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ABSTRACT: Nanofluids have gained significant popularity in the field of sustainable and
renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on
the efficiency of the renewable energy system. The addition of a small amount of high thermal
conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large
amount of research data is available in the literature, some results are contradictory. Many
influencing factors, as well as nonlinearity and refutations, make nanofluid research highly
challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine
learning techniques would be very useful in nanofluid research for forecasting thermophysical
features and heat transfer rate, identifying the most influential factors, and assessing the
efficiencies of different renewable energy systems. The primary aim of this review study is to look
at the features and applications of different machine learning techniques employed in the
nanofluid-based renewable energy system, as well as to reveal new developments in machine
learning research. A variety of modern machine learning algorithms for nanofluid-based heat
transfer studies in renewable and sustainable energy systems are examined, along with their
advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple
to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm,
genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known
neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as
Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their
improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are
mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and
ethical artificial intelligence is required.

1. INTRODUCTION

1.1. Background. The energy consumption and green-
house gas (GHG) emissions in the world have been growing
dramatically in recent decades because of the global population
rise, as well as the sharply increased industry and trans-
portation activities.1,2 As illustrated in Figure 1, the global
GHG emissions can be seen to roughly originate from four
main categories, including energy, agriculture, industry, and
waste.3 However, energy consumption has been considered as
the primary source of GHG emissions with around a 73.2%
share,4 showing that extensive use of fossil-based energy
sources caused unfavorable impacts on the living environment
because of the high level of GHG emissions.5 Due to this
reason, the development of renewable energies has been paid
much attention in recent years due to their beneficial
properties;6,7 this could be observed more clearly during the
post-COVID19 pandemic.8

In the development progress of energy systems, there has
been a large interest in working fluids since they play a critical

role in thermal efficiency and heat transfer capacity.9,10 Due to
their weak heat transfer characteristics, ethylene glycol (EG),
water, and other common working fluids cannot provide
sufficient heat transfer efficiencies in industrial operations. The
ability of conventional fluids to transfer heat can be enhanced
by suspending solid particles in them.11 Over the years,
researchers have focused their efforts on modifying heat
transfer fluids using small-sized dispersed solid particles in the
fluid. Indeed, using nanofluids could enhance the overall
thermal efficiency significantly, and the total efficiency could be
increased by 25% for nanofluids compared to the case of pure
water.12 However, these fluids experienced several issues,
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including particle swarming, channel blockage, transmission
device degradation, increased pressure drop, and finally
alluviation.13 Particle settling reduced thermal conductivity
and created sludge deposits, increased thermal resistance, and
decreased the fluid’s heat transfer capacity.14 By 1881, James
Clerk Maxwell had produced a significant revolution in heat
transmission in fluids by introducing the notion of utilizing
nanosized particles for the first time. He presented a new
perspective on the liquid−solid suspension using nanosized
particles. Okonkwo et al.15 initially coined the term “nanofluid”
to designate a fluid containing suspended particles, and Eshgarf
et al. further refined the notion at the Argonne National
Laboratory in the United States.16

These newer generations of heat transfer fluids, known as
nanofluids (NFs), were invented based on this concept and
breakthroughs in nanotechnology. The NFs are a blend of
solid nanoscale materials (metal oxides, metals, nonmetals, and
other nanoparticles) and a fluid known as the base fluid (like
ethylene glycol, oil, or water).17,18 NFs have emerged as a
viable alternative to the currently utilized heat transfer fluids
due to their superior heat transfer capabilities. NFs have better
thermal conductivities and thermophysical characteristics.19

That is why NFs are preferred for use in thermal management
systems and heat transfer devices.20 At present NFs are being
used in solar collectors,21 hydroelectric rotors,22 geothermal
heat exchangers,23,24 wind turbines,25 fuel cells,26,27 chemical
process plants,28 and photovoltaic/thermal (PV/T) sys-
tems.29,30

The addition of nanosized particles to base fluids has a
greater impact on the thermophysical characteristics of
nanofluids. For example, in an experimental investigation by
Moldoveanu et al.,31 they used hybrid NF to enhance the
thermal conductivity of NF by 19.2% in comparison with base
fluid (water). Wole-Osho et al.32 explored the effects of
particle concentrations on the dynamic viscosity and specific
heat of an Al2O3-ZnO-H2O hybrid NF. In the case of the 2:1
ratio, viscosity is enhanced by 96.37%, while specific heat
decreases by 30.12% at 25 °C temperature. Xian et al.33

explored the influences of ultrasonication time and a variety of
surfactants on the thermophysical properties of NFs. The
experimental study used a hybrid NF of graphene nanoplatelets

with titanium dioxide. The nanoparticles were dispersed in a
mixture of EG and water. It was experienced that the thermal
conductivity was enhanced up to 23.74%. Kakavandi and
Akbari34 reported an enhancement of thermal conductivity up
to 33% with hybrid NFs−binary base fluids (MWCNTs-SiC/
Water-EG). Several other studies reported the impacts of
hybrid NFs in improving thermophysical properties to make
heat transfer fluids more suitable for energy systems.35−38 In
recent years, a novel class of working fluids has been identified
and actively investigated, consisting of three solid nanoparticles
scattered in a typical fluid. These fluids are known as ternary
nanofluids, ternary hybrid nanofluids, or trihybrid nano-
fluids.39,40

Nanofluids are utilized in sophisticated heat exchange
processes and energy systems due to their better thermophys-
ical properties than base fluids. They have nonlinear impacts
on fluid flow, heat transfer, optics, stability, and radiative
performances. Mapping their effects on complex thermal
processes and the effects of different mixing ratios is
cumbersome.41 As a result, artificial intelligence-based machine
learning (ML) might be used in nanofluids research. The
advent of improved computational facilities with advanced
machine learning algorithms has made it possible to predict the
thermophysical properties of hybrid NFs.42

1.2. Renewable Energy. Energy is critical to industrializa-
tion, economic progress, education, and urbanization in today’s
world. As per the US EIA briefing, worldwide energy
consumption is increasing at a rate of about 2.3% each year.
According to the report, petroleum will be in limited supply
throughout the planet shortly.43 Fossil fuels are also a major
source of environmental contamination, such as air and water
pollutions. As a result, renewable sources of energy such as
biomass, solar, geothermal, wind, and others have received
considerable attention as prospective energy development
options.44,45 Environmental limitations are frequently violated
in the existing global energy system. The basic energy
requirements are not fulfilled for the masses, and energy
justice is not guaranteed for everyone. In essence, the energy
system is unsustainable, and it is on a path to stay
unsustainable in the future. This realization spurred the
United Nations to establish 17 sustainable development
goals (SDGs), one of which (SDG 7) envisions a future
where everyone has access to cheap, dependable, sustainable,
and modern energy services by 2030.46,47 SDG 7 is not the
only goal for which sustainable energy is important. The
development of renewable, clean, and sustainable energy
sources is important to attaining the United Nations’
sustainable development goals (SDGs),48 even though
developing energy systems with renewable sources is the first
step toward achieving global environmental sustainability in
many industrialized economies.
The studies in the past point out that meeting the global

energy demands sustainably has been a critical concern for
humanity.49 As a result, to maximize their sustainability,
optimal design, and economic viability, a thorough under-
standing of sustainable energy systems is required. Sustainable
energy systems have previously been characterized as explicit
domains that employ energy sources projected to decline in a
time frame relevant to the human race. Significant research
efforts have been undertaken to enhance renewable energy
generation to meet the global target of reducing energy
consumption and CO2 emissions by 20% by the year 2030.50

Furthermore, the massive rise in energy consumption in recent

Figure 1. Global greenhouse gas emissions by sector3 (reuse with
permission of Elsevier via LN 5315110697148).
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years as a result of fast industrial development and population
expansion confirms that developing renewable, clean, and
sustainable energy source Research Center in Systems Ecology
and Sustainability (RCSES) is now a key priority in many
nations across the world,51 as seen from the creation of the
Research Center in Systems Ecology and Sustainability
(RCSES). As a result, not only RCSES are developed for
achieving SDGs but also their behaviors and performances
under various operating situations must be understood.
Figure 2 illustrates the statistics on the number of published

research articles on nanofluids (NF), machine learning (ML),

and renewable energy (RE) and also a combination of these
three domains obtained from keyword searches on the Web of
Science on February 3, 2022, for the decade 2012−2021. The
data on NF came from a subject search with the key phrases
“nanofluid” or “nanofluids”. The analysis data on ML came
from a variety of searches that included the terms “adaptive
neuro-fuzzy”, “artificial neural network”, “category and
regression tree”, “artificial intelligence”, “support vector
machine”, and “random forest”. The data of published articles
on renewable energy were searched using the terms “renew-
able” and “renewables”. The graph shows that publications in
these areas have grown considerably in recent years, with
renewable energy having the most articles, followed by
machine learning and nanofluids. However, nanofluid pub-
lications utilizing machine learning in the renewable energy
domain (i.e., a combination of these three search queries) are
scarce, gradually increasing from a two-digit yearly figure in the
period 2012−2013 to approximately 1468 in 2021, accounting
for approximately 1.7% of renewable energy research
publications in that year. As a result, the nanofluid research
community must focus more on machine learning research in
the renewable energy sector.
1.3. Novelty of the Review Study. Machine learning

technologies based on AI are being utilized to model business
and engineering difficulties in virtually every industry. Most
energy-producing industries in the renewable energy arena use
some form of heat transfer. Numerous research studies indicate
the efficacy of nanofluids in boosting the heat transfer rate. The
selection of an acceptable nanofluid for a specific renewable
energy application, on the other hand, is a crucial challenge.
The selection of a suitable nanofluid is based on an assessment

of its thermophysical properties via a thorough characterization
technique.52 The repeated comprehensive characterization of
multiple nanofluids is time consuming and labor intensive and
requires a significant investment in specialized testing equip-
ment and raw materials.53 Machine learning approaches are a
viable answers to these challenges in nanofluid character-
ization. Modern machine learning algorithms can effectively
construct a prediction model from experimental data, which
may then be used to predict features in future investigations.
Table 1 highlights key review articles published in the previous
five years on the use of machine learning techniques in the use
of nanofluids in the renewable energy field.

An examination of review articles published in the previous
five years (2017−2022) revealed that while numerous review
studies on the thermophysical properties of nanofluids are
available in the open literature only a few on the use of
nanofluids in conventional energy systems or demand
forecasting are available. Even though machine learning
methods are rapidly being employed in nanofluids and
renewable energy, no comprehensive research evaluation on
machine learning applications in nanofluid-based renewable
energy systems exists. The present work seeks to connect the
dots to provide a comprehensive analysis of the connected
research domains of machine learning, nanofluids, and
renewable energy. In Section 2, the review article outlines
the approach used throughout the review of the relevant
literature. Section 3 provides a detailed analysis of different
machine learning approaches, while Section 4 provides a
detailed examination of the use of machine learning techniques
for modeling and forecasting thermophysical characteristics of

Figure 2. Number of research articles published in renewable energy,
nanofluids, machine learning, and their combinations.

Table 1. Summary of Review Papers on Use of Machine
Learning Techniques for Utilization of Nanofluids in
Renewable Energy Domain in Last Five Years

Reference Focus area Year

Akhter et al.54 Application of machine learning in
photovoltaic power generation

2019

Mosavi et al.55 Applications of machine learning system
in general energy systems

2019

Ramezanizadeh et al.56 Utilization of machine learning for
estimation of nanofluid dynamic
viscosity

2019

Diogo et al.57 Machine learning for energy efficiency in
industry

2020

Shateri et al.58 Machine learning for nanofluid viscosity
estimations

2020

Antonopoulos et al.59 Artificial intelligence in demand-side
response of energy

2020

Fathi et al.60 Machine learning in performance
forecasting of urban building

2020

Ahmad et al.61 Artificial intelligence in sustainable
industry

2021

Ma et al.62 Nanofluids heat transfer applied to
renewable energy

2021

Jamei et al.63 Evaluations of data analysis techniques
for estimations of nanofluid specific
heat

2021

Aghbhaslo et al.64 Machine learning techniques for
biodiesel research

2021

Hoang et al.65 Artificial neural network for behaviors of
diesel engine fueled with biodiesel

2021

Wang et al.66 Machine learning methods applied for
use of nanofluid in a heat pipe

2021

Adun et al.67 Evaluations of machine learning
techniques for forecasting of nanofluid
specific heat

2021

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c01006
Energy Fuels 2022, 36, 6626−6658

6628

https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01006?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01006?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01006?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01006?fig=fig2&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c01006?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


nanofluids. Section 6 discusses the use of machine learning
approaches in the field of renewable energy. Section 7
discusses the problems and opportunities of employing
machine learning techniques in nanofluid-based renewable
energy systems, followed by the study’s key findings.

