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Triple-photon states generated by three-mode spontaneous parametric down-conversion are the
paradigm of unconditional non-Gaussian states, essential assets for quantum advantage. How to fully
characterize their non-Gaussian entanglement remains however elusive. We propose here a set of sufficient
and necessary conditions for separability of the broad family of spontaneously generated three-mode
non-Gaussian states. We further derive state-of-the-art conditions for genuine tripartite non-Gaussian
entanglement, the strongest class of entanglement. We apply our criteria to triple-photon states revealing
that they are fully inseparable and genuinely entangled in moments of order 3n. Our results establish a
systematic framework for characterizing the entanglement of triple-photon states and thus fostering their
application in quantum information protocols.
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Entanglement is a physical property describing the
inseparability of quantum systems composed by multiple
elements. This core concept of contemporary physics dates
back to 1935, when Einstein, Podolsky, and Rosen pro-
posed a gedanken experiment criticizing the nonlocality of
quantum mechanics and pointing out at a possible incom-
pleteness of the theory [1]. Nowadays entanglement is
prepared regularly in a number of physical systems [2].
For instance, entangled quadratures of electromagnetic
fields are generated by single- and two-mode squeezing
in parametric amplifiers and oscillators [3,4]. These
squeezed states are the cornerstone of multipartite
entangled quantum networks and have greatly promoted
the development of quantum optics [5–8] and quantum
information science [9–11]. They exhibit Gaussian statistics
and their entanglement properties are completely specified
by their covariance matrix [12]. However, it has been shown
that non-Gaussian entangled states—inseparable states with
non-Gaussian statistics–are an essential resources for uni-
versal quantum computing [13–17], demonstrating superior
performance in many continuous variable protocols, such
as quantum key distribution [18], quantum teleportation
[19–21], and quantum metrology [22]. Remarkably, the lack
of passive separability of non-Gaussian entanglement has
been recently pointed out as resource for quantum computa-
tional advantage [23]. Non-Gaussian entangled states have
been probabilistically created by photon addition and

subtraction on Gaussian states along the last decades [24–
26], but a source of deterministic non-Gaussian entangled
states was still missing.
Triple-photon states (TPS) are quantum states obtained

through third-order spontaneous parametric down-
conversion where a pump photon is converted into three
photons with different energies. They constitute true three-
mode unconditional non-Gaussian entangled states. They
have been demonstrated in the microwave regime [27], and
there is a great effort developing new platforms that produce
them at optical wavelengths [28–31]. These new TPS are
expected to extend the development of quantum optics and
break the probabilistic nature induced by non-Gaussian
operations in existing quantum information technologies.
Non-Gaussian entangled states are not only challenging

to obtain in laboratories but are also hard to characterize.
Along the last two decades, efficient tools to detect
multipartite Gaussian entanglement have been developed
and experimentally tested countless times [32,33].
However, these criteria fail to detect fully non-Gaussian
entanglement [34–36]. Several sufficient criteria have
been proposed to detect the entanglement of known non-
Gaussian states [37–39]. However, non-Gaussian states
encompass a huge state space and necessary conditions of
entanglement only arise when specific state features are
taken into account [40]. For TPS, sufficient conditions
have been recently derived [35,41]. These conditions are
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nevertheless not necessary—they do not fully or even
unambiguously reveal the non-Gaussian entanglement of
states–, only work in a limited parameter range, and are
experimentally very demanding. Thus, a systematic frame-
work that fully characterizes TPS non-Gaussian entangle-
ment and hence its operational usefulness [23], sensitive
at any parameter range and experimentally accessible is
necessary.
In this Letter, we propose a set of full separability criteria

for tripartite continuous variable states. These criteria are
a series of inequalities fulfilled by any three-mode bisepar-
able state, based on linear combinations of experimentally
accessible high-order operators. Violation of these inequal-
ities is a sufficient condition for three-mode full insepa-
rability. By analogy with the covariance matrix, we
construct the high-order covariance matrices based on
the high-order operators. Using these high-order covariance
matrices we find that the inequalities provide sufficient and
necessary conditions for the full separability of sponta-
neously-generated three-mode non-Gaussian states, such
as TPS. This establishes a systematic framework for the
characterization of TPS non-Gaussian entanglement.
Furthermore, based on our full separability conditions
we derive a series of stringent conditions which rule out
mixtures of biseparable states resulting in a criterion of
genuine tripartite non-Gaussian entanglement. Finally,
we demonstrate the entanglement structure of TPS in a
experimentally relevant parameter space by means of
numerical simulations.
We start our analysis by considering the interaction

