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Abstract
China is the largest producer and consumer of calcium carbide in the world. The calcium carbide industry is an indispensa-
ble industry to support the basic life of people. The huge production capacity of calcium carbide is accompanied by a large 
number of solid waste carbide slag. Due to the immature treatment technology of carbide slag, a large number of carbide 
slag are stacked on-site, resulting in land occupation, air-drying, easy take-off ash, and pollution of the environment and 
water resources. In China, calcium carbide is mainly used to produce acetylene and further utilized, 80% of which is used to 
produce polyvinyl chloride (PVC). A large amount of carbide slag is not used, while only a small part is used in the tradi-
tional building materials industry, flue gas desulfurization, sewage treatment, etc., however, the economic benefits are poor. 
Therefore, converting the solid waste carbide slag produced by the calcium carbide industry into high value-added  CaCO3, 
 CaCl2,  CaSO4 whiskers, etc. has become a potential way to expand the development field of the calcium carbide industry 
and is environmentally friendly. This paper focuses on summarizing the traditional and emerging high value-added utiliza-
tion technologies of carbide slag, and then introduces the application research of carbide slag in carbon emission reduction. 
Finally, the defects of these technologies are summarized and further research directions are prospected. This study provides 
basic guidance for the diversified development of efficient resource utilization of carbide slag.

Graphical abstract
Diversified development of calcium carbide industry, resource utilization of solid waste carbide slag and its application of 
carbon emission reduction have been fully reviewed.
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Introduction

In 2020, the Chinese government proposed to strive to 
reach the peak of  CO2 emissions by 2030 and achieve 
carbon neutrality by 2060. Therefore, in the next few dec-
ades, carbon peaking and carbon neutrality will become 
the prerequisites and goals for the development of indus-
trial economy. As the largest producer and consumer of 
calcium carbide in the world, China’s carbon emission 
and solid waste resource utilization caused by calcium 
carbide industry are urgent problems to be solved.  CaC2, 
the main component of calcium carbide, is an impor-
tant basic chemical raw material. It is mainly used to 
produce acetylene gas, organic synthesis, oxyacetylene 
welding, etc. [1]. By the end of 2020, the output of cal-
cium carbide in China reached 28 million tons, and the 
total amount of carbide slag discharged was nearly 33 
million tons, while the utilization rate of carbide slag is 
less than 30% [2, 3].

Carbide slag is a kind of waste residue with calcium 
hydroxide which is the main component after acetylene gas 
produced by hydrolysis of calcium carbide [4]. Generally, 
a large amount of carbide slag is produced in the process 
of using calcium carbide to produce acetylene, polyvinyl 
chloride, acetone, and other chemical products. Conven-
tional utilization methods only solved 40% of the discharge 
problem of carbide slag, while the recycling disposal of 
most discharged carbide slag has not been solved and can 
only be discarded and stacked, which results in serious 
environmental pollution and resource waste [5–7]. In par-
ticular, the amount of carbide slag produced by Chlor-
alkali industry is huge, and due to the immature treatment 
technology and high treatment cost, most manufacturers 
stack the untreated carbide slag near the production place 
which leads to the problems of land occupation, easy take-
off ash, pollution of environment and water resources [8, 
9]. It can be seen that it is extremely urgent to increase the 
development of industrial solid waste carbide slag resource 
utilization technology. In particular, as the alkaline solid 
waste, carbide slag is more suitable for  CO2 mineralization 
due to its relatively high reactivity and inherent alkalinity, 
while the generated  CaCO3 can continue to be used in the 
production of calcium carbide. Therefore, the  CO2 emis-
sions of the process are reduced [10, 11]. Furthermore, 
carbide slag is also expected to be used in the production of 
high value-added fine chemical products, such as calcium 
chloride and nano-calcium carbonate [12–16]. Taking the 
resource utilization and circular economy of calcium car-
bide and carbide slag as the development concept, strength-
ening technology research and development, and forming 
a circular economy industrial chain adapted to local con-
ditions are effective measures to respond to global carbon 
peaks and carbon neutrality.

