The same or different data on different
nodes are imposed by different operations. These
operations are independent on each other. We express
the task parallel with PV.

)),(),...,,(),,((111111000 −−−= mmm TdNTdNTdNPV
., PTF ii ⊆⊆， (7) d

D. Time Function of task parallel

In the task parallel processing mode, the data size is
.We allocate the operations to the nodes. And the

number of operations and nodes are m. Processing the j
node on the execution time is . In an

ideal case, then :

l

),((jj TFNtime

)8)(1..2,1,0(),,((*),((−== mjTfNtimelTFNtime jijjj

 The task parallel processing time is

)9)).(,((max*

)),((*max)),((max2

1

0

1

0

1

0

jij

mj

j

jij

mj

jjj

mj

j

TfNtimel

TfNtimelTFNtimet

−=

=

−=

=

−=

=
===

∑
−=

=

=
1

0
)),(()/1(*/

mj

j
jij TfNtimennltBut, .

t< / *m* <m/ *t2,

n>>m , so t<t2.

l 2n
1

0
max

−=

=

mj

j
),((jij TfNtime 2n

Through this analysis, the following conclusions can
be: data parallel is more suitable for large-scale data
processing than task parallel.

III BACKGROUND AND RELATION WORK
This section presents the basic concept of the

CUDA of programming model.

A. The CUDA of programming model

The first generation of GPGPU requires that non-
graphics application is mapped through the graphics
application. Recently, one of the major GPU vendors—
NVIDIA released their new parallel programming
model, named Compute Unified Device Architecture
(CUDA) that extends the C programming language.
Another GPU vendor AMD announced Close To
Metal(CTM) programming model that uses an assembly
language for application development. Intel provides

Larrabee, a new mutli-core GPU architecture for GPU
computing.

Currently, CUDA is the best available programming
model, and is the most widely accepted model. Since
the release of CUDA, it has been used for a large
number of applications[6][7][8][9]. For these reasons,
we choose to use CUDA in our research.

CUDA programming model of the GPU itself has

great ability to parallel processing. The CUDA
programming model allows developers to exploit
parallelism by writing natural. In the CUDA
model ,GPU is viewed as a co-processor, to perform a
large number of parallel threads. A source program
consists of the host code and the kernel code. The host
code is run on the CPU, and the kernel code is executed
on the GPU. Matrix addition will serve as a simple
example. In order to implement two N*N matrices on
the CPU in C programming language, we should write
a two nested loop:

 void addMatrix (int *a , int b, int *c,int N)
{
 int index;
 for(int i=0;i<N; i++){
 for(int j=0;j<N; j++)
 {
 index=i*N+j;
 c[index]=a[index]+b[index];
 }
 }
}
 int main()
{
 ……..
 addMatrix(a,b,c,N);

return 0;
}

In the CUDA, we write a C function, called a kernel
that computes one element in the Matrix. We use
CUDA to rewrite ,only to modify the computing on
GPU.
__global__ void addMatrix(int *a,int *b,int *c,int N)
{
 int i=threadIdx.x;

int j=threadIdx.y;
int index=i+j*N;
c[index]=a[index]+b[index];

}
Void main()
{
 …………….
 dim3 blocksize(N,N);
 addMatrix<<<1,blocksize>>>(a,b,c,N);

}
Here the _global_ declaration indicates a kernel

function that run on the GPU. The <<< N,N>>invokes
a group of threads run in parallel.

CUDA provides three key abstractions—hierarchical

thread blocks, shared memory and barrier synchroniza-
tion-that provide a clear parallel structure. Many levels
of threads provide fine-grained data parallelism and
nested within coarse-grained data parallelism .