2. METHODOLOGY

The present study examines the most recent research on the
use of machine learning methods in nanofluid heat transfer.
Over the past decade, there has been a surge in research papers
on the use of machine learning methods.68−71 In the past, a
variety of machine learning approaches have been employed to
model and forecast the properties of nanofluids.41,68,72 With
the advent of newer machine learning methods, the ever-
increasing computational power is the catalyst for the
increasing popularity of machine learning techniques.73,74 As
a result, the current study attempts to compile a
comprehensive report including the most recent developments
in this subject for easy reference. Because these strategies are
constantly changing, examining and portraying just the most
recent work is critical. As a result, the research papers over the
past three years were examined and a few notable works from
prior years. The study’s data was gathered from Scopus,
Google Scholar, Web of Science, and the Google search
engine. Journals referred to included Journal of Cleaner
Production, Energy & Fuels, Energy Conversion and Management,
Renewable and Sustainable Energy Reviews, Energy, Powder
Technology, Journal of Molecular Liquids, International Journal of
Heat and Mass Transfer, Fuel, and Journal of Thermal Analysis
and Calorimetry. The research studies published in the field of
machine learning-based model prediction of engineering
applications were examined. The research papers were divided
into categories using machine learning methods. Each
approach’s efficacy was then evaluated in terms of model
prediction quality. The subsequent phase investigated the
machine learning methodologies utilized for model prediction
of thermophysical properties of nanofluids. The literature on a
comparative analysis of several machine learning method-
ologies was beneficial in deciding which techniques were best
suited to the nanofluid domain. The methodologies used in
machine learning to develop prognostic models for thermal
conductivity, density, specific heat, and viscosity were
examined. The study was broadened to include the use of
machine learning methods for renewable energy sources to
present a more complete picture for future researchers.

3. MOST RELEVANT MACHINE LEARNING
TECHNIQUES

3.1. Multilayer Perceptron Artificial Neural Network.
Two types of studies, experimental and analytical, are utilized
to assess the performance of engineering systems in the
research field. As the process of achieving satisfactory results
may necessitate multiple lab-based trials, the experimental
studies become more expensive as they need extended
manhours, material resources, and energy.75,76 Most engineer-
ing systems are becoming more complex with time, so
mathematical modeling with the first principle is increasingly
becoming complex. Soft computing techniques are useful in
this domain to save costs.77 In the field of artificial intelligence,
the artificial neural network (ANN) is a useful technique for
model prediction, because it saves time and yields more precise
findings than other approaches.78,79 The ANN technique has

risen in popularity in the engineering and energy industries
during the past decade. ANN is a simple, easy-to-use, fast
computing technique capable of solving complex nonlinear
problems.56,80,81 The only drawback is the correct design of the
network and the requirement of a larger data set for modeling.
The most fundamental neural network architecture is the

multilayer perceptron (MLP). Because all neurons in each
layer have forward connections to all neurons in the layer
above, it is also known as a feed-forward neural network. As
illustrated in Figure 3, the MLP-ANN approach comprises

three layers: the first input layer, which is used to get input
data; certain interlayers known as hidden layers; and the final
layer, or output layer, which reveals the ANN’s projected
outcomes. Every node is allotted a weight vector to link with
the following layers’ nodes. Every node present in the MLP-
ANN model can receive inputs, process them, and provide an
output.56,68 In a combined form, the input layer’s nodes act as
input for the next (hidden) layer’s nodes. In general, this
method attempts to iterate ML on time series and nonlinear
data like that of the human brain. Assume that the input vector
is “X” such that

X x x x x x, , . , n
K

1, 2, 3 4= [ ······ ] (1)

If nj is taken as the input for the jth node in the middle layer
(hidden), then

n x j j T, where 1, 2, 3, ,j
i

n

ij i
1

∑ ω= + = ···
= (2)

y f n f x j T( ) , where 1, 2, 3, ,j j
i

n

ij i j
1

∑ ω θ= = + = ···
=

i

k
jjjjjj

y

{
zzzzzz

(3)

where K, ωij, and f denote the node indexing in the hidden
layer, weight between the ith input node and jth output node,
and the transfer function, respectively.
Each function has its own set of features and may be used in

a variety of different engineering problems. The output node is
formed by multiplying the output of every hidden node by the
output linking weight of that node. The counts of hidden
neurons in the input and output layers in the MLP-ANN
model are governed by the number of variables in the
examined application. However, there is no proven approach

Figure 3. Line diagram depicting MLP-ANN.
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for estimating the number or sizes of hidden layers.82,83 The
number of hidden layers can be modified depending on the
scale of the problem, the quality, and the quantity of data. As a
result, neurons are regularly adjusted depending on iterations
during the training to achieve the optimal amount.84,85 The
construction of a predictive MLP-ANN model necessitates the
establishment of a training stage. When multiple input and
output groups are supplied to build a network, the prediction
process regulates weight and bias values. Backpropagation
(BP) is a training method widely used in the training mode of
MLP-ANNs to manage bias and weight values.86,87

3.2. Adaptive Neuro-Fuzzy Inference System. The
term “neuro-fuzzy” refers to a hybrid artificial intelligence
approach that blends fuzzy logic and artificial neural networks.
In ANFIS, the learning capability and relational architecture of
artificial neural networks are combined with the logical process
of fuzzy logic.88 ANFIS, like artificial neural networks, may be
trained with a large amount of data. As a consequence, the best
optimum ANFIS structure for solving the related issue is
discovered.89 The resultant ANFIS architecture is tested to
observe how it reacts to new samples. The ANFIS network
topology is divided into two components, referred to as the
premise and effect parts. ANFIS training entails using an
optimization method to determine the parameters associated
with these components. During training, ANFIS takes
advantage of the existing control and response variables data
pairings. Following that, fuzzy IF−THEN rules are built to
demonstrate that these portions are linked.52,90

The fuzzy inference systems (FIS) are also referred to as
fuzzy models, fuzzy rule systems, fuzzy controllers, or fuzzy
associative memory in literature. A FIS is made up of five
functional parts: a rule base that comprises multiple fuzzy if−
then rules and also a database that specifies the membership
functions of a processing unit that conducts the inference,
combined with a unit that performs the inference. This is
followed by a fuzzification interface that converts crisp inputs
into fuzzy inputs and a defuzzification stage that transforms
fuzzy inputs into crisp output. The knowledge base is usually
referred to as a combination of the rule base and the database.
ANFIS is made up of five layers, as shown in Figure 4.

ANFIS architecture with two numbers of inputs and a single

output is shown in this diagram. As per the ANFIS structure
illustrated in Figure 3, the first layer is referred to as the
fuzzification layer. To generate fuzzy clusters from input data,
the fuzzification layer employs membership functions. The
premise parameter is a set of parameters that governs the shape

of the membership function. The premise parameter set is a, b,
and c. As listed in eqs 4 and 5, these parameters are used to
determine the membership degrees of each membership
function.91 The membership degrees are shown with θx and
θy as

x( )
1

1
A

x c
a

b2i
θ =

+ −
(4)

O x( )i A
1

i
θ= (5)

The second layer is referred to as the rule layer. Membership
values obtained in the fuzzification layer are used to produce
firing strengths (ϕii) for the rules. The membership values are
multiplied to find the ϕi values, as shown in eq 6. The third
layer is denoted as the normalizing layer. It also determines
each rule’s normalized firing strengths. The normalized value is
the firing power ratio of the ith rule to the total of all firing
strengths, as determined by eq 7. Defuzzification is the name of
the fourth layer. In each node of this layer, weighted values of
rules are determined as shown in eq 8. The value is calculated
using a first-order polynomial.92,93

O x y i( ) ( ), where 1, 2i i A B
2

i i
φ θ θ= = · = (6)

O i, where 1, 2, 3, 4i i
i

i

3

1 2 3

φ
φ

φ φ φ φ
= =

+ + +
=

(7)

O f px q x r( )i i i i i i i
4 φ φ= = + + (8)

O f
f

i
i

i
i i i

i i

5 ∑ φ
φ
φ

= =
∑
∑ (9)

The actual ANFIS result is achieved through the last (fifth)
layer. This layer is known as the layer of summation. The total
outcome is calculated by adding the results of the respective
rule inside the defuzzification layer. Equation 9 denotes the
ruling expression for this layer.

3.3. Gene Expression Programming. GEP is an
established algorithm that uses computer program evolution
to solve linear and linear engineering problems. The computer
program in GEP is generally encoded by fixed-length gene
expression strings that are developed using nature-inspired
operators like mutation and crossover. GEP has been proven to
help find a precise and concise computer-based model for
output prediction. Time-series predictions, classification
difficulties, regression issues, data mining, and knowledge
discovery are just a few of the real-world applications where it
has been used with great success. It uses the historical data set
of the problem to offer a solution in the form of an expression
tree (ET). Ferreira94 created this approach in 1999, and it was
publicly launched in 2001. The GEP algorithm combines the
major views of the two earlier legacy algorithms, namely,
genetic programming (GP) and genetic algorithm (GA), to
solve their flaws. In this technique, the chromosomal genotype
is similar to that of a GA, whereas the phenotypic of a
chromosome is a tree data structure of varying length and size,
comparable with that of the GP algorithm.
In the case of several variables, the logical link between them

(if any) may be a function of at least a function that can be
correctly stated. The linking function can be Boolean logic
operators (like IF, OR, and AND) and/or arithmetical
operators (+, −, ×, /) or algebraic functions like exponential

Figure 4. Typical ANFIS structure.
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and trigonometric. The logical link between variables should,
of course, be investigated. Generally, three ETs are formed
during the model development, and the sum of these form the
overall model. A typical example of ET73 is shown in Figure 5.
Utilizing the GEP technique, a group of linear type
chromosomes is initially generated to discover the connection
between variables a and b and y.

One of the variables may be inserted at each location of the
genes on these chromosomes. It is time to evaluate each
person’s fitness (chromosome) in the generation examined
once the chromosomes have been produced and their places
filled. The chromosomes are represented as an expression tree
in the GEP method for this reason (ET). An ET is comparable
to a protein found in natural cells that controls the phenotype
of a gene.
The conventional GEP technique consists of several

operations. The first one is an initialization to create the
starting population by producing a set of random chromo-
somes. Each element of the fixed-length strings is randomly
assigned to each chromosome in the initial population based
on the element’s type. Functions and terminals are allocated to
elements belonging to the head portion, whereas terminals are
assigned to elements belonging to the tail component. The
next operation is the fitness assessment, in which the fitness
strengths of all chromosomes in the population are assessed.
The problem-specific fitness evaluation function has a
noteworthy impact on the performance of the test algorithm.
The next stage is selection and replication. This stage selects
the population’s better chromosomes to create a new group for
the upcoming generation. The roulette-wheel selection method
and the tournament selection strategy are two examples of
selection strategies that can be employed. The roulette-wheel
selection with elitism has been demonstrated to produce
superior results when tackling complicated issues.
3.4. Least Square Support Vector Machine (LS-SVM).