Formation of calcium carbide and carbide 
slag

Formation of calcium carbide

The calcium carbide production technology in the indus-
try was invented in 1892. Its production principle is that 
calcium oxide and coke react at a high temperature above 
2000 °C generated by an arc to produce molten calcium 
carbide  (CaC2). This process is called the electro-thermal 
method or arc method [17] that is shown in Eq. (1). Due to 
the high operating temperature for calcium carbide produc-
tion and the huge amount of heat in the absorption reaction, 
the electro-thermal method for production of calcium car-
bide has disadvantages of high energy consumption, high 
material consumption, and high pollution. Accordingly, the 
oxy-thermal method for the calcium carbide production pro-
cess is invented which can directly use the combustion heat 
for the production of calcium carbide to avoid the energy 
consumption of electricity. The oxy-thermal method is the 
development direction toward the calcium carbide produc-
tion technology which is innovative and energy saving, how-
ever, it is still at the experimental stage [18–20].

At present, oil and natural gas have become the main 
fossil fuels consumed in the world, but the amount of 
the available oil and natural gas reserves are only 10% 
of the amount of the known coal reserves [19]. Calcium 
carbide is an important bulk coal chemical product. Con-
sidering China’s energy structure that riching in coal and 
lack of oil, nearly 80% of calcium carbide in China is used 
to produce PVC (polyvinyl chloride) while PVC abroad 
mainly comes from petroleum ethylene synthesis [21–23]. 
Compared with the petroleum ethylene route, the coal-
based calcium carbide route has the characteristics of 
low cost, simple process, short construction period, and 
low investment. In this case, the world’s calcium carbide 
production mainly concentrated in China [24]. China’s 
annual output of calcium carbide increased rapidly in 
1996, reaching 28.88 million tons in 2020, as shown in 
Fig. 1. China has a large demand for calcium carbide, so 
the position of the calcium carbide industry in China’s 
coal chemical industry will keep increasing in a short 
time [25].

Formation of carbide slag

Carbide slag is a kind of industrial waste residue produced 
during the reaction of calcium carbide and water to produce 
acetylene [26]. This process is often carried out in a wet 
reactor. The main hydrolysis reaction equation is expressed 
as:

(1)CaO + 3C → CaC2 + CO − 465.7 kJ∕mol



3Waste Disposal & Sustainable Energy (2022) 4:1–16 

1 3

It can be seen from the Eq. (2) that for every mol of acety-
lene produced, 1 mol of calcium hydroxide is bound to be 
produced. As the solubility of Ca(OH)2 in water is small, 
and the solid Ca(OH)2 particles gradually precipitate out of 
the solution. In the actual production process, the acetylene 
generator first discharges the liquid carbide slag slurry with 
a water content of 5% to 95%. After treatment, it becomes a 
thick substance with slightly water. After natural stacking, it 
becomes a paste with about 50% water content. If it is finally 
dried, the particles of carbide slag will become much fine 
[27]. Because there is a large amount of calcium hydroxide 
in carbide slag, the alkalinity is high which is about 3000 
mmo1/L [28]. The mass fraction range of main components 
of carbide slag is shown in Table 1 [29].

Carbide slag slurry is a gray–brown turbid liquid. After 
standing still, it is divided into three parts, the clear liquid, 

(2)CaC2 + 2H2O → C2H2 + Ca(OH)2 + 130 kJ∕mol

the solid sedimentary layer and the intermediate colloi-
dal transition layer, as shown in Fig. 2. The ratio of the 
three parts changes reversibly with the change of resting 
time and environmental conditions. The solid sediment 
is calcium carbide waste residue. The accumulation of 
carbide slag occupies a large amount of cultivated land. 
The long-term storage will cause serious calcification of 
the soil which will be difficult to re-cultivate. At the same 
time, there is a risk of damaging the ecological environ-
ment and air quality. Therefore, the resource utilization of 
carbide slag is particularly important, which can not only 
create economic value but also reduce the impact on the 
environment.