 B. Thread blocks

Thread blocks are a group of co-ordination of threads
through high-speed shared memory to share effectively
data in parallel. More specifically, the users can specify
in the kernel synchronization point, and all of thread
blocks achieve synchronization point to hang . Thread
blocks contain up to 512 threads on an NVIDIA ‘s
architecture GPU[11][12]. Performing the same cores
have the same dimensions and size of the thread blocks
which can be combined into a grid. Each thread by the
thread ID to identify. To help address based on its
thread ID, the application can be threaded into a block
of any size specified one-dimensional, two-dimensional
or three-dimensional array of threads and the use of one,
two or three index components to identify each thread.
For example, the size of the thread for the two-
dimensional block (Bx, By), the index for the (x, y) of
the thread ID for the thread (x + yBx). Therefore, the
GPU on the above-mentioned operative require only a
slight modification can be achieved.
__global__ void addMatrix(int *a,int *b,int *c,int N)
{

 int i=blockIdx.x*blockDim.x+threadIdx,x;
 int j=blockIdx.y*blockDim.y+threadIdx.y;
 int index=i+j*N;
 if(i<N&&j<N)
 {
 c[index]=a[index]+b[index];
 }
}
Void main()
{
 …………….
 dim3 dimBlock(16,16);
 dim3 dimGrid(N/dimBlk.x,N/dimBlk.y);
 addMatrix<<<dimGrid,dimBlk>>>(a,b,c,N);
}

Here a thread block size of 16*16=256 threads. A
grid is created with blocks to have one thread per
matrix element as before. The threads in each thread
block are run in parallel.

C. Shared memory

In the CUDA architecture, the memory is divided
into two categories: system memory and device
memory. GPUs as a result of the computing of the
equipment read and write memory faster than system
memory. So it is responsible for the computing of the
kernel function call before the division is not only the
needs of system memory for data, but also the device
memory to the memory for the thread to read and write
operation.

CUDA threads in the implementation process can

access multiple data memory space, as shown in Figure
2. Each thread has a private local memory. Each thread
block has a shared memory, the memory block for all
threads are visible, and the block has the same life
cycle. Ultimately, all threads can access the same global
memory.

Implementing on the device only through the

following several threads memory: registers, local
memory, shared memory, global memory, constant
memory and texture memory. Combined in the matrix
example, an independent thread to run effectively, but
there is no thread to know which elements can be
access by other threads. CUDA solve to this problem
through the shared memory to be completed. Kernel
data store in shared memory. Threads in the same
thread block are carried out through the shared memory
to communicate only by a thread block to deal with
more than one processor, so the presence of shared
memory on the chip, resulting in a very express
memory access. Because of multi-processor registers
and shared memory block allocated to the thread of all
threads, so each group of multi-processor can handle

the number of kernel threads in each block depends on
the number of registers and the number of shared
memory. If every multi-processor does not have enough
available memory to register or to share at least one
thread processing block, the implementation of the
kernel will not start. At present, the shared memory size
of 16K bytes.

D. Barrier synchronization

Threads within a block can collaborate with each
other through a number of shared memory to share
data and to coordinate the implementation of
synchronous memory access. More specifically, you
can call __syncthreads()inner core function which is
specified in the synchronization point. __syncthreads ()
play the role of the fence, and block all the threads
here have to wait for further processing. To achieve
effective collaboration, shared memory should be close
to low-latency memory of the processor
core.__syncthreads () should be lightweight, and a
block all threads are must reside in the same processor
core.

Once threads in the same memory space to operate in
parallel, we must provide a mechanism to ensure that a
thread do not read a result before another thread has
finished writing it. CUDA provided in __syncthreads ()
built-in function to guarantees such a purpose.
__syncthreads () function is an atomic operation that
block all of the thread must be synchronized in order to
continue.

IV PERFORMANCE OPTIMIZATION

 GPU performance is very good, but to a large
extent the performance should be restricted by the
structure of the algorithm. In the use of CUDA, the data
structure and memory access performance of the GPU
have a great impact on, and sometimes play a decisive
factor.

 Performance is optimized from three main aspects:
 optimizing the largest parallel implementation;
 optimizing memory in order to make the most

use of memory band-width;
 to optimize the use of instructions to get

maximum throughput of instructions.

 Follow to sum of squares as an example of
performance optimization.

 global static void SquareSum1(int*num,int
*result)

{

thread

Per-thread local memory

Per-block shared memory

block

Grid1

Grid0

Global
memory

Figure 2 hierarchical memory

 int sum=0;

 clock_t start=clock();

for(int i=0;i<DATA_SIZE;i++)

{

 sum+=num[i]*num[i];

}

clock time=clock()-start;

*result=sum;

}

In the program, don’t use in parallel processing. we
remove computing on the CPU to implement.