Cortes et al.77 originally proposed the support vector machine
(abbreviated as SVM) in 1995. To overcome the problematic
linear indivisibility, it employs the kernel function and follows
Mercer’s theorem to abstract features from the source. It has a
strong capacity for generalization and can handle real issues
such as minuscule samples, nonlinear data, and handling of
local minima.87,95 It does, however, have the restricted
quadratic programming problem, which has a significant
calculation complexity. A generalized flowchart of LS-SVM is
shown in Figure 6.
The support vector machines (SVM) offer higher generality

than other machine learning approaches, so the SVM has
gained substantial attention in the past decade as a strong
prognostic tool. SVM technology is used in a variety of

industries due to its strong generalization abilities like face
identification, feature selection, and function estimation.79 The
expanded model of conventional SVM, least squares SVM (LS-
SVM), transforms a quadratic programming (QP) problem
into linear equations.96 It is possible to achieve both a fast
solution speed and a stable real-time function with this
method. If T = {(xi, yi)}, where (i = 1, 2, 3, . . . . . ., N), T
denotes training data, xi the measured value and yi the
predicted value. Then, LS-VSM can be expressed as

y x x d e( ) ( )T
i iω μ= + + (10)

In eq 10, ω denotes the assigned weight vector, μ(xi)) a
nonlinear function, d deviation, and ei residuals in the fitting.

e x eAlso, Min F( , )
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2
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2
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i

i

n

i
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2∑ω ω ω γ= +
=
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T
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This describes Lagrange function L such that

L b e I e x d e y( , , , ) ( , ) ( )
i

n

i
T

i i i
1

∑ω σ ω σ ω μ= − { + + − }
=

(13)

In eq 13, the Lagrange multiplier is denoted with σi, in which
the partial derivatives of ω, b, e, are achieved at a point where
σi becomes 0 to attain the optimization condition. At the
optimized condition, ω is removed, and regression is
accomplished.77

Figure 5. Typical expression tree.

Figure 6. Flowchart of LS-SVM process.
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The LSSVM model for prediction is developed using the
following steps:

(i) Normalize the experimental data, and split it into two
categories: training data and prediction data.

(ii) The crossover technique is used to search the LS-SVM
parameters using the training data, the specified kernel
function, and the multiclass coding scheme.

(iii) Finally, the prognostic model is developed with LS-SVM
parameters.

3.5. Other Novel AI Methods. Traditional ANN seeks to
construct a straight mapping between historical input data and
output prediction data to achieve the forecasting method.
However, the ANN-based model cannot characterize the link
between data and time because of the absence of consideration
of the time correlation in the data sequence, limiting its
usefulness in time series forecasting techniques.97 Therefore,
the recurrent neural network (RNN) is offered as a solution to
this problem. RNN may build a sequential mapping between
input and output data by establishing cyclical connections to
neurons. Thus, the output of each time step is influenced by
the preceding time step’s input. As a result, RNN realizes the
“memory” feature.98

A backward and forward are included in the RNN training
procedure. The forward pass of an RNN is like a single hidden
layer of a MLP. The stimulations from both the current
external input and previous time steps’ hidden layer responses
appear at the hidden layer.99 The nuance is that the loss
function for RNN is affected by the instigation of the hidden
layer not only via its effect on the output layer but also by its
impact on the hidden layer at the subsequent step.98

Hochreiter and Schmidhuber100 proposed the long short-
term memory (LSTM) network in 1997, a kind of RNN that
integrates learning and model training without the need for
extra domain knowledge. In contrast to traditional RNNs, the
enhanced LSTM structure helps to minimize gradient collapse
and explosion. As a result, LSTM has benefits in capturing
long-term dependency and modeling nonlinear dynamics, and
it may be utilized to cope with lengthy sequence data.98,101

The radial basis function (RBF) neural network is also
widely used because of its advantages, which include a simple
structure, more estimation features, and a rapid training
algorithm. The RBF network is a powerful conventional neural
network structure.102 RBF networks are made up of three
layers. The input layer’s sole purpose is to link the network to
its surroundings. The hidden layer comprises several nodes
that use a radial basis function, such as the Gaussian function
or the thin plate spline function, to apply a nonlinear
modification to the input variables. The output layer is a
summation unit and is linear.103

The structure of an RBF network is selected through trial
and error in the standard training method. The network
parameters are determined in two stages. On the basis of the k-
means clustering method, the centers of the hidden layer nodes
are determined in the first. The connection weights are
generated in the second step using basic linear regres-
sion.104,105 Researchers in classification and model prediction
also apply modern machine learning methods such as
XGBoost, CatBoost, Boosting, Bagging regression tree, and
LightGBM. In nanofluid-based heat transfer applications, the

machine learning methods discussed in the previous
subsections were mainly reported in the literature. To enhance
prediction accuracy and computing efficiency, such machine
learning approaches can be coupled with genetic algorithms,
particle swarm optimization, and imperialist competitive
algorithm.106 The important historical progress in machine
learning application in the domain of nanofluids is shown in
Figure 7.

3.6. Overfitting Problems in Machine Learning-Based
Prediction Models. Although machine learning algorithms
are adaptable to the properties of the observable values,
overcomplexity in such models might result in overfitting.
Overfitting occurs when the predicting algorithm describes the
in-sample data too well, integrating not only the information
associated with the data process but also the noises particular
to that sample. In this scenario, the model is simply
“memorizing” the observed patterns from the history, and
thus, it is not truly “learning” the relevant patterns.107,108,109

As previously stated, one of the causes of overfitting is that
input signals are mixed with noises, resulting in poor accuracy;
thus, increasing the data size is one method by which we can
avoid the mixing of signals and noises. In machine learning,
limiting the iteration is also known as the “early halting”
approach; this overfitting avoidance strategy works only when
our machine learning model learns repeatedly. Another
method for improving the model’s accuracy is to merge all
of the weak learners into strong learners. This may be
accomplished by bagging and/or boosting.79,110 Cross-
validation is another machine learning approach that gives a
solution to the overfitting problem. Cross-validation, like
ensemble learning, splits the data set, but the process is
different. Regularization is another effective and widely used
machine learning strategy for avoiding overfitting; this method
matches the function of the training data set. This procedure
causes the coefficient to move toward zero, minimizing
mistakes.

3.7. Evaluation and Validation of Models. The precise
uses of model assessment, model evaluation, and algorithm
selection approaches are crucial in the efficient usage of
machine learning techniques.111 The main techniques for
model evaluation and selection include the holdout method if
the data set is small. The bootstrapping procedure is better
suited for a larger data set. The bootstrapping technique is a
resampling process for calculating population statistics by
sampling a data set with replacement. It may be used to
produce summary statistics like mean and standard deviation.
Cross-validation and hyperparameter adjustment are other

Figure 7. Flowchart of important previous research on a time scale.
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computationally feasible strategies for model assessments.
Common cross-validation procedures such as leave-one-out
cross-validation and k-fold cross-validation have been
employed by machine learning researchers.112,113

Statistical assessment is one of the most common
approaches for the evaluation of the prognostic efficacy of
the models. The general indicators such as coefficient of
determination, coefficient of regression, mean squared error,
mean absolute percentage error, and Theil’s statistics have
been utilized by various published investigations.114 The
appeal of statistical approaches for regression issues arises
from their simplicity of implementation and flexibility
irrespective of the size of the data set. Finally, when comparing
machine learning algorithms with limited data sets, additional
algorithm selection procedures such as the combined F-test, 5
× 2 cross-validation, and nested cross-validation are also
advocated.115

4. MACHINE LEARNING FOR THERMOPHYSICAL
PROPERTIES

The heat transfer in a heat exchanger device or equipment is
dependent on the characteristics of the heat transfer fluid;
therefore, precise measurement and forecasting of nanofluid’s
thermophysical characteristics are important.116 However,
numerous factors impact the thermophysical characteristics
of a nanofluid, including nanoparticle type, concentration,
shape, size, shape, temperature, rate of shear, preparation
method, kind of base fluid, flow condition, and so on. For
example, hundreds of high thermal conductivity nanoparticles,
such as Al2O3,

81 Ag,117 CuO,118 graphene,19 SiO2,
18 MgO,117

Ni,119 TiO2,
120 Fe3O4,

121 and SiC122, have been investigated
for producing nanofluids. As a result, determining the
thermophysical characteristics of a nanofluid is exceedingly
difficult and remains a key challenge in nanofluid research.
Experimental property measurement costs are high, and the
parametric data range is limited.62 Analytical or numerical
models need values of different nanofluid properties and
interactions between nanoparticles and base fluids to be
understood. On the other hand, machine learning is capable of
reducing in several experimental studies. Once the prognostic
model is developed, it can be used for forecasting the
thermophysical properties with high accuracy.
4.1. Thermal Conductivity. The basic aim of developing

nanofluids was to enhance the thermal conductivity of the base
fluid by adding nanoparticles. A significant number of
experimental studies have been carried out to test the thermal
conductivity of nanofluids during the last two decades using
various technologies such as the temperature oscillation
method, transient hot-wire method, and steady-state parallel
plate method. The thermal conductivity of a test nanofluid is
determined by numerous parameters, including nanoparticle
size, concentration, synthesis technique, and temperature. The
majority of the literature revealed that nanofluids might
increase heat conductivity to various degrees.123,124 The basic
characteristics of nanoparticles, base fluid, and their temper-
ature, are macroscopic parameters that can impact the thermal
conductivities of nanofluids.125

One of the most significant factors for theoretical as well as
numerical analyses of heat transport systems employing
nanofluids as coolants is the selection of nanofluid’s
thermophysical characteristics. Given this, understanding how
to create an appropriate thermophysical characteristic model is
quite beneficial and important. The analytical model-based

method and data-driven machine learning approach are the
two main approaches used to model and forecast the
characteristics of nanofluids.62,126 Compared to the analytical
model-based method, the data-driven machine learning
approaches represented by the ANN,42,127 ANFIS,128

GEP,129 for example, have attracted a lot of interest in recent
years because of their superior mapping, modeling, and
forecast capabilities. According to the literature study, the
predictive models’ accuracies are related to their structures,
functions used, input variables used, and algorithms used.66,68

Maleki et al.130 conducted a comparison of prediction
performances for three machine learning algorithms For
model prediction of the TC of nanofluids containing ZnO
nanoparticles, the multivariate adaptive regression splines
(MARS), ANN, and group method of data handling
(GMDH) were utilized. To compare the models’ confidences,
several statistical indicators were utilized. The most accurate
model has been determined to be ANN, followed by GMDH
and MARS. ANN, GMDH, and MARS had R2 values of 0.998,
0.998, and 0.987, respectively. The sensitivity analysis found
that the thermal conductivity of the base fluid was the most
critical input component. The thermal conductivities of
nanofluids containing CuO nanoparticles were model
predicted by Komeilibirjandi et al.,131 using ANN and
GMDH. Both models employed thermal conductivities,
temperature, mass fraction, and nanoparticle size as inputs.
When polynomial and ANN were utilized, the R-squared
values were 0.986 and 0.9995, respectively. On the basis of
these statistical findings, it is possible to conclude that utilizing
an ANN-based regression to predict the TC of nanofluids
containing CuO nanoparticles produces a more trustworthy
model. Rostami et al.132 explored the effects of adding
MWCNT on the TC of paraffin using a comparative study
between ANN and the response surface methodology (RSM).
A nanofluid temperature (25−70 °C) and mass fraction
(0.005−5%) were used as input variables, while the nanofluid
thermal conductivity was used as an output parameter. Finally,
both methods’ mean squared errors (MSEs), R, and maximum
margin of deviation (MMD) were compared. The R indices for
ANN and RSM models were 0.993 and 0.972, correspondingly,
implying that the ANN approach was more accurate than the
RSM. Maleki et al.133 applied GMDH, ANN with scaled
conjugate gradient (SCG), and the Levenberg−Marquardt
(LM) training algorithm for prediction of thermal conductivity
of silica nanoparticles in different base fluids. The model-based
prediction results were quite close to the results of
experimental research. The R2 values for GMDH, LM, and
SCG in optimal circumstances were 0.9996, 0.9990, and
0.9998, individually. Furthermore, the MSE using these three
techniques were 0.000010, 0.000032, and 0.0000078 for
GMDH, LM, and SCG, respectively.
In a study by Alrashed et al.,134 carboxylic diamond