Calcium carbide utilization technology

The generation of a large number of carbide waste slag in 
China is due to the rapid development of the calcium car-
bide industry. China’s calcium carbide production capacity 
accounts for more than 90% of the world’s total production 
capacity. The main consumption industries of calcium car-
bide are productions of acetylene and its derivatives. The 
acetylene gas produced by calcium carbide can be used for 
other organic synthesis and oxyacetylene welding [30–34]. 
The products of these traditional industries are widely used 
and the industrial production and residents’ life are insepa-
rable from it.

As shown in Fig. 3, calcium carbide reacts with water to 
form acetylene [35] which was discovered in the middle of 
the nineteenth century. The acetylene  has very rich chemi-
cal properties because of its active carbon–carbon triple 
bond.  The most mature application of acetylene is PVC and 
1,4-butanediol production. Calcium carbide–PVC produc-
tion has accounted for more than 60% of the total domestic 
output, and dry acetylene technology has been promoted to 
reduce environmental pollution [36, 37]. 1,4-butanediol is an 
important fine chemical product. At present, the northwest 
part of China is the main production area of 1,4-butanediol 
in China [38].

In addition to being used in traditional industries, 
such as acetylene, PVC, and 1,4-butanediol, calcium 
carbide can also be used in new areas, such as organic 
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Fig. 1  The annual output of calcium carbide in China [24]

Table 1  The mass percentage of the main components of carbide slag

Component Ca(OH)2 Al2O3 SiO2 Fe2O3 MgO

Carbide slag (%) 86–94 1.5–4 2–5 0.14–0.2 0.22–1.68

Fig. 2  Schematic diagram of 
precipitated carbide slag slurry
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synthesis, catalysis, and conversion into porous carbon 
materials, as shown in Fig. 4. Among them, calcium 
carbide has become a viable raw material for organic 
synthesis due to its active triple bonds and ends [30, 
39–41]. For example, calcium carbide is used as a source 
of alkyne to synthesize Propen-2-yl Sulfone which pro-
vides unique characteristic for drug design and medici-
nal chemistry [42]. New research suggests that  CaC2 
can be used as an efficient catalyst for biomass and 
organic conversion due to its stability and active triple 
bonds [43–48].  CaC2 is also an important carbide which 
can be used to prepare porous carbon materials (PCM) 
such as calcium carbide-derived carbon  (CaC2-CDC). 
It has broad application prospects in adsorbents, lith-
ium–sodium-ion battery negative materials, etc. because 
of its high specific surface and diverse structural char-
acteristics [49, 50].

Traditional applications of carbide slag

Generally, carbide slag is mainly used for building materials 
production, such as cement, block, thermal insulation mate-
rials, and other chemical products [7]. It is also employed for 
flue gas desulfurization, industrial wastewater treatment, and 
other environmental management. However, these methods 
usually have high investment, high operation intensity, and 
high pollution, and are easy to be restricted by market sup-
ply, demand and objective environmental factors, resulting 
in poor economic benefits.

Cement production with carbide slag

With the development of the domestic calcium carbide 
process, the comprehensive utilization of carbide slag 
has become the key factor restricting the sustainable 

Fig. 3  Schematic diagram 
of the application process of 
calcium carbide and acetylene. 
PVC polyvinyl chloride

Fig. 4  Review of traditional and 
new technology applications of 
calcium carbide
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development of the PVC industry in scale. Carbide slag is 
a high quality cement raw material with uniform composi-
tion and high calcium content. In China, the production of 
cement clinker from carbide slag began in the 1970s. There 
are four kinds of main processes, namely wet process, semi-
wet rotary kiln process, wet grinding and dry burning pro-
cess, and dry grinding and dry burning process.