Hamiltonian describing the nondegenerate three-mode
spontaneous parametric down-conversion

ĤI ¼ iℏκðâ†1â†2â†3â4 − â1â2â3â
†
4Þ; ð1Þ

where κ is the 3rd-order coupling constant. The annihila-
tion operators â1, â2, â3, and â4 describe, respectively, the
three down-converted modes and the pump mode. Under
the evolution of vacuum or thermal states driven by the
Hamiltonian (1), it has been demonstrated theoretically
[35,36] and experimentally [27] that third order -coskew-
ness- is the lowest-order correlation of TPS. Because of
the shape of Hamiltonian (1), TPS presents also 6th- and
9th-order quantum correlations, and even higher [42]. Here,
we refer to hς̂n1 ς̂n2 ς̂n3i as a 3nth-order correlation, where
ς̂i ≡ fq̂1i ; p̂1

i g is a canonical quadrature operator corre-
sponding to mode i ¼ 1, 2, 3 and n ∈ Zþ. This means
that the well-developed entanglement criteria involving
second-order correlations are no longer applicable to
TPS [34]. From now on we will refer to non-Gaussian
entanglement as the entanglement that is not detected by
Gaussian entanglement witnesses based on second order
moments—the covariance matrix—such as van Loock-
Furusawa or Reid criteria [33,43].

To fully probe the high-order-moment nature of TPS
entanglement, we introduce the high-order quadrature
operators q̂nk ¼ ðâ†nk þ ânkÞ=2 and p̂n

k ¼ iðâ†nk − ânkÞ=2 for
the mode k, satisfying the commutation relation ½q̂nk; p̂n

k � ¼
if̂nk , where the full expressions of f̂nk are given in the
Supplemental Material [42]. Likewise, the two-mode
operators q̂nlm ¼ ðâ†nl â†nm þ ânl â

n
mÞ=2 and p̂n

lm ¼ iðâ†nl â†nm −
ânl â

n
mÞ=2 are defined for the modes l and m, which follow

the commutation relation ½q̂nlm; p̂n
lm� ¼ if̂nlm [42]. We also

define the following linear combinations

ûnk;lm ¼ gk;nq̂nk −
q̂nlm
gk;n

; v̂nk;lm ¼ gk;np̂n
k þ

p̂n
lm

gk;n
; ð2Þ

for a given permutation fk; l; mg of {1, 2, 3}, where gk;n is
an arbitrary real number.
The standard approach to witness tripartite entangle-

ment is to examine the separability of the three possible
bipartitions of the system. Thus, let us consider the tripartite
density operator ρ¼P

iηiρ
i
k⊗ρilm with Σiηi¼1. For bre-

vity, we denote it as ρk;lm. We derive in the Supplemental
Material that for the biseparable state ρk;lm, the total
variance of a pair of operators ûnk;lm and v̂nk;lm satisfies
the inequality [42]

hΔðûnk;lmÞ2i þ hΔðv̂nk;lmÞ2i ≥ Bn
k;lm; ð3Þ

where Bn
k;lm¼ g2k;nf

n
kþfnlm=g

2
k;n and fnk=lm ≡ hf̂nk=lmi. Thus

we have the following theorem concerning full tripartite
inseparability:
Theorem 1.—Violation of all three inequalities

Fn
1 ≡ hΔðûn1;23Þ2i þ hΔðv̂n1;23Þ2i −Bn

1;23 ≥ 0; ð4aÞ

Fn
2 ≡ hΔðûn2;13Þ2i þ hΔðv̂n2;13Þ2i −Bn

2;13 ≥ 0; ð4bÞ

Fn
3 ≡ hΔðûn3;12Þ2i þ hΔðv̂n3;12Þ2i −Bn

3;12 ≥ 0; ð4cÞ

for any n is sufficient to confirm fully inseparable tripartite
entanglement.
Inequality (4a) is a necessary condition for the sepa-

rability of the bipartition 1–23. Once inequality (4a) is
violated with any n, we can conclude that the state cannot
be described by ρ1;23. Similarly, inequalities (4b) and (4c)
are implied by biseparable states ρ2;13 and ρ3;12, respec-
tively. Therefore, violating the three inequalities for any n
negates all possible bipartitions, thus proving the full
inseparability of the state.
The three sets of bounds given in Eq. (4) must be fulfilled