nanoparticles and multiwalled carbon nanotubes were
dispersed in water without the use of any chemicals or
surfactants. The viscosities, thermal conductivities, and
densities of the nanofluids were then measured at temperatures
ranging from 20 to 50 °C, with a maximum volume fraction of
0.2 vol.%. Using this experimental data, a nonlinear regression,
ANN, and ANFIS models were utilized to anticipate the TC of
nanofluids. On the basis of mean absolute percentage error
(MAPE), ANN was shown to be the best model prediction
strategy among these three models. Razavi et al.135 developed a
prediction model of thermal conductivities of nanofluids using
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ANFIS and LSSVM. The prognostic models based on the
LSSVM and ANFIS algorithms were compared using 15 types
of correlation-based statistical indices. The results showed that
the LSSVM method outperformed the ANFIS model. In a
study by Said et al.,19 the synthesis of a rGO/Co3O4
nanocomposite was accomplished, and the thermophysical
characteristics were evaluated. The data were acquired under
various experimental settings of concertation and temperature.
In this study, the authors used a novel algorithm, namely,
marine predators, for determining the optimal values of input
controlling parameters (concentration ratio and temperature)
that optimally minimizes two response variables (density and
viscosity) at the same time while maximizing the other two
response variables (specific heat and thermal conductivity).
Said et al.136 synthesized functionalized carbon nanofiber (F-
CNF), carbon nanofiber (CNF), and rGO coated F-CNF (F-
CNF/rGO). Furthermore, fuzzy logic techniques were used to
develop an accurate prediction model based on the
experimental data set. The observed values of thermal
conductivity and the fuzzy model were found to be well-
fitting. For thermal conductivity, the proposed numbers for
fuzzy model rules were 16. The fuzzy model was trained for a
total of 50 epochs. The thermal conductivity model had quite a
low mean squared error (MSE) of 1.0709 × 10−5, indicating
superior prognostic efficiency.
In a study by Said et al.,137 the heat transfer performance of

a nanofluid combination was improved by utilizing a hybrid
approach of fuzzy-based modeling with PSO. The TiO2 and
Al2O3 nanoparticles distributed in distilled ethylene glycol and
water with 50:50 volumetric proportions are studied. Several
volume fractions (0.05 and 0.3 vol%) and temperatures
ranging from 25−70 °C were used to measure the nanofluid
characteristics. The thermal conductivities at 25 °C improved
by 9.52% and 26.52% for the Al2O3 nanofluid at 0.05% and
0.3% concentrations, respectively. At a 25 °C temperature of
TiO2 nanofluid with concentrations of 0.05% and 0.3%, the
thermal conductivities could be improved by 7.77% and
18.05%, respectively.
Motlagh et al.138 used GEP for model prediction of the TC

of nanofluids including CuO and Al2O3 nanoparticles−water
nanofluids. The derived novel model is dependent on
nanoparticle size, volume fraction, and temperature. The
model was built using the train data set, and the results were
compared with the test data set. The findings showed that the
GEP can accurately estimate and predict the TC of nanofluids
and that it may be utilized to simulate engineering challenges.
Pourrajab et al.129 used GEP, linear genetic programming
(LGP), and local weighted linear regression (LWLR) to
develop a rigorous predictive model for ethylene glycol-based
hybrid nanofluids. According to performance criteria, the
LWLR model outperformed LGP (RMSE = 0.0259, R =
0.964) and GEP (RMSE = 0.0474, R = 0.865) in predicting
thermal conductivities of hybrid nanofluids at RMSE = 0.014
and R = 0.988. Sensitivity analysis found that the temperature,
volume fraction, and nanoparticle size were among the most
important parameters. Table 2 lists some of the key research
studies that used machine learning approaches to estimate the
thermal conductivities of nanofluids.
4.2. Specific Heat. The specific heat capacity (SHC) of

nanofluids is the degree of the heat retentive ability of the
nanofluid. As a result, it determines the nanofluid’s thermal
behavior. Furthermore, the SHC capacity measurement can aid
in estimating other thermally related characteristics such as T
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thermal diffusivity, Nusselt number, and heat transfer
rate.63,139,140 In addition, the SHC is an important parameter
for the proper assembly and design of heat transfer systems to
minimize the loss of energy and increase the conservation of
energy.141,142 Several scholars have studied the specific heat
capacity (SHC) of various nanofluids and their factors. The
physicochemical characteristics of the nanofluid, such as the
sizes of nanoparticles, volume fraction, temperature of the
nanofluid, types of nanoparticles, and specific heat capacity of
the base fluid affect the SHC of nanofluids.63,143−145 Whereas
numerical methods have provided an alternate solution to
experimental investigation for evaluating the SHC of nano-
fluids, their precision has been limited by several factors,
including presumptions controlling the relationship among
variables, selectivity and an incomplete synopsis of the atypical
nature of nanofluids.41,56 Considering the aforementioned
factors, computational technologies such as machine learning
(ML) techniques are employed since they give a more accurate
approximations.
Alade et al.141 employed a support vector machine and ANN

to prognosticate the specific heat capacity (SHC) of CuO/
water nanofluids. The models were created using experimen-
tally observed SCH data on CuO/water nanofluids at a volume
% range from 0.4% to 2%, with temperatures ranging from 293
to 338 K. The findings showed that the SVR model was slightly
superior to the ANN model. However, as compared to existing
theoretical models, both the SVR and ANN models exhibit
improved prediction abilities for the SHC of CuO/water
nanofluids. Adun et al.40 employed ANN for prognosticating
the specific heat of a Fe3O4-alumina-zinc oxide/water ternary
type hybrid nanofluid. The R2 value indicating the coefficient
of determination between observed and ANN model predicted
values for specific heat was 0.9555. This indicates that the
observed and projected specific heat values were in good
agreement. Shi et al.146 also used ANN for the development of
a prognostic model for thermophysical properties of a carbon-
magnetic type nanofluid. The objective of this research was to
use experimental data on viscosity, thermal conductivity, and
specific heat to build an ANN that could predict the
thermophysical characteristics of magnetic nanofluids. The
ANN model could predict the specific heat values within 5% of
observed values, indicating an efficient predictive model.
To forecast the SHC of nanofluids, Jamei et al.147 presented

a Gaussian process regression (GPR)-based prognostic model.
It was compared to the random forest (RF) technique and the
generalized type regression neural network (GRNN). The
GPR model (RMSE = 0.015 J/K.g, R = 0.9997) outperformed
the RF (RMSE = 0.045 J/K.g, R = 0.9976) and GRNN (RMSE
= 0.0608 J/K.g, R = 0.995) models in terms of performance.
The results demonstrated that the proposed model could
properly predict the SHCs of the nanofluids under study. Jamei
et al.63 used GEP for model prediction of specific heat using
large data sets of diverse nanofluids. The SHC data of
nanofluids, namely, Al2O3, ZnO, TiO2, SiO2, MgO, and CuO
dispersed in various base fluids, were acquired from published
studies. The GEP-based model was robust and efficient having
an R value of 0.9570, RMSE value of 0.0650, and MAPE of
only 5.5134. A summary of recent research works on machine
learning-based model prediction of specific heat capacity is
shown in Table 3.
4.3. Viscosity. Nanotechnology has attracted the interest of

scientists, academics, and engineers during the last two decades
because of rapid advancement. One of the unexpected T
ab
le

3.
M
ac
hi
ne

Le
ar
ni
ng

T
ec
hn

iq
ue
s
in

M
od

el
P
re
di
ct
io
n
of

Sp
ec
ifi
c
H
ea
t
C
ap
ac
it
ie
s
of

N
an
ofl

ui
ds

R
ef
er
en
ce

N
F
us
ed

M
L
te
ch
ni
qu
e

In
pu
t

Pe
rf
or
m
an
ce

pa
ra
m
et
er

O
ut
co
m
e

A
la
de

et
al
.14

1
C
uO

/w
at
er

na
no
fl
ui
ds

Su
pp
or
t
ve
ct
or

re
gr
es
si
on

(S
V
R
),
A
N
N

V
ol
um

e
pe
rc
en
t
of

so
lid

ph
as
e,

te
m
pe
ra
tu
re

R
M
SE

(A
N
N
)
=
0.
00
25

SV
R
sl
ig
ht
ly
su
pe
ri
or

to
A
N
N

in
m
od
el
pr
ed
ic
tio

n
R
M
SE

(S
V
R
)
=
0.
00
23

A
du
n
et

al
.40

Fe
3O

4-
al
um

in
a-
zi
nc

ox
id
e/
w
at
er

te
rn
ar
y

ty
pe

hy
br
id

na
no
fl
ui
d

A
N
N

T
em

pe
ra
tu
re
,m

as
s
fr
ac
tio

n,
na
no
pa
rt
ic
le
si
ze

R
2
(A

N
N
)
=
0.
95
55

O
bs
er
ve
d
an
d
pr
oj
ec
te
d
SH

C
va
lu
es

al
m
os
t
id
en
tic
al

Sh
i
et

al
.14

6
C
ar
bo
n-
m
ag
ne
tic

ty
pe

na
no
fl
ui
d

A
N
N

V
ol
um

e
pe
rc
en
t
of

so
lid

ph
as
e,

te
m
pe
ra
tu
re

R
=
0.
95

O
bs
er
ve
d
an
d
pr
oj
ec
te
d
SH

C
va
lu
es

al
m
os
t
id
en
tic
al

Ja
m
ei
et

al
.14

7
M
et
al
ox
id
e
an
d
ca
rb
on
-b
as
ed

na
no
pa
rt
ic
le
s
in

di
ff
er
en
t
ba
se

fl
ui
ds

G
au
ss
ia
n
pr
oc
es
s
re
gr
es
si
on

(G
PR

),
ra
nd
om

fo
re
st

(R
F)
,g
en
er
al
iz
ed

re
gr
es
si
on

ne
ur
al
ne
tw
or
k
(G

R
N
N
)

So
lid

vo
lu
m
e
fr
ac
tio

n,
te
m
pe
ra
tu
re
,s
iz
e

of
na
no
pa
rt
ic
le
s,
SH

C
of

ba
se

fl
ui
ds

R
(G

PR
)
=
0.
99
97
,

R
(R

F)
=
0.
99
76
,

R
(G

R
N
N
)
=
0.
99
56

A
ll
th
re
e
te
ch
ni
qu
es

de
ve
lo
pe
d
ro
bu
st
SH

C
m
od
el
s

Ja
m
ei
et

al
.63

Se
ve
ra
l
na
no
fl
ui
ds

G
EP

So
lid

vo
lu
m
e
fr
ac
tio

n,
te
m
pe
ra
tu
re
,s
iz
e

of
na
no
pa
rt
ic
le
s,
SH

C
of

ba
se

fl
ui
ds

R
=
0.
95
70
,R

M
SE

=
0.
06
5

G
EP

pr
ov
ed

an
effi

ci
en
t

m
od
el
pr
ed
ic
tio

n
te
ch
ni
qu
e

M
A
PE

=
5.
51
34

H
as
an

an
d
B
an
er
je
e1

48
M
ol
te
n
ni
tr
at
e
sa
lt
m
ix
tu
re

se
ed
ed

w
ith

si
lic
a,
al
um

in
a,
an
d
tit
an
ia
na
no
pa
rt
ic
le
s

A
N
N

M
as
s
fr
ac
tio

ns
,t
em

pe
ra
tu
re

R
2
(A

N
N
)
=
0.
99
98
,

M
A
PE

=
2%

O
bs
er
ve
d
an
d
pr
oj
ec
te
d
SH

C
va
lu
es

in
go
od

ag
re
em

en
t

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c01006
Energy Fuels 2022, 36, 6626−6658