In 2005, Xinjiang Tianye (Group) Co., Ltd. (Xinjiang, 
China) built the first 350000 tons/year carbide slag cement 
production plant in China, which marked a breakthrough of 
the domestic cement technology of carbide slag [51]. Com-
pared with the traditional limestone cement production pro-
cess, the carbide slag cement production process can reduce 
0.6 tons of carbon dioxide emissions for each  ton of cement, 
and reduce the limestone mining capacity by about 1 ton per 
ton of cement [2]. Regarding the imbalance of dry and wet 
carbide slag in enterprises that use both dry and wet carbide 
slag as raw materials to produce cement clinker, the first-line 
wet carbide slag has high moisture (about 30%) and is easy 
to stick while the dry carbide slag has a low moisture con-
tent (about 6%) and is easy to raise dust. Li and Xiong  [52, 
53] used dry and wet carbide slag to replace limestone to 
produce cement, which reduced energy consumption, cost, 
and  CO2 emissions. Lin et al. [54] conducted a comprehen-
sive comparison between the carbide slag cement clinker 
system and the traditional Portland cement clinker sys-
tem, and quantitatively analyzed the environmental impact 
and environmental benefits of the comprehensive utiliza-
tion of carbide slag in cement kilns. According to the life 
cycle assessment (LCA) method [54], it is concluded that 
the carbide slag cement clinker system has a better effect 
in saving materials and reducing carbon emissions. It was 
also observed that the carbide slag cement clinker system 
shows little  Global Warming Potential (GWP), Acidification 
potential (AP), and Eutrophication potential (EP).

Although the development of the cement industry has 
been very mature, its economic price is relatively low and 
market attractiveness has declined. The use of carbide slag in 
the production of other high economic value products, such 
as  CaCO3,  CaCl2,  CaSO4 whisker, and Ca(HCOO)2, attracts 
much  investment attention. Its market sales price is shown 
in Table 2. The cement price is much lower than that of 
 CaCO3,  CaSO4 whistler, and Ca(HCOO)2. Therefore, more 
researchers are currently committed to using solid waste car-
bide slag to produce high value-added products.

Application of carbide slag in flue gas 
desulfurization

At present, more than 95% of domestic large-scale coal-
fired boiler flue gas desulfurization processes use lime-
stone or quicklime as desulfurizers. This process has strict 
requirements on the particle size and calcium purity of the 

desulfurizer. The conventional requirements of desulfurizer 
are that the particle size is less than 0.044 mm, calcium 
purity is greater than 85%, and the solid content of the slurry 
is 15%–20%. The price of limestone and quicklime is rela-
tively high, and the operating cost accounts for 30%–35% 
of the desulfurization process [8, 57]. To reduce operating 
costs and save resources, many researchers have turned 
their attention to alkaline solid waste carbide slag as a des-
ulfurizing agent to realize waste treatment [58, 59]. For the 
carbide slag-wet desulfurization system, the flue gas enters 
the desulfurization tower where the flue gas and the carbide 
slag slurry are in gas–liquid reverse contact to form calcium 
sulfite. which is further oxidized by the air directed by the 
oxidation fan to form calcium sulfate, and then gypsum is 
generated through crystallization. The gypsum slurry gener-
ated by desulfurization is directly sent to the pressure filter 
for treatment, and the main reactions are as Eqs. (3–5), and 
obviously, the desulfurization efficiency of carbide slag is 
much higher than that of traditional limestone, as shown in 
Table 3.

Absorption reaction:

Oxidation reaction:

Neutralization reaction:

Although using carbide slag instead of limestone as a flue 
gas desulfurizer improves the desulfurization efficiency, it 
still faces the following problems like using limestone as 
desulfurizer [66, 67]:

1. To ensure the efficiency of desulfurization, the pH value 
of the slurry needs to be controlled during the produc-
tion process at 7.0–8.5. Due to the characteristics of 
strong alkalinity, it is actually difficult to control the 
pH value. Most of the time, the pH value fluctuates fre-
quently between 3 and 9.