for the three biseparable states. This naturally raises two
questions: (i) Do the states that violate these bounds at any
order n necessarily possess non-Gaussian entanglement?
(ii) Are these bounds strong enough to ensure that the state
satisfying the three sets of inequalities is fully separable?
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The answer to the first question is negative. Although the
violation of inequalities (4) depends on correlations like
hq̂nkq̂nlmi > 0 and hp̂n

kp̂
n
lmi < 0, these high-order moments

do not identify the statistical properties of states. In fact, we
can easily find a three-mode Gaussian state that simulta-
neously violates the three inequalities in Eq. (4), such as
ρ ¼ 1=2ðjαihαj ⊗ jψðrÞihψðrÞj þ jψðrÞihψðrÞj ⊗ jαihαjÞ,
where jαi is a coherent state with classical complex
amplitude α and jψðrÞi is a two-mode squeezed vacuum
state with squeezing parameter r [42]. This suggests that the
above criterion involving high-order moments have down-
ward compatibility [44,45], i.e., they can diagnose some
Gaussian entanglement. Note that, however, zero-mean-field
Gaussian states would never violate inequalities (4a)–(4c).
For the second question we have however a positive

answer. We find that the inequalities (4a)–(4c) are indeed
sufficient and necessary conditions for the full separability
of spontaneously generated states from the Hamiltonian
(1), such as TPS. The proof steps are as follows.
We first collect the high-order quadrature and built-up

operators in the vector R̂n ¼ ðq̂nk; p̂n
k; q̂

n
lm; p̂

n
lmÞT and write

the commutation relations as

½R̂n
i ; R̂

n
j � ¼ iΩn

ij; i; j ¼ 1;…; 4; ð5Þ

where Ωn ¼ if̂nksy ⊕ if̂nlmsy and sy represents the y Pauli
matrix. Analogous to the Gaussian states case, the
high-order covariance matrices Vn is defined as Vn

ij ¼
hΔR̂n

iΔR̂n
j þ ΔR̂n

jΔR̂n
i i=2, where ΔR̂n ¼ R̂n − hR̂ni and

the high-order local moment hR̂ni ¼ tr½R̂nρ�, with ρ being
the density operator of the system. Then we have
Vn
ij þ ihΩn

iji=2 ¼ hR̂n
i R̂

n
j i, where the commutation relation

(5) and the property of spontaneously generated states
hR̂n

i i ¼ 0 are used [42]. Hence we have the following
statement of the uncertainty principle

Vn þ i
2
hΩni ≥ 0: ð6Þ

Every physical state that satisfies hR̂n
i i ¼ 0, i.e., with zero

local moments, must conform to this inequality.
Vn is by definition a symmetric matrix, which can be

divided into 2 × 2 subblocks

Vn ¼
�

Ak Ck−lm

CT
k−lm Blm

�
; ð7Þ

where Ak and Blm are local high-order covariance matrices
related, respectively, to the subsystems k and lm, and Ck−lm
represents their correlation. UsingWilliamson’s theorem and
a suitable singular value decomposition [46], we can always
transform Eq. (7) into the following standard form [42]

Vn
1 ¼

0
BBB@

n1 0 s1 0

0 n2 0 s2
s1 0 m1 0

0 s2 0 m2

1
CCCA; ð8Þ

where the matrix elements satisfy the relations

n2m1¼n1m2; 2ðjs1j− js2jÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n1m1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
n2m2

p
; ð9Þ

with ni ¼ 2ni − fnk andmi ¼ 2mi − fnlm (i ¼ 1, 2). jsij ¼ 0

for Gaussian states as they do not present Ck−lm correlations
under the condition of hR̂n

i i ¼ 0.
Note that these high-order covariance matrices from V1

1

to Vn
1 only describe the correlation information between

subsystem k and lm. To fully characterize three-mode non-
Gaussian state with zero local moments, such as TPS, we
need three sets of higher-order covariance matrices. In
addition, local symplectic transformations do not affect the
separability of Vn, which implies that states with the same
three sets of standard forms (8) have the same entanglement
structure. With these preliminaries, we now present the
main theorem about the separability of Vn

1 .
Theorem 2.—The necessary and sufficient condition for

the separability of high-order covariance matrix Vn
1 is that

the operators

ûnk;lm¼gk;nq̂nk−
s1q̂nlm
gk;njs1j

; v̂nk;lm¼ gk;np̂n
kþ

s2p̂n
lm

gk;njs2j
; ð10Þ

satisfy the inequality (3), where g2k;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=n1

p
.