6635

pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c01006?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


consequences of this technology is nanofluids, which can
dramatically improve the efficiency of thermal systems.
Because solid nanoparticle-containing nanofluids have a greater
viscosity than ordinary working fluids, evaluating the viscosity
is important for building thermal systems and calculating
pumping power.149 Viscosity is one of the most significant
thermophysical characteristics that influence how nanofluids
transmit momentum and heat. The heat transfer performance
of nanofluids requires an accurate estimate of this parameter.84

Their dynamic viscosity heavily influences the thermal
behavior and heat transmission capabilities of nanofluids.
According to experimental investigations in this sector, the
viscosity of nanofluids rises as the volume concentration of
nanoparticles increases. According to studies, a nanofluid’s
viscosity decreases as the fluid’s temperature rises.150 This
phenomenon results from the decline in intermolecular
interaction between the nanoparticles and the base fluids due
to temperature rise. The base fluids with high viscosities tend
to minimize Brownian motion, resulting in less agglomeration
as nanoparticles are less likely to collide. Nanofluids with high
base fluid viscosities become steadily more stable than
nanofluids with lower base fluid viscosities.151,152

Numerous forecasting models have been proposed for
predicting dynamic viscosity based on influencing factors such
as the sizes, types, and volume fractions of nanoparticles and
also their temperature, using various methods such as ANN,
ANFIS, SVM, PSO, GEP, GPR, and mathematical correla-
tions.153−155 In the recent decade, various models based using
intelligent methods for the prediction of hybrid nanofluid
viscosity have been proposed. The modeling technique
employed, the data utilized for training the model, the choice
of the input parameters, and so on all impact the efficacies and
accuracies of these models. The models produced by various
distinct machine learning methods are evaluated in this review
article. Toghraei et al.156 explored the viscosity of an ethylene-
glycol/Ag nanofluid in temperatures ranging from 25 to 55 °C,
having a volume percentage of nanoparticles ranging from
0.2% to 2%. A data set of 42 samples obtained from the
experiment was used to create an ANN model to predict the
dynamic viscosity. ANN model outcomes were compared with
correlation findings. In comparison to the correlation
approach, the ANN could accurately estimate the viscosity of
the Ag/ethylene glycol nanofluid. The predictive model’s MSE
was 0.0012, with the highest amount of error as 0.0858. The
dynamic viscosities of oxide nanoparticles suspended in water/
ethylene glycol were model predicted using an ANN model by
Longo et al.157 This research used nanoparticle concentrations,
temperatures, diameters of nanoparticles, average sizes of
nanoparticle clusters, and base fluid characteristics for
modeling. The ANN-based model predicted experimental
data quite well, with a MAPE value of 4.15%. Chen et al.158

also used ANN to model and forecast the viscosity of a hybrid
type of nanolubricant (SAE50/MWCNTs-TiO2). The per-
formance of the ANN-based predictive model was compared
with conventional curve fitting. The study concluded that
ANN performs far superior to the conventional curve fitting
model. Sedaghat and Yousefi159 also used ANN to model and
predict the viscosities of innovative graphene quantum dot
nanofluids. With an R2 = 0.99915 for the viscosity model, the
overall predicted viscosities of nanofluids were in excellent
agreement with experimental results. Baghban et al.160 used
ANFIS to prognosticate the viscosity of nanofluids. The
voluminous experimental data (1277 data set) for model

development were collected from published research. The
temperatures, densities of nanofluids, nanoparticle diameters,
and viscosities of base fluids were used to correlate the
viscosities of nanofluids. The model’s robustness was
demonstrated by a high R2 of 0.99997. Furthermore, the
absolute and maximum average relative deviations of 0.42%
and 6.45% were reported. Hemmat Esfe et al.161 presented a
comprehensive study comparing three different artificial
intelligence-based methods to forecast the viscosity of a
nanolubricant (TiO2/SAE 50). Genetic algorithm type radial
basis function (GA-RBF) neural networks, LS-SVM, and GEP
were used in the study. The models were evaluated on a
statistical basis, and GA-RBF was found to be the most
accurate among them. Researchers in the recent past have
reported several other nonconventional and modern AI-based
modeling methods. Bardool et al.162 used friction theory for
predicting nanofluid viscosity data. The repulsion and
attraction pressure factors in the residual viscosity term of
the friction model were included using the Esmaeilzadeh−
Roshanfekr and Peng−Robinson equations of state. A total of
711 data sets obtained by experiments using a variety of
nanofluids were used in modeling. The R-squared values for
the Peng−Robinson and Esmaeilzadeh−Roshanfekr equations
of state, respectively, were 0.9978 and 0.9979, showing
extremely high performances of the proposed model. Yan et
al163 conducted a comparative study between ANFIS and SVM
to model and predict the viscosities of MWCNTs-TiO2/EG
hybrid nanofluids over a range of temperatures and volume
concentrations. Both approaches can accurately predict the
rheological behaviors of MWCNTs-TiO2/EG nanofluids based
on their error calculations. The ANFIS technique, however,
beats the SVM method in terms of accuracy. Shahsavar et al.164

employed a GMDH type of NN to develop a prediction model
for viscosity. The study reported a robust model to predict the
viscosities of liquid paraffin and Fe3O4 nanofluid accurately.
Ansari et al.165 used various types of neural networks based on
different training algorithms such as Bayesian regulation
backpropagation (BR), scaled conjugate gradient (SCG),
resilient backpropagation, and Levenberg−Marquardt (LM),
including several transfer functions. Among these, the network
architecture with one hidden layer and 23 neurons in the
output and hidden layers with tan-sigmoid and purelin transfer
functions was found to have the best performance. With an
overall MSE value of 0.00901 and R2 of 0.9954, the suggested
network was robust enough to properly correlate and predict
relative viscosity. Olumegbon et al.166 employed a SVM-based
model to forecast the viscosities of various carbon nanoma-
terials distributed in diesel oil. MWCNTs-graphene nano-
platelets and their hybrid were tested in the lab to acquire 120
experimental data points. The fluid temperatures, mass fraction
of nanoparticles, and viscosity of diesel oil were chosen as
model inputs. The training data set had an R of 0.9998 and an
RMSE of 0.0076, whereas the testing data set had an R of
0.9999 and an RMSE of 0.0026. The suggested model was
shown to predict the viscosities of carbon-based nanomaterials-
diesel oil nanofluids with good accuracy. Table 4 depicts a
summary of recent research studies on machine learning-based
model prediction of viscosity.

4.4. Density. The literature review revealed that most of
the emphasis had been dedicated to viscosity and thermal
conductivity among the different thermophysical character-
istics of nanofluids. The specific heat and density could not
receive that much attention. In heat transfer applications as
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applicable to renewable energy also, the heat transfer
coefficient calculation requires the value of density.167 Density
also affects the nanofluid flow, so this parameter should be
properly determined.19,111 The addition of a modest number of
solid nanoparticles to a base liquid would increase the density
of the combination over time. This is because solids have a
higher density than liquids. Estimating the material densities
and volume concentrations of constituents is required for
modeling densities in nanofluids.168

Several studies have been reported in recent years on lab-
based measurement of nanofluid density. In an experimental
investigation by Said et al.,136 the densities of single and hybrid
nanofluids were measured. The study found that the densities
of nanofluids and base fluids decrease when the temperature
rises, because of the liquid’s thermal expansion. Compared to
the base fluid, the average density rise for all nanofluids tested
was less than 0.11%. Żyła et al.169 measured the density of
ethylene glycol (EG)-based nanofluids comprising three kinds
of nitride nanoparticles: aluminum nitride (AlN), silicon
nitride (Si3N4), and titanium nitride (TiN). Measurements
were taken at three distinct temperatures: 308.15, 298.15, and
288.15 K. It was discovered that the proportion of nano-
particles has a considerable impact, but particle size does not
affect density. The determination of a nanofluid’s thermo-
physical characteristics is a tedious and onerous process in
nanofluid research. Density measurement via experiment is
expensive, and the parametric data range is limited. Numerical
and analytical models need property values and interactions
between base fluids and nanoparticles to be understood.170 On
the other hand, machine learning is capable of efficiently model
predicting the densities of nanofluids over a large range of
operating parameters.171 Said et al.137 used fuzzy to model
predict the density using a range of operating conditions (vol
% concentration and temperature). The study used the Al2O3
and TiO2 nanoparticles distributed in 50:50 volumetric
quantities of ethylene glycol and distilled water as nanofluids.
Using the suggested technique, the optimum condition that
generates the ideal output that minimizes the density while
also maximizing thermal conductivity was obtained. Montazer
et al.172 used response surface methodology (RSM) to present
a novel correlation for the estimation of carbon-based
nanofluid density. The several machine learning methods
applied for modeling thermophysical properties demonstrate
that high prognostic efficiency can be achieved. Most machine
learning techniques can accurately predict the outcomes.
However, the efficacy of any machine learning technique
depends upon the quality of data, the quantity of data, human
efficiency in the measurement of thermophysical properties,
human efficiency in data collection, the technique of data
collection, and uncertainty in measurement. Nevertheless, the
machine learning techniques are excellent means of model
prediction, resulting in saving costs and human efforts. A
summary of recent research studies employing machine
learning for model prediction of density is illustrated in
Table 5.

5. MACHINE LEARNING FOR RE
The renewable energy system does suffer from a certain degree
of uncertainty in demand and supply balancing. Demand
response (DR) has gained popularity in recent years as a cost-
effective approach to provide flexibility, thus enhancing the
energy network dependability. However, because of the high
complexity of DR activities, the frequent requirement for nearT
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real-time choices, and the utilization of large-scale data,
machine learning methods have lately been developed as
essential technologies. AI may be employed to solve a variety
of problems such as predicting demand, raw material supply,
seasonal cost variations, dynamic pricing, scheduling, and
control.59

5.1. Heat Exchangers. The heat exchanger is essential
equipment in the renewable and sustainable energy sectors.
The hydrodynamic and heat transport properties of heat
exchangers significantly impact the performance of renewable
and sustainable energy systems.177,178 There are various
methods for increasing a heat exchanger’s efficiency. The use
of working fluids with improved thermal characteristics would
be the most efficient of these strategies.179 Nanofluids are a
viable alternative for improving heat transmission in heat
exchangers due to their outstanding thermophysical character-
istics.180 Because of the relevance of nanofluids, numerous
researchers explored their performance and use in various heat
exchangers.
The double pipe heat exchanger (DPHE) has been used

extensively in industrial applications such as power plants, air
conditioning, refrigeration systems, water heaters, and
petrochemicals. Thermal conductivity is a significant factor in
enhancing the heat transfer rate of fluids.181−183 Many
attempts have been made to introduce fine solid particles in
the base fluid to enhance the TC.184−187 Ali et al.188 explored
the heat transfer properties of a MgO oil-based nanofluid used
in a double-pipe heat exchanger. The study discovered a
considerable improvement in the heat transfer rate and total
heat transfer coefficient. Alumina nanoparticles were utilized
with a base fluid in the majority of the works.189−191 Chun et
al.189 reported that the use of alumina nanoparticles in the
DPHE significantly increases the coefficient of heat transfer. In
an experimental study, Abd Elhafez et al.186 found the
enhanced thermal performance of a DPHE with an Al2O3
nanofluid in specific ranges with no significant pressure drop
penalty. Mansoury et al.191 studied the performance of the
DPHE, plate type heat exchanger, and STHEx, in which
Al2O3/water nanofluid (0.2%, 0.5%, and 1% vol %)
concentrations were employed. The study revealed that a
DPHE exhibited the best performance with an improvement of
heat transfer coefficient by 60%. Saeedan et al.192 used the
water-based nanofluids of Cu, CuO, and CNT nanoparticles in
the DPHE. Effects of Reynolds number and volume
concentration were also investigated. It was observed in the
study that rises in the Reynolds number and volume
concentration enhance the heat transfer coefficient. Sarafraz
and Hormozi193 explored the effect of rate of flow rate and vol
% concentration on the coefficient of heat transfer. Water/
ethylene-glycol (50:50 by volume) was used as a base, whereas
particles were extracted from green tea leaves and silver nitrate.
An enhancement of 67% was reported in the heat transfer
coefficient at vol % = 1. Bahiraei et al.194 explored the efficacy
of silver particle-based NF in the DPHE. The study revealed
that particle migration increased the heat transfer rate, whereas
rises in the concentration and Reynolds number resulted in
improved heat transfer. Ravi Kumar et al.195 used a Fe3O4
nanofluid in the DPHE. The nanoparticles utilized in this work
have volume concentrations of 0.005%, 0.01%, 0.03%, and
0.06%, with Reynolds numbers in the range from 15,000 to
30,000. Nusselt number enhancement by 14.7%, compared to
the base fluid, was reported in the study for the concentration
of 0.06% and Reynolds number of 30,000. Shakiba andT
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Vahedi196 studied the influence of a magnetic field over
hydrothermal characteristics of a ferrofluid in a DPHE and
found that there were increases in Nu number, pressure drop,
and friction factor. This was attributed to the transverse
magnetic field changing the axial velocity profile. Sözen et al.197