(3)SO2 + H2O → SO
2−
3

+ 2H
+

(4)SO
2−
3

+ 2H
++1∕2O2 → SO

2−
4
+2H+

(5)SO
2−
4

+ 2H
+
+ Ca

2+
+ 2OH

−
→ CaSO4 ⋅ 2H2O

Table 2  Market price comparison [55, 56]

Material Price RMB¥/t

Cement 192–511
CaO 300–350
CaCl2 400–900
Nano/light  CaCO3 2000–12000
Ca(HCOO)2 3050
CaSO4 whistler 4500–6500
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2. Carbide slag is used as the absorbent for desulfuriza-
tion. If the belt dehydrator is still used to dehydrate the 
by-products, the parameters are difficult to control and 
uncertainties occur in long-term stable operation. To 
meet environmental protection requirements, it is neces-
sary to conduct more in-depth research on the dehydra-
tion method of by-products.

3. The composition of carbide slag is very complex and 
the quality is unstable. The solid particulate content is 
very high. The equipment maintenance costs caused 
by abrasion and other reasons increased significantly. 
Besides, due to the unstable operation, the equipment 
stops frequently and the comprehensive desulfurization 
efficiency decreases which will increase the sewage 
costs.

Therefore, the low cost of the carbide slag is the main 
motivation for replacing limestone with carbide slag in some 
domestic power plants. However, considering the above 
problems, it is not appropriate to simply use carbide slag 
instead of limestone as an absorbent for flue gas desulfuriza-
tion to pursue low operating costs. It is a much  meaningful 
research direction to improve the existing carbide slag–gyp-
sum desulfurization technology to overcome the above 
problems. For example, we can learn from Yu et al. [61] to 
study limestone–gypsum desulfurization double-tower series 
system. The first and second desulfurization towers adopt 
different flue gas velocities, liquid–gas ratios and slurry cir-
culation residence time, respectively, which can effectively 
improve the large pH fluctuation and operation stability.

Treatment of industrial wastewater with carbide 
slag

The acidic wastewater produced from papermaking, print-
ing, chemical industry, textile process, electroplating, steel, 
and other industries must be neutralized before discharge. In 
the past few years, China’s industrial wastewater treatment 
costs have risen by more than 70%, and the use of carbide 

slag for wastewater treatment can greatly reduce wastewater 
treatment costs and environmental pollution [2]. In the treat-
ment of fluorine-containing wastewater, the combination of 
carbide slag and polyacrylamide has also achieved better 
treatment effects [68].

Newly developed carbide slag utilization 
technology

As mentioned above, carbide slag was mainly used in the 
production of ordinary cement, refractory bricks, and other 
building materials in the early days. However, it consumes 
a lot of carbide slag and the added value of the product was 
low. Therefore, the researchers proposed some new resource 
utilization technologies to realize the high added value uti-
lization of carbide slag.

Production of light/nano‑calcium carbonate 
from carbide slag

The preparation of calcium carbonate from carbide slag can 
realize the high value-added utilization of carbide slag [69]. 
As an important fine chemical product, calcium carbonate is 
widely used. Limestone ore is used as a raw material in the 
carbonization process for the production of calcium carbon-
ate at the industrial level. But the limestones cannot meet the 
market demands due to some demerits like environmental 
impacts, few mineral resources. On the other hand, calcium 
carbonate production using carbide slag as a raw material 
has so many advantages in comparison with limestone ore. 
For example, carbide slag turns waste into treasure, protects 
the environment, saves mineral resources, and has good eco-
nomic and environmental benefits.

To prepare calcium carbonate using carbide slag as raw 
material, first, the carbide slag is processed to obtain a 
Ca(OH)2 suspension or a soluble calcium ion solution, 
then, it carbonized to obtain calcium carbonate as shown 
in Fig. 5.