Proof.—Inequality (3) is already a necessary condition
for the separability of k − lm, so we only need to prove its
sufficiency. Substituting ûnk;lm and v̂nk;lm of Eq. (10) into
inequality (3) and using the standard form Vn

1 , we obtain
the inequality g2k;nðn1 þ n2Þ þ g−2k;nðm1 þm2Þ − 4js1j−
4js2j ≥ 0. Combined with Eq. (9), one finds

2jsij ≤
ffiffiffiffiffiffiffiffiffiffiffi
nimi

p
: ð11Þ

Since the uncertainty principle is invariant under local
standard transformations, the standard form Vn

1 always
satisfies Eq. (6), which can be further reduced to
detðVn

1 þ ihΩni=2Þ≡ ðfnkÞ2ðfnlmÞ2 detðVn
G þ ihΩi=2Þ ≥ 0,

where Ω ¼ diagðJ1k; J1kÞ and Vn
G is given in [42]. This is

equivalent to inserting a normalization coefficient into the
commutation relations and it does not affect the separability
of Vn

1 . The standard form Vn
G and the uncertainty principle

Vn
G þ ihΩi=2 ≥ 0 suggest that Vn

G can be regarded as a
two-mode Gaussian state in the canonical quadratures.
Inequality (11) ensures that every matrix Vn

G − 1=2 is
semipositive definite, implying that all Gaussian states
represented by Vn

G are separable [47,48], which
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demonstrates that the original states Vn
1 are separable. This

completes the proof of Theorem 2.
Thus, we have the following result: A quantum state with

zero local moments represented by 3n high-order covari-
ance matrices Vn

1 is fully inseparable if and only if three
pairs of operators violate inequalities (4a)–(4c), respec-
tively, with any n. Remarkably, under the condition
hR̂n

i i ¼ 0, inequality (11) reveals the non-Gaussian char-
acter of our entanglement criterion, as for Gaussian states
jsij ¼ 0 and Equation (11) is always fulfilled. Hence, only
states with high-order correlations -non-Gaussian states-
can violate this inequality and thus inequality (3).
Theorem 2 is a natural extension of the Duan criterion

[48] to the tripartite high-order correlation system. Notably,
this framework is inherently scalable and can be easily
extended to N-partite systems.
Full inseparability is, however, not the more general

form of multipartite entanglement [49,50]. It can only
exclude any biseparable case rather than the general one in
which the state can be described as a mixture

ρ ¼ P1

X
i

ηð1Þi ρi1;23 þ P2

X
t

ηð2Þt ρt2;13 þ P3

X
j

ηð3Þj ρj3;12;

where ΣiPi ¼ 1. If a tripartite state can not be described by
this equation, it is said to be genuinely entangled. Genuine
entanglement and full inseparability are equivalent for
pure states, but for mixed states, the former is more strict
than the latter [43,50]. Substituting the above equation into
inequality (4), we derive a series of genuine tripartite
entanglement criteria in the Supplemental Material [42],
which can be stated as follows:
Theorem 3.—A tripartite state is genuinely entangled if

the inequality

Wn ≡ Fn
1 þ Fn

2 þ Fn
3 þ 4hq̂n1q̂n23iρ − 4hp̂n

1p̂
n
23iρ

þ 2ðhâ†n1 ân1iρ þ hâ†n2 ân2iρhâ†n3 ân3iρÞ ≥ 0 ð12Þ

is violated for any n.
Let us now discuss the main features of the proposed

criteria. For any tripartite continuous variable state, vio-
lations of criteria (4) and (12) are sufficient to confirm
fully inseparable and genuine tripartite entanglement,
respectively. On the other hand, with hR̂n

i i ¼ 0, the
matrix elements in block Ck−lm can be decomposed
into the superposition of 3rd-order standard moments—
coskewness—when n ¼ 1, i.e., hp̂1

kp̂
1
lmi ¼ hp̂1

kp̂
1
l q̂

1
mi þ

hp̂1
kq̂

1
l p̂

1
mi and hq̂jkq̂jlmi ¼ hq̂1kq̂1l q̂1mi − hq̂1kp̂1

l p̂
1
mi, recently

measured experimentally for TPS [27]. Inequality (11)
indicates that even if there are non-Gaussian correlations
among the three modes, they may be separable, which
implies that nonzero high-order standard moments are a
necessary but not sufficient condition for diagnosing
non-Gaussian entanglement. As commented above, this

necessary condition is not fulfilled by Gaussian states.
However, based on three sets of standard form Vn