experimentally showed that using alumina and fly ash
nanofluids in heat exchangers improved the efficiency. As a
result of the existing literature’s research, it has been
established that using nanofluids in heat exchangers greatly
improves their thermal performance.
To improve the performance of the plate-type heat

exchanger (PHE), two major variables must be considered:
the amount of pressure drop and heat transfer. The degree of
heat transfer must be raised while the pressure drop must be
lowered. Several optimization studies have been carried out for
PHEs.198−202 Pandya et al.203 reviewed the enhancement of
heat transfer enhancement using nanofluids in PHEs. Several
authors reviewed and identified the various heat transfer
enhancement techniques in PHEs, such as louver fin,
corrugated fin, perforated fin, artificial roughness, extended
surface, winglets, and staggered wavy fin.204−206 Inserts and
vortex generators were also studied as heat transport
improvement strategies.207 A modification to the plate was
also made to improve heat transfer.208,209 The chevron angle
was found as the significant geometrical parameter in heat
transfer improvement.210 Besides the above approaches,
nanofluids are also attractive solutions to improve the
efficiencies of heat exchangers. Because of the growing
importance of nanofluids, many researchers explored the
performances of PHEs employing nanofluids.211,212 In general,
researchers studied the pressure drop and heat transfer
characteristics.213,214 Many scholars numerically investigated
the applications of nanofluids in the PHEs.215−217 Various
nanoparticles like SiO,218,219 TiO2,

220 CNT,221,222

Al2O3,
223−225 Ag,226−228 CuO,229 ZnO,230 and hybrid nano-

particles231−234 have been studied to improve the performance
of the PHEs. Kumar et al.235 investigated the effect of
nanofluid flow on the performance of the square channel.
Attalla and Maghrabie224 employed an Al2O3/water nanofluid
to evaluate the performance of the PHE. Experiments were
conducted for various surface roughness values and different
volume concentrations with Re ranging from 500 to 5000.
Estimates were made for the friction factor, Nu number, and
heat transfer enhancement factor. It was concluded that
enhancing the vol % of nanoparticles improves the heat
transfer rates and pressure drops in PHEs. Despite having a
larger pressure drop and friction factor than the base fluid,
MWCNT/water nanofluids showed improved overall thermal
performances.221 Similarly, Goodarzi et al.222 also reported that
the performances of PHEs could be improved by using
MWCNT. Fouling of the nanoparticles over the inner body of
the heat exchanger generally enhances the roughness, thermal
resistance, friction factor, and drop in pressure. Sarafraz et
al.229 used a low-frequency vibration, which improved the heat
exchanger’s thermal performance. The latest research work in
STHEx revealed that nanofluids containing different types of
nanoparticles such as Ag,236 CuO,237 Al2O3,

238 TiO2,
239 and

graphene oxide240 outperformed their respective base fluids in
terms of thermal performance. Nazarzade et al.236 exper-
imentally explored the forced convective heat transfer in
STHEx with a silver/water nanofluid. Silver nanoparticles were
first synthesized using a reduction process and then dispersed
in water to make the nanofluid. The results showed that

nanofluid had a higher overall heat transfer coefficient
compared to water as a base fluid at similar mass flow rates.
In a similar finding, Said et al.237 reported an increase of 7% in
the overall heat transfer coefficient and an increase of 11.39%
in convective heat transfer and achieved a reduction of 6.81%
in the area. Somasekhar et al.238 conducted a numerical study
to know the heat transfer characteristics and pressure drop of
an Al2O3/water nanofluid and distilled water in a shell and
tube heat exchanger. An Al2O3/water nanofluid was revealed to
be a better cooling medium than distilled water in the study;
however, the use of an Al2O3/water nanofluid as a cooling
medium increased the pressure drop on the tube side in
comparison to the distilled water. Ullah et al.239 numerically
investigated the heat transfer properties of TiO2/water and γ-
Al2O3/water nanofluids in the STHEx. The influences of the
Reynolds’s number of suspended nanoparticle vol % and
particle type were examined on the thermal properties. The
results discovered the peak improvement of 41.8% in the
convective heat transfer coefficient for Al2O3/water, whereas
TiO2/water exhibits a maximum increase of 37%. According to
the study, the introduction of nanofluids increases the pressure
drop, and the explanation for this was attributed to the
nanofluid’s higher viscosity than the base fluid. Esfahani and
Languri240 used graphene oxide as a nanofluid in the shell and
tube heat exchanger and performed an exergy analysis. Exergy
analysis revealed that raising the graphene oxide concentration
from 0.01 to 0.1 wt % increased heat conductivity by 8.7% and
18.9% at 25 and 40 °C, respectively. Investigation showed a
reduced level of exergy loss in the STHEx in both laminar and
turbulent conditions by employing graphene oxide nanofluids.
Lotfi et al.241 experimentally studied the enhancement in heat
transfer by using the MWCNT/water nanofluid in a horizontal
STHEx. In comparison to the base fluid, the results show that
heat transfer was improved because of the presence of
MWCNT.
According to the findings of the preceding research, various

nanoparticles had varying influences on the performances of
the heat exchangers. Furthermore, the thermal performance of
heat exchangers is affected by a variety of elements such as
nanofluid characteristics, and structural−geometrical fea-
tures.242 In this case, machine learning might assist in resolving
the difficulties of heat transfer and nanofluid flow, as well as
providing realistic thermal design assistance to increase the
efficiency of various types of heat exchangers. Various machine
learning techniques have been employed to analyze the
thermal and hydrodynamic performances of heat exchangers
with nanofluids. Saeedan et al.192 proposed a neural network
model to forecast the pressure drop and Nusselt number. The
value of the Nusselt number was assessed concerning the
maximum relative error and MSE values of 1.2596% and
0.409%, respectively. However, the pressure gradient value was
predicted concerning maximum relative error and MSE values
of 0.25% and 0.08%, respectively. Xie et al.243 applied the ANN
for analyzing the heat transfer in the STHEx. For training and
testing neural network configurations, lab-based experimental
data were gathered. Overall heat transfer rates and temperature
variations at the outlets on either side were anticipated.
Different network designs were investigated to determine the
best network for prediction, and ANN was shown to be
superior. The maximum variation between experimental and
predicted data was determined to be less than 2%. In a similar
study, Wang et al.244 reported that the ANN approach is better
than empirical correlations for predicting heat transfer rates
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and recommended that ANN be used to model heat
exchangers and simulate thermal systems. Xie et al.245 The
Nusselt numbers and friction factors of three types of fin-and-
tube heat exchangers were correlated using the ANN. Twelve
geometric parameters were fed into ANN, and the outputs
were the Nusselt number and friction factor. NN was trained,
and the weights were adjusted using the well-known feed-
forward backpropagation method. The disparity between
forecasts and experimental data was discovered to be less
than 4%. Hojjat246 developed the ANN to forecast the thermal
and hydrodynamic performance of nanofluids used in STHEx.
Volume concentration, Reynolds number, nanoparticle thermal
conductivity, and Prandtl number were used as the inputs in
the ANN model. Deviations in experimental data and ANN
results were almost 9% and 9.6% for Nusselt Number and
pressure drop, respectively. In another study, Maddah et al.247

performed the exergetic efficiency and used the different
concentrations of nanofluids with twisted tape in double-pipe
heat exchangers. Exergetic efficiency predictions from exper-
imental processes were difficult and time consuming. ANN was
utilized to identify the correlation between the thermal and
flow parameters and the exergetic efficiency. Bahiraei et al.248

investigated the convective heat transfer in STHEx. It was
reported that the impact of altering concentration on pressure
drop was greater than the impact of radius ratio and particle
size. ANN was used to create a forecast model for convective
heat transfer. GA in a combination compromise programming
technique was used to determine the optimum conditions with
the most heat transfer and the least pressure loss. Safikhani et
al.249 employed the multiobjective optimization for Al2O3/
water nanofluid in the flat type tubes by using ANN,
computational fluid dynamics (CFD), and nondominated
sorting genetic algorithms (NSGA II). To obtain the
correlation between the Fanning friction factors and Colburn
j-factors for the flow of water in straight-type tubes, Zdaniuk et
al.250 used the ANN. It was concluded that ANN was superior
to its corresponding algebraic power law regressions.
Wijayasekara et al.251 highlighted the risk of overtraining or
overlearning the network. Generalizing is the main goal of the
network. The authors used the EBaLM-OTR (error back-
propagation and Levenberg−Marquardt algorithms for over-
training resilience) method to overcome this problem. In this
method, neural network architecture evaluates alternative
network topologies based on mean square error (MSE) and
standard deviation of MSE using a separate validation set. The
approach has proven to be a valuable tool for identifying the
flaws and benefits of various network topologies. The above
literature survey showed that ANN is the most common
machine learning technique used to predict different
parameters in the heat exchangers. The survey also reveals
that the training database may be enlarged to incorporate
experimental and numerical data for improved prediction.
Table 6 summarizes current work on heat exchangers utilizing
nanofluids and models predicted using machine learning
approaches.
5.2. Solar Energy Systems. A solar-based photovoltaic

(PV) energy system is the most common form of renewable
energy source, having a huge presence in energy markets.252,253

This is because the Sun’s continuous solar energy of 1367 W/
m2 is distributed throughout the atmosphere. The total amount
of energy absorbed by the planet from solar radiation at any
instance is estimated as 1.8 × 1011 MW.54 Solar’s enormous
potential for generating sustainable energy has piqued the

interest of policymakers, economists, governments, and
environmental engineers.254,255 PV energy thus offers enor-
mous promise for urban as well as rural electrification.256,257

On the other hand, PV power generation is impacted by a
variety of factors like humidity, weather, solar radiation, wind
pressure, and ambient and module temperatures.258 Natural
climatic fluctuations may change these factors, affecting the
quantity of electricity generated. The power system’s depend-
ability, stability, and planning are all disrupted by a sudden
shift in solar power production.259 To avoid such situations,
accurate and exact solar power output forecasting is needed to
maintain the power system’s reliability, stability, and quality.260

It has the potential to decrease the grid’s effect from power
unpredictability. One of the most essential problems for the
near future global energy supply will be the considerable
integration of renewable energy sources (particularly solar)
into existing or future energy supply architecture.261 An
electrical operator must maintain a perfect balance between
power output and consumption at all times. In practice, the
operator frequently faces challenges in maintaining this balance
with traditional and controlled energy production systems,
particularly in small or isolated electrical grids (as found in
islands).262