Table 3  Comparison of wet flue gas desulfurization efficiency between carbide slag–gypsum and limestone–gypsum in some domestic enter-
prises

Carbide slag–Gypsum wet desulfurization Limestone–Gypsum wet desulfurization

Company Desulfurization efficiency Company Desulfurization efficiency

Tianjin Dagu Chemical Co., Ltd 90% [60] Xi’an Thermal Power Research Institute Co., Ltd 70%–90% [61]
Xinjiang Tianye 95% [62] East China University of Science and Technology 86.4%–92.9% [63]
Ningxia Younglight Chemicals 

Co., Ltd
 ≥ 95% [8] Beijing General Research Institute of Mining and 

Metallurgy
 ≥ 90% [64]

Ningxia West PVC company 96.6% [62] Kunming University of Science and Technology 94% [65]
Jilantai Salt Chemical Co., Ltd 99.54% [62] Jilantai Salt Chemical Co., Ltd 80% [62]
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Light calcium carbonate and nano-calcium carbonate can 
be prepared by controlling the process. Light calcium car-
bonate is a precipitated calcium carbonate which is different 
from heavy calcium carbonate. It has a fine particle size and 
high purity, which can be widely used in rubber, plastics, 
paint, water-based coatings, and other industries. Shu et al. 
[70] and Tian et al. [71] used carbide slag as raw material 
and adopted ammonium chloride leaching and  CO2 carboni-
zation process. The purity of the product is more than 98%, 
and the calcium conversion rate of carbide slag can reach 
84.3%. This technology has realized industrial production. 
Guo et al. [72] used water-soluble method to extract calcium 
ions. Due to the small solubility of calcium hydroxide, the 
utilization rate of carbide slag is low which is not conducive 
to industrial production.

Moreover, Nano calcium carbonate is a high value-added 
fine chemical product. Due to the ultra refinement of parti-
cles, it produces excellent properties that ordinary calcium 
carbonate does not have. Nano calcium carbonate is easy to 
agglomerate because of its small size and large specific sur-
face area. Increasing the dispersion of nano-calcium carbon-
ate in organic polymers, such as rubber and plastics, through 
surface modification is the key technology of its applica-
tion. At present, there are many studies on the production 
of calcium carbonate from carbide slag. Wang et al. [73], 
Zhang et al. [74], and Wang et al. [75] used carbide slag as 
raw material,  NH4Cl as leaching agent,  CO2 as precipitant, 
and added composite additives to prepare calcium carbonate 
with nano activity, uniform particle size, and high disper-
sion. Shuai et al. [76] leached carbide slag with  NH4Cl and 
the calcium ion conversion rate was 88%. The particle size 
of nano-calcium carbonate D90 was 2.78 μm and the white-
ness was 97.51%.

At present, some research achievements have been made 
in the preparation of light calcium carbonate, nano-calcium 
carbonate, surface modification, and crystal form control of 
carbide slag. In the future, the recycling process should be 
further improved for the preparation of calcium carbonate 
from carbide slag, and research on superfine, surface modi-
fication, and crystal control of calcium carbonate should be 
carried out.

Calcium chloride production from carbide slag

Calcium chloride can be prepared by the processes of react-
ing stone powder or lime with hydrochloric acid, filtering, 
concentrating and crystallization, dehydrating, drying, and 
other processes. Common applications include brine used 
in refrigeration equipment, road ice melting agents, and 
desiccants. Calcium chloride and its hydrates and solutions 
have important applications in food manufacturing, build-
ing materials, medicine, and biology. The use of carbide 
slag instead of stone powder or lime to produce industrial 
calcium chloride is suitable for the chlor-alkali industry [77, 
78].