1 , we
found that violations of criteria (4) and (12) imply fully
inseparable and genuine tripartite non-Gaussian entangle-
ment, respectively. Besides, the elements in block Ck−lm
have state-independent properties [42], which simplify
significantly the complexity of experimental measurements
compared to other cases where determining non-Gaussian
entanglement requires two different measurement proto-
cols, non-Gaussianity and inseparability [24–26].
Other criteria based on three-mode correlations function

composed of high-order creation or annihilation operators
can also effectively determine the inseparability of TPS [51].
However, the eigenspectra of the observables in these
criteria are discrete, so what they reveal is the high-order
moments entanglement of Fock states. The picture is
especially evident when considering the two-mode squeezed
vacuum, where the entanglement conditions jhânb̂nij >
½hâ†nânihb̂†nb̂ni�1=2 are always satisfied for any n [42].
This indicates that the high-order moments entanglement of
Fock states revealed by these conditions is only 2nd-order
moment entanglement—Gaussian entanglement—from the
perspective of continuous variables. Therefore, the high-
order moments in these criteria do not distinguish between
Gaussian and non-Gaussian entanglement, which is clearly
different from those in our criteria.
Moreover, there are other types of genuine tripartite

entanglement criteria derived from the uncertainty principle
[43,45,50] and the Cauchy-Schwartz inequality [35]. No
assumptions were made there about the statistical proper-
ties of the states in deriving these criteria, so, in principle,
they apply to any tripartite continuous-variable state,
Gaussian or non-Gaussian. In particular, these criteria
are sufficient conditions for verifying entanglement rather
than sufficient and necessary conditions. When we claim
that some kind of entanglement does not exist, we need to
use necessary conditions of entanglement to support this
conclusion, instead of sufficient conditions. In other words,
comparing two sufficient conditions for entanglement
with two different states does not negate the existence of
either Gaussian or non-Gaussian entanglement. There-
fore, what was proposed in [35] is a state-independent
generalized entanglement condition, which cannot unam-
biguously reveal the novel notion of genuine tripartite
non-Gaussian entanglement. In contrast, our criteria can
capture tripartite non-Gaussian entanglement in moments
of order 3n.
To conclude this Letter, we present the numerical veri-

fication of the proposed criteria. Using the Hamiltonian (1),
the master equation _ρðtÞ ¼ −i½ĤI; ρðtÞ�=ℏ is solved numeri-
cally to deduce the final state of system at time t considering
that the initial state is vacuum for the triplets and a coherent
mode αp for the pump [36]. Figure 1(a) shows the evolution
of Fn

1 versus the interaction strength ξ ¼ καpt, where

g21;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=n1

p
. Fn

1 ¼ Fn
2 ¼ Fn

3 as expected from the
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symmetry of the TPS. Fn¼1;2
1 < 0 in the parameter region

demonstrating full inseparability related to the 3rd- and
6th-order covariance matrices of the TPS. Interestingly,
when ξ > 2, the entanglement carried by the 3rd-order
covariance matrices (n ¼ 1) disappears, while the entangle-
ment carried by the 6th-order covariance (n ¼ 2) matrices
remains. There are also higher order entanglements that we
have not considered (n ≥ 3). Figure 1(b) shows the evolution
of Wn versus the interaction strength. Wn < 0 in the
parameter region demonstrating genuine entanglement.
Starting from the vacuum, the genuine tripartite non-
Gaussian entanglement is firstly loaded on the 3rd-order
covariance matrices and then gradually transitioned to the
6th-order covariance matrices with the increase of ξ.
Similarly, genuine tripartite non-Gaussian entanglement still
exists in higher order covariance matrices (n ≥ 3).
In summary, we proposed a set of sufficient and

necessary conditions for the separability of higher-
order moments for spontaneously-generated tripartite non-
Gaussian states, which provides a systematic framework
for characterizing non-Gaussian entanglement. Besides, a
series of genuine tripartite non-Gaussian entanglement
criteria was proposed. Compared with others, our proposal

has the following advantages: First, our criteria are more
general since they can directly answer whether quantum
states possess tripartite non-Gaussian entanglement,
including full inseparability and genuine tripartite non-
Gaussian entanglement. Second, our strategy is platform-
agnostic, as it works for any physical system as long as the
information is encoded in continuous variables. Third, our
framework is naturally scalable and it constitutes a stepping
stone to more sophisticated states and more than three
parties. Fourth, the physical quantities involved in our
criteria are all experimentally accessible without quantum
tomography. In future work, we will study some interesting
problems such as quantifying the entanglement of triple-
photon states and exploring their potential advantages in
quantum information tasks such as quantum teleportation.
Moreover, we will study the multipartite non-Gaussian
entanglement generated by triple-photon states and beam-
splitter operations.
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