Comparison of the experimental test results, as
shown in table I:

TABLE I. THE PERFORMANCE TEST RESULTS

 CPU GPU

time/s 0.15 0.27

throughput(GB/s) 0.0267 0.0148

We can see clearly that performance is bad on GPU.
The main reason is that the architecture characteristics
of GPU caused. In CUDA, copying data from the CPU
to the GPU memory is called global memory. There is
no cache in GPU. And the global memory access time
latency is very long. It spends several hundred cycles .
In the program, we use only a thread, so every time it
read the data in global memory and the data must be
read and compute before the next operation. This
version of the program spend about 407Mcycles.

GeForce 8600GT and the frequency of the
implementation unit is 1.5GHZ. This process takes
about 0.27 seconds or so. From the table, we can see
that in the calculation of square and, using CPU would
be faster than the GPU, which is calculated because the
square do not need much computing power. It is almost
limited by memory bandwidth.

A. Process in parallel

There is only one thread to use and there is no cache
in the global memory. Following the use of multi-
threads to avoid the enormous costs of latency. When a
large number of threads start, then when a thread to
read memory, the beginning of time to wait for the

results, CPU immediately switches to the next thread
and read the next memory location. In theory, with
enough threads can hide the latency. In order to
parallel, the array can be divided into blocks, and each
block calculates values. At the end , the result is by
adding all of blocks .
global static void SquareSum1(int *num,int *result)
{
 int sum=0;
 int tid=threadIdx.x;
 int size=DATA_SIZE/THREAD_NUM;
 clock_t start=clock();

for(int i=tid*size;i<(tid+1)*size;i++)
{
 sum+=num[i]*num[i];
}
*result=sum;
clock time=clock()-start;

}

DATA_SIZE is the size of the array.
THREAD_NUM is the number of threads. The number
of threads is 256. After compiling the implementation,
using the processing in parallel need 8.2Mcycles.The
bandwidth is about 536MB/s with the GeForce
8600GT .

B. Optimizing memory in order to make the most use
of memory band-width.

Optimizing memory in order to get the most use of
memory bandwidth to transmit high-bandwidth data.
Between the CPU and device the transmission of data is
much lower than between global memory and the
device. Therefore we minimize to transfer data between
CPU and device. Different types of memory have
different access patterns. the effective bandwidth may
also be an order of magnitude worse, and optimize the
memory of the next visit is to take advantage of the best
model. GPU is a DRAM .The best way is continuous
access mode. The model make thread0to read the first
figure and thread1 to read the second figure and so on.

_global__ static void SquareSum1(int *num,int
*result)

{
 int sum=0;
 int tid=threadIdx.x;
 int size=DATA_SIZE/THREAD_NUM;
 clock_t start=clock();

for(int i=tid*size;i<DATA_SIZE;i+=THREAD_NUM)
{
 sum+=num[i]*num[i];
}
*result=sum;

clock time=clock()-start;
}

The above program need 2.1Mcycles.It is faster. than

the first version to use CUD. The speed has been
improved. There is a better performance. If increasing
the number of threads to 512, the implementation of
the reduction to 1.7M cycles. The current bandwidth is
3.54GB/s, which is larger than the previous version.
But there is a gap between the bandwidth and the actual
memory bandwidth.

Figure3. the use of throughput
Figure 3 gives the block of threads is 256 and 512 to

compare the memory bandwidth. We can see that when
threads increase and the bandwidth increases .

C. Optimizing the use of instructions to get maximum
throughput of instructions.

 Optimizing the command is that we don’t use the
command with a low throughput, such as use single
precision instead of double precision. As a result of
SIMD, in the CUDA programming, it is necessary to
avoid to use the branch prediction. For example, if
stream will be interrupted by the procedure, we used
the replacement of equivalent sentences.

 For example, if(a>0){b+=a; c-=a}.The sentence is
modified: d=(a>0); b+=a*d; c-=a*d. Rewritten the
program and the source program is equivalent. Avoid –
ing to use statements interrupts a program.

V. EXPERIMENTAL RESULT

All experiments use CUDA platform: GPU: GeForce
8600GT;CPU: pentium Dual E2160 1.8GHZ。CUDA
parallel experiments use to rewrite and the implement-
tation of the CPU .