Machine learning techniques such as SVM, ANN, extreme
learning machine (ELM), GA, and GEP can model predict the
generation and uncertainties in the solar energy domain. These
models are useful for pattern recognition, classification, data
mining, and forecasting because they can build a connection
between inputs and outputs even when representation is
difficult.263,264 Meenal and Selvakumar265 employed SVM,
ANN, and empirical methods for the prediction of solar
radiation. Modeling inputs were month, longitude, latitude,
day length, brilliant sunlight hours, relative humidity, and
temperature range. It was observed that month, peak
temperature, latitude, and bright sunlight hours were the
most affecting input parameters, whereas relative humidity is
the least influential. SVM was superior to ANN and empirical
models in prognostic modeling. Fan et al.266 also used SVM to
study the influence of air pollution on solar radiation. Six
common constituents of air pollution (NOx, SO2, O3, CO,
PM2.5, and PM10) and air quality index (AQI) were used as
input for modeling the diffuse and global solar radiations. The
SVM model predicted that the AQI was the most influencing
factor affecting both diffuse and global solar radiations. Eseye
et al.267 used a hybrid approach of the PSO-SVM-wavelet
method to forecast the photovoltaic (PV) solar power. The
interactions of the PV system’s real power record with
numerical weather prediction (NWP) meteorological data
over one year using a 1 h time increment were used for
modeling. The hybrid approach demonstrated superior
performance to standalone model prediction techniques. Fan
et al.268 also used a hybrid approach to study air pollution’s
influence on daily diffuse solar radiation. SVM with PSO, BAT,
and the whale optimization algorithm (WOA) were recom-
mended for diffuse daily solar radiation prediction in air-
polluted locations. SVM models outperformed extreme
gradient boosting (XGBoost) and MARS models, while the
BAT method was the most effective in improving the
performance of solo SVM models. Lee et al.269 developed a
prediction model for solar irradiance using ensemble machine
learning techniques. A summary of recent studies on
applications of nanofluids in solar thermal systems and
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model prediction with machine learning techniques is depicted
in Table 7.
5.3. Geothermal Energy. The shift from fossil-fuel-based

systems to renewable-energy systems is becoming critical for
sustainable energy development and environmental protection.
Geothermal energy is a promising renewable type of energy
and has the potential to reduce fossil fuel usage and minimize
environmental impacts.275−277 Because of the growing
importance of geothermal energy systems, many researchers
reviewed the various aspects.278,279 In general, geothermal
power plants have low operating costs280,281 but on the other
hand have lower energy conversion efficiencies than typical
thermal power plants.282,283 The reason is attributed to the
relatively low temperature of geothermal resources.284 This is
the major technological challenge that restricts the widespread
application of geothermal energy.285 The efficiency of heat
conversion could be raised by improving the heat transfer
between the ground and heat-carrying fluid. Due to better
thermophysical properties than the base fluids, nanofluids
could be a good alternative for a heat carrier fluid.286

Daneshipour and Rafee287 applied Al2O3/water and CuO/
water nanofluids as the working fluids of a geothermal
borehole heat exchanger. The Reynolds averaged Navier−
Stokes (RANS) equations were numerically solved with the
SST k-turbulence model to simulate the flow. The results
reveal that the heat exchanger’s overall water flow pressure loss
is minimized at a particular diameter ratio. The findings also
reveal that the CuO−water nanofluid extracts more heat than
the alumina−water nanofluid, albeit at the expense of larger
pressure losses and pumping powers. Diglio et al.288 numeri-
cally investigated the use of different nanofluids in the borehole
heat exchanger. The optimal nanofluid is determined using a
computational model based on energy and momentum
balances. It is found in the study that copper has the biggest
borehole thermal resistance decrease, reaching around 3.8%
when a nanoparticle’s volumetric concentration is 1%, but it
also has the second-highest pressure drop. A summary of
recent studies on applications of nanofluids in solar thermal
systems and model prediction with machine learning
techniques is depicted in Table 8.
5.4. Wind Energy. Wind power is a significant renewable

energy source, and its growth is helpful in terms of energy
supply security and lowering greenhouse gas emissions.293,294

The wind power curve plays an important role in estimating
wind energy potential and wind turbine selection.295−297 Wind
turbines must disperse a substantial quantity of heat during
operation. The produced heat must be effectively distributed;
otherwise, the temperature of the mechanical and electrical
components would rise, lowering overall energy efficiency. The
cooling system is used to dissipate the heat. Raj et al.298

employed nanofluid in the cooling system of the wind turbine.
The use of nanofluid reduces the heat transfer surface and the
flow rate of heat transfer fluid due to the greater thermal
conductivity. De Risi et al.299 employed Al2O3/water nanofluid
to increase the performance of the cooling system. This
cooling system limits the thermal stresses in the electrical and
mechanical components of the wind turbine. In their study,
Álvarez-Regueiro et al.300 determind that the wind turbines
having a capacity above 10 MW require a sophisticated cooling
system. Empirical relation functions for the Nu number and
Darcy friction factor were developed. The use of nano-
enhanced industrial coolant enhanced the convective coef-
ficient of heat transfer by 7% for the nanofluid with T
ab
le

7.
Su

m
m
ar
y
of

R
ec
en
t
R
es
ea
rc
h
C
on

du
ct
ed

on
So

la
r
T
he
rm

al
Sy
st
em

s
U
si
ng

N
an
ofl

ui
ds

an
d
M
od

el
s
P
re
di
ct
ed

w
it
h
M
ac
hi
ne

Le
ar
ni
ng

T
ec
hn

iq
ue
s

R
ef
er
en
ce

T
yp
e
of

so
la
r
en
er
gy

ap
pl
i-

ca
tio

n
an
d
N
F

M
L
te
ch
ni
qu
e
us
ed

In
pu
t

O
ut
pu
t

Pe
rf
or
m
an
ce

pa
ra
m
et
er
s

O
ut
co
m
e

Ja
m
ei
et

al
.14

3
G
en
er
ic
so
la
r
th
er
m
al
w
ith

m
ol
te
n
(n
itr
at
e)

sa
lt-
ba
se
d

na
no
fl
ui
ds

A
da
B
oo
st
,E

xt
ra

T
re
e
R
eg
re
s-

si
on

So
lid

m
as
s
fr
ac
tio

n,
SH

C
of

ba
se

fl
ui
ds
,

te
m
pe
ra
tu
re
,d

en
si
ty
,m

ea
n
di
am

et
er

SH
C

of
N
F

R
=
0.
99
64
,R

M
SE

=
0.
15
66

SH
C

of
B
Fs

w
as

m
os
t
vi
ta
l
pa
ra
m
et
er

in
es
tim

at
io
n
of

N
F
SH

C

Ja
m
ei
et

al
.14

7
G
en
er
ic
so
la
r
th
er
m
al
w
ith

ca
rb
on

an
d
m
et
al
ox
id
e

ba
se
d
na
no
fl
ui
ds

G
au
ss
ia
n
pr
oc
es
s
re
gr
es
si
on

T
em

pe
ra
tu
re

an
d
SH

C
of

ba
se

fl
ui
ds
,

m
ea
n
di
am

et
er

an
d
so
lid

vo
lu
m
e

fr
ac
tio

n
of

na
no
pa
rt
ic
le
s

SH
C

of
N
F

R
=
0.
99
97

M
ea
n
di
am

et
er

of
na
no
pa
rt
ic
le
s
an
d
SH

C
of

B
Fs

w
as

m
os
t
vi
ta
lp
ar
am

et
er

in
SH

C
of

N
Fs

es
tim

at
io
n

R
M
SE

=
0.
01
50
6

C
ao

et
al
.27

0
Effi

ci
en
cy

of
th
er
m
al
/P

V
co
lle
ct
or
s
w
ith

na
no
co
o-

la
nt
s

A
N
N
,l
ea
st
sq
ua
re

su
pp
or
t

ve
ct
or

re
gr
es
si
on
,A

N
FI
S

N
Fs

pr
op
er
tie
s,
fl
ow

ra
te

of
co
ol
an
t,

so
la
r
ra
di
at
io
n

El
ec
tr
ic
effi

ci
en
cy

R
2
=
0.
95
34
,M

SE
=
2.
54
8

Pe
rf
or
m
an
ce

co
ul
d
be

si
m
ul
at
ed

effi
ci
en
tly

R
an
ja
n
Pa
ri
da

et
al
.27

1
G
en
er
ic
so
la
r
th
er
m
al
w
ith

m
ol
te
n
(n
itr
at
e)

sa
lt-
ba
se
d

N
Fs

Pr
in
ci
pa
l
co
m
po
ne
nt

an
al
ys
is

(P
C
A
),
hi
er
ar
ch
ic
al

cl
us
te
r
an
al
ys
is
(H

C
A
)

C
on
ce
nt
ra
tio

n,
de
ns
ity

ra
tio

,t
em

pe
r-

at
ur
e,
na
no
pa
rt
ic
le
s
si
ze

SH
C

of
N
F

81
.3
%

va
ri
at
io
ns

in
en
tir
e

da
ta

se
t

M
ea
n
di
am

et
er

of
na
no
pa
rt
ic
le
s
w
as

m
os
t

vi
ta
l
pa
ra
m
et
er

in
SH

C
of

N
Fs

es
tim

a-
tio

n

Eb
ra
hi
m
i-M

og
ha
da
m

et
al
.27

2
Pa
ra
bo
lic

tr
ou
gh

so
la
r
co
lle
c-

to
r
w
ith

A
l 2O

3
an
d
et
hy
l-

en
e
gl
yc
ol

A
N
N

R
ey
no
ld
s
nu
m
be
r,
m
ea
n
fl
ow

te
m
pe
r-

at
ur
e,
pa
rt
ic
le
si
ze

O
pt
im
al
vo
lu
m
e

fr
ac
tio

n
R
2
=
0.
99
92
,

M
SE

=
5.
92

×
10

−
9

O
pt
im
al
vo
lu
m
e
fr
ac
tio

n
no
ti
nfl
ue
nc
ed

by
R
e
nu
m
be
r

D
el
fa
ni

et
al
.2
73

D
ir
ec
t
ab
so
rp
tio

n
so
la
r
co
l-

le
ct
or

w
ith

gr
ap
he
ne

ox
id
e/

de
io
ni
ze
d
w
at
er

A
N
N

So
la
r
co
lle
ct
or

le
ng
th

an
d
de
pt
h,

fl
ui
d

fl
ow

ra
te
,c
on
ce
nt
ra
tio

n,
te
m
pe
ra
tu
re

di
ff
er
en
ce

N
us
se
lt
nu
m
be
r,

co
lle
ct
or

effi
-

ci
en
cy

Fo
r
effi

ci
en
cy

M
A
PE

=
1.
47
%
,f
or

N
us
se
lt
nu
m
be
r

M
A
PE

=
2.
56
7%

H
ig
hl
y
pr
ec
is
e
pr
ed
ic
to
r
m
od
el
de
ve
lo
pe
d

us
in
g
A
N
N

B
ah
ir
ae
i
et

al
.2
74

So
la
r
st
ill

w
ith

C
u 2
O

na
no
-

pa
rt
ic
le
s

A
N
N
,P

SO
-A
N
N
,A

N
FI
S

Fa
n
po
w
er
,n

an
op
ar
tic
le
vo
lu
m
e
fr
ac
-

tio
n,

gl
as
s,
ba
si
n,

w
at
er

te
m
pe
ra
tu
re

En
er
gy

effi
ci
en
cy

R
2
=
0.
98
84

fo
r
PS

O
-A
N
FI
S

PS
O
-A
N
FI
S
hy
br
id

ap
pr
oa
ch

su
pe
ri
or

in
m
od
el
pr
ed
ic
tio

n

Energy & Fuels pubs.acs.org/EF Review

https://doi.org/10.1021/acs.energyfuels.2c01006
Energy Fuels 2022, 36, 6626−6658

6642

pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.2c01006?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


nanoadditive loading of 0.25 wt %. Rostamzadeh and
Rostami25 employed the waste heat captured from the cooling
system of the wind turbine for the desalination process. Cu,
CuO, TiO2, Al2O3, and SiO2 nanoparticles were employed with
a water base fluid. A Cu/water mixture had the best
performance of all the nanoparticles used because it produces
more freshwater, whereas the SiO2/water mixture has the
lowest efficiency. A summary of recent work in the domain of
model prediction/numeric simulations for wind energy
systems using nanofluids is listed in Table 9.