Tang et al. [79] invented a process for preparing high-
grade ammonia and calcium chloride using ammonium 
chloride and carbide slag as shown in Fig. 6. The ammonia 
gas is dried and dehydrated to obtain anhydrous ammonia 
gas, or passes into a water absorption tower and absorbed 
into ammonia water. After the calcium chloride slurry is 
crystallized and separated, it is dried at 150–380 °C to obtain 
high-grade anhydrous calcium chloride. The mother liquor 
is filtered and recycled for use in the preparation of ammo-
nium chloride and calcium hydroxide slurry. Zeng et al. [80] 
prepared  CaCl2 with high yield (90.26%) and high purity 

Fig. 5  Schematic diagram of 
calcium carbonate preparation 
from carbide slag

Fig. 6  Schematic diagram of 
preparing calcium chloride
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(95.25%) by the reaction of carbide slag with  NH4Cl after 
pretreatment. The optimum reaction conditions were as fol-
lows: the molar ratio of carbide slag to ammonium chloride 
was 1:1.7, the amount of water was 30 mL, the reaction time 
was 40 min, the reaction temperature was 20 °C, and the 
stirring speed was 200 r/min. Ma et al. [81] also used the 
same process as Fig. 6 to prepare industrial-grade anhydrous 
calcium chloride, and ammonia gas was recycled.

It can be seen from the above that the carbide slag/
ammonium chloride system is an environmentally 
friendly process for the production of high-value cal-
cium chloride and ammonia recovery from industrial 
solid waste, and is a potential way for the resource uti-
lization of carbide slag.

Preparation of calcium sulfate whisker from carbide 
slag

Whiskers are fibrous single crystals with high strength, high 
elongation, and high modulus, which are mainly used for 
the manufacture of high-strength composite materials and 
reinforcements for composite materials. Calcium sulfate 
whisker, also known as gypsum whisker or gypsum fiber, 
is a fibrous needle-like single crystal of calcium sulfate. It 
can be used as a reinforcing component and inorganic filling 
material in composite materials. Calcium sulfate whisker has 
strong market competitiveness because of its low price and 
excellent performance as a green environmental protection 
material.

With the advancement of industrial technology, many 
industrial wastes, such as citric acid waste residue, phos-
phogypsum, and salt mud of phosphate compound fertilizer 
industry, can be used to prepare calcium sulfate whiskers, 
for example, carbide slag can also be used to prepare high-
value calcium sulfate whiskers that turns waste into treasure 
[3, 82]. The preparation process of calcium sulfate whisk-
ers generally includes three steps: dissolution → crystalliza-
tion → dehydration. The reaction process is shown in Fig. 7.

Li et al. [83] synthesized calcium sulfate whiskers with 
a length of 10–3000 μm, an aspect ratio of 10–300, and 
whiteness of 96 using carbide slag as raw material. Lv et al. 
[84] used industrial waste carbide slag as raw material and 

pretreated carbide slag with hydrochloric acid. The synthe-
sized calcium sulfate whisker has a length of 80–250 μm, a 
diameter of 1–4 μm, and an average length diameter ratio of 
95–110. Wang et al. [85] used carbide slag that provided by 
a factory in Inner Mongolia as raw material, after high-tem-
perature pretreatment, mixed with a certain concentration of 
dilute sulfuric acid to prepare calcium sulfate whiskers with 
uniform morphology, high aspect ratio, and good dispersion.

Some researchers [86, 87] have used the carbide slag, 
waste hydrochloric acid, and mirabilite to make calcium 
sulfate whiskers. The reaction principle is shown in Eqs. 
(6–7). First of all, the crude  CaCl2 solution was prepared 
by the reaction of carbide slag and hydrochloric acid, and 
so, the refined  CaCl2 solution was obtained by adjusting 
pH value and pressure filtration. Then mirabilite crystal 
 (Na2SO4·10H2O) was added to the reaction to obtain white 
crystal  CaSO4·2H2O. Finally, calcium sulfate whisker was 
obtained by high-pressure treatment with saturated steam. 
It can be seen from the above that it is necessary to go 
through a series of complicated procedures to produce cal-
cium sulfate whiskers with high added value and excellent 
performance.

Carbide slag produces lime as raw material 
for calcium