TABLE II. EXPERIMENT RESULT

From Table II, we can see that the calculation based

on the GPU than the CPU greatly improve. This shows
that GPU is more suitable for large-scale computing
than CPU.

VI CONCLUSIONS
Along with pioneering the field of application and
development of GPU-based computing will become
increasingly common maturity. CUDA-based high-
performance scientific computing, data parallel
processing to speed up the ability to make cheap to
build high-performance computing platforms become a
reality.

 VII. ACKNOWLEDGEMENT
 This work is Supported by the Electronic
Information Industry Foundation of China under the
Government. Project: Research and Application on
Automatic Telemetering and Emergency Response
System for Basin Water Pollution with 3S.

VIII. REFERENCES

[1] NVIDIA Corporation, CUDA Programming Guide, February

2007.
[2] NVIDIACUDA.http://developer.nivida.com/

object/cuda.html.
[3] Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Arie

E. Kaufman, and Klaus Mueller. Visual simulation of heat
shimmering and mirage.

[4] David A. Bader and Kamesh Madduri. Parallel algorithms for
evaluating centrality indices in real-world networks. In ICPP
'06: Proceedings of the 2006 International Conference on
Parallel Processing, IEEE Computer Society. Washington, DC,
USA,2006:539–550.

[5] Buatois, L., Caumon, G., Lévy, B. 2007. Concurrent number
cruncher: An efficient sparse linear solver on the GPU.
Proceedings of the High-Performance Computation
Conference (HPCC), Springer LNCS.

[6] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. Kirk,
and W. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA,” in Proceed -ings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, February 2008.

[7] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“NVIDIA Tesla: A united graphics and computing
architecture,” IEEE Micro, vol. 28, In press 2008

[8] Intel, Intel 64 and IA-32 Architectures Software
Developer’sManual, May 2007.

[9] AMD CTM Guide: Technical Reference Manual. 2006.
http://ati.amd.com/companyinfo/researcher/documents/ATI_C
TM_Guide.pdf

[10] MacEachren, A.M., I. Brewer, and E. Steiner,(in press).
Geovisualizationto Mediate Collaborative Work:Tools to

time Band-width

CPU 0.15 s 26.7MB/S

GPU 0.00113s 3.54GB/s

Support Different-place Knowledge Construction and
Decision-Making, 20th International Cartographic Conference.
ICA, Beijing,China, August 6-10, 2001.Mark, David M.,
Christian Freksa.

[11] Frank Losasso,Hugues Hoppe.Geometry clipmaps:terrain
rendering using nested regular grids.ACM Transactions on
Graphics,23(3):769-776,2004

[12] Daniel Cohen-Or,Yiorgos Chrysanthou,Claudio Silva and
Fredo Durand.A survey of visibility for walkthrough
applications.IEEE Transaction on Visualization and
Computer Graphics,9(3):412-431,2003

[13] Daniel Cohen-Or,Yiorgos Chrysanthou,Claudio Silva and
Fredo Durand.A survey of visibility for walkthrough
applications.IEEE Transaction on Visualization and
Computer Graphics,9(3):412-431,2003

[14] Daniel Cohen-Or,Yiorgos Chrysanthou,Claudio Silva and
Fredo Durand.A survey of visibility for walkthrough
applications.IEEE Transaction on Visualization and
Computer Graphics,9(3):412-431,2003

[15] Sud A,Otaduy MA,Manocha D.and DiFi.“Fast 3D distance
field computation using graphics hardware,”Proceedings of
the Eurographics,2004.

	I. Introduction
	II. Data Parallel Model of the formal descri-ption
	A. Formal definition of data parallel
	B. Time Function of Data parallel
	C. Formal definition of task parallel
	D. Time Function of task parallel

	III Background and Relation work
	A. The CUDA of programming model
	 B. Thread blocks
	C. Shared memory
	D. Barrier synchronization

	IV Performance Optimization
	A. Process in parallel
	B. Optimizing memory in order to make the most use of memory band-width.
	C. Optimizing the use of instructions to get maximum throughput of instructions.

	V. Experimental Result
	VI Conclusions
	 VII. Acknowledgement
	VIII. References