5.5. Other Renewable Energy Systems. Modern
machine learning methods powered by high-speed computa-
tional machines are making huge differences in several
renewable energy fields. Biomass is currently the world’s
most extensively utilized renewable energy source. It is mostly
utilized as a solid fuel, with liquid fuels and gas being used to a
lesser amount.302,303 The utilization of biomass for energy
generation has risen slowly in recent years. Rural and off-grid
regions rely heavily on biomass for energy.304 Biomass is
utilized to satisfy a wide range of energy requirements,
including producing electricity, powering cars, heating homes,
and supplying process heat for industrial operations. Wood,
animal, and plant wastes all have biomass potential.305,306

Biomass can be directly used as fuel, although direct
combustion is highly inefficient and polluting. The biomass
can be converted to fuel in liquid or gaseous.307,308 Among the
biomass conversion methods, pyrolysis has a lot of
promise.309,310 Thermochemical conversion, which includes
combustion, pyrolysis, torrefaction, hydrothermal liquefaction,
and also gasification, is the most practical method for
converting solid biomass into biofuel.311,312 By optimizing
process parameters, the fundamental objective of thermochem-
ical conversion is to remove unwanted byproducts. Pyrolysis is
a potential technology for converting biomass into biofuel in
an inert environment at high temperatures (250−600
°C).313,314 Pyrolysis technology is being used to produce
biobased fuels and chemicals from biomass, which is a
relatively new technique. Bio-oil, biochar, and syngas are the
end products of biomass pyrolysis, and they might be used for
energy generation or other applications with exceptional
characteristics such as environmental friendliness, cheap prices,
and biodegradability.310,315

The process of biomass conversion is highly nonlinear.
Several researchers applied machine learning methods such as
ANN316 and GEP317 to model predict the biomass conversion
to usable fuel, biofuels, and its byproducts. Safarian et al.318

employed the ANN technique for model prediction of a
downdraft biomass gasification-integrated power generating
unit. The aim was to estimate the net output power of systems
using biomass feedstocks under diverse operating conditions
and atmospheric pressure. Compositions of feedstock,
proximate type analysis (ash, moisture, fixed carbon, and
volatile material), and operational parameters were utilized as
input parameters. The ANN model exhibited robust prediction
with observed data with R2 greater than 0.999. Mutlu and
Yucel319 used machine learning classifiers for the prediction of
gasification products. Two types of classifiers were used: binary
least squares support vector machine and multiclass random
forests classifiers. The suggested methods were developed and
validated using 10-fold cross-validation on 5237 data samples,
with binary and multiclass classifiers achieving prediction
accuracy values of over 96% and 89%, respectively.T
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Baruah et al.320 developed an ANN-based biomass gas-
ification model using ANN to forecast the product gas
composition in terms of concentrations of four key gas
species: CH4, CO2, CO, and H2 percentwise. Biomass
composition and reduction zone temperature were utilized as
input parameters in the models. The output of the ANN
models was found to agree with experimental data with
absolute fractions of variance (R2) more than 0.99 for CH4 and
CO models and greater than 0.98 for CO2 and H2 models. An
ANN model was created by Kargbo et al.321 utilizing
experimental data to forecast the gasification process. The
study’s objective was to use AI-based model prediction,
resulting in saving time and money in the development and
testing process. With a correlation of R2 > 0.99, the ANN-
based model could reliably forecast gas composition and yield
in response to output changes. Aghbashlo et al.322 used a
hybrid ANFIS-PSO approach to predict lignocellulose
pyrolysis kinetic constants. The PSO technique was employed
to fine-tune the membership function parameters of the ANFIS
model. With an R2 > 0.970 and a MAPE = 3.27%, the
generated models were able to accurately predict the pyrolysis
behaviors of three distinct biomass feedstocks with R2 > 0.91,
indicating their fidelity. Elmaz et al.323 employed four
regression techniques: support vector machine, polynomial
regression, decision tree regression, and ANN to forecast CO,
H2, CO2, CH4, and high heating values from the biomass
gasification process. To avoid multicollinearity and enhance
the computing efficiency, the extracted features are subjected
to principal component analysis. The ANN and decision tree
regression outperformed others by attaining R2 > 0.9 for the
majority of outputs.
In the field of renewable energy and, more specifically, the

solar energy domain, battery energy storage systems are the
basic necessity. The uncertainties in optimal scheduling and
operation of a renewable energy system need efficient machine
learning techniques for modeling.324 Masoumi et al.325

successfully used an ANN-PSO hybrid approach to model
and predict the uncertainty in optimal renewable energy
allocations combined with battery energy storage. The
researchers integrated the modeling of solar-, wave-, and
wind-based renewable energy systems. A battery storage
system was employed to compensate for any uncertainty
caused by the renewable energy system. It was concluded that
the use of electric vehicles and their aggregators could assist
system operators in maximizing their benefits in terms of
power quality and market control. In another study by Gayen
and Jana,326 the ANFIS-based control strategy improves the
overall control capabilities for microgrid-connected battery
energy storage systems. Several simulation studies were done
on a 230 V, 50 Hz single-phase ac grid linked 100 Ah, 120 V
battery using MATLAB-SIMULINK 2014b software to test the
enhanced control approach. Using ANFIS, the efficiency of a
coordinated regulating strategy for transferring power between
a battery and single-phase type electrical grid was enhanced. A
summary of recent work in model prediction for the various
renewable energy systems is listed in Table 10.

6. CHALLENGES AND PERSPECTIVES
The application of machine learning has grown in importance
as a technique for studying system behavior and evaluating
system performance. It is increasingly being applied in
nanofluids and renewable energy systems, although its
potential and prospects are yet to be completely realized.T
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The challenges of modeling and simulation are briefly
discussed in this section and how they may be overcome.
Data quality and lack of data, machine learning parameter

tuning, technical infrastructure problems, lack of trained
specialists, integration issues, hazards, compliance issues, and
legal concerns are some of the bottleneck barriers to AI
adoption in the smart energy sector.327 Low-quality con-
trollers, sensors, and controlled devices are used in energy
system operation and data estimates.328,329 The solution to
most of the problems here can involve trained manpower from
data collection to efficient modeling and result presentations.
Data quality can be improved by the application of enhanced
sensors and modern data acquisition systems. Technical
infrastructure and integration require investments that are
just a small fraction of renewable energy project costs.330,331

Compliance and legal hurdles need implementation of long-
term sustainable policy in this sector.332 There may be
challenges in this sector, but their mitigation can result in
much more economic gains for the stakeholders.333

The shortcoming of adequate scientific focus while building
more extensive integrated modeling systems sometimes makes
integrating energy models challenging. Additionally, as energy
systems grow decentralized, they become more complex and
linked, relying on a variety of energy sources with increasingly
interwoven boundaries. Because of these increases in complex-
ity, certain existing energy models can no longer adequately
address all energy optimization issues.334,335 As a result, the
complexity of the modeling domain in RSES must be
addressed as soon as possible. Complex energy systems do
not lend themselves to concise representations. As a result, the
complexity of energy models in RSES is generally countered by
the fact that the correctness of a model is determined by the
basic assumptions incorporated into its design.336 It was
discovered that research on energy system modeling and
simulation has continuously utilized modeling techniques with
big data and hourly profiles of energy use, making RSES
models challenging to solve in instances when substantial
system and process data are not available.337,338

Many experts have a thorough understanding of technical
issues. However, skilled people to create trustworthy AI-
powered apps with real-world advantages are exceedingly
difficult to come by. Even though power companies collect and
retain data, it is difficult to digitize it with modern management
software. Data loss, improper configuration, device failure, and
illegal access are all risks that are linked.339 The most
significant impediment to the energy sector’s modernization
is outdated infrastructure. Utility businesses are currently
engulfed in a plethora of data that they generate and have no
clue how or when to deal with it. Despite having more data
than anybody else, the data are scattered, unorganized,
distributed across several formats, and kept locally. While the
business makes a lot of money, it is also vulnerable to
antiquated systems.61,114

It is evident from the literature that challenges and
bottlenecks exist in effective implementations of machine
learning methods in nanofluid-based renewable energy
systems. However, ever-increasing computational power, the
advent of intelligent machine learning techniques, and the
availability of an AI trained workforce demonstrate the high
growth aspect of this domain.340 The voluminous research
published in the last five years in various reputable energy
journals substantiates this fact. The recently published

literature review shows that researchers are meeting challenges
in modeling complex energy systems with greater fierceness.

7. CONCLUSIONS
Several machine learning algorithms have been used in recent
times to evaluate the performances of renewable energy
systems working with nanofluids. This work focuses on a
literature review to highlight current advances in machine
learning research in the use of various machine learning
algorithms for nanofluid-based renewable energy systems. Even
though hundreds of archival papers are published on this
subject each year, many essential elements, together with their
nonlinear effects, complicate nanofluid research to new heights
and restrict its practical usefulness. Surprisingly, sophisticated
artificial intelligence has not been used to solve complicated
challenges. Nonetheless, machine learning has the potential to
be beneficial and cost effective in nanofluid research, enabling
potentially dependable practice in solar collectors, solar-based
desalination system, biomass gasification, wind energy, and
PV/T systems. This review also acknowledges the increased
application of the hybrid approach by combining the machine
learning-based modeling and optimization approach in the last
five years. Some noteworthy conclusions of this study are as
follows:

(1) Several factors influence nanofluid thermophysical
properties. Evaluating the thermophysical characteristics
of various nanofluids across a wide range of parameters
and flow conditions takes time and effort. Theoretical
and empirical correlations may be quite ambiguous due
to underlying assumptions. Many studies have shown
that machine learning approaches like ANN can
accurately predict nanofluid characteristics.

(2) Nanofluids improve heat transmission in renewable
energy sources, including biomass, solar, geothermal,
and wind. Machine learning approaches can accurately
anticipate the performance of a renewable energy system
based on nanofluids.

(3) The ANN and ANFIS predictions using modern
commercial software are easy to implement and popular.
The prognostic capability can be further enhanced using
a hybrid approach with additional intelligent optimiza-
tion techniques such as RSM, PSO, marine predator
algorithm, genetic algorithm, swarm intelligence opti-
mization, and more.

Newer ensemble machine learning algorithms, including
boosted regression, K-means, K-nearest neighbor (KNN),
CatBoost, and XGBoost, are gaining popularity due to their
improved architectures and adaptabilities to a wide range of
data sets. The ANN, ANFIS, and GEP techniques are mainly
black-box methods, with the user having no idea how they
work. This is a source of concern, and ethical artificial
intelligence is required.
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■ ABBREVIATIONS
EG Ethylene glycol
Al2O3 Alumina
MWCNT Multiwalled carbon nanotubes
US EIA United States Energy Information Administration
RCSES Research Centre in Systems Ecology and Sustain-
ability
ANN Artificial neural network
BP Backpropagation
GEP Gene expression programming
ET Expression trees
LS-SVM Least square support vector machine
QP Quadratic programming
RBF Radial basis function
SHC Specific heat capacity
MARS Multivariate adaptive regression splines
MSE Mean squared error
SCG Scaled conjugate gradient
MAPE Mean absolute percentage error
CNF Carbon nanofiber
LWLR Local weighted linear regression
RMSE Root mean squared error
SVR Support vector regression
STHEx Shell and tube heat exchanger
ELM Extreme learning machine
PM Particulate matter
WOA Whale optimization algorithm
NFs Nanofluids
ZnO Zinc oxide
ML Machine learning
SDGs Sustainable development goals
RE Renewable energy
MLP Multilayer perceptron
ANFIS Adaptive neuro-fuzzy inference system
GA Genetic algorithm
GP Gene programming
SVM Support vector machine
RNN Recurrent neural network
TC Thermal conductivity
GMDH Group method of data handling
MMD Maximum margin of deviation
RSM Response surface methodology
LM Levenberg−Marquardt
F-CNF Functionalized carbon nanofiber
PSO Particle swarm optimization
LGP Linear genetic programming
GPR Gaussian process regression
DPHE Double pipe heat exchanger
PHE Plate type heat exchanger
AQI Air quality index
NWP Numerical weather prediction
XGBoost Extreme gradient boosting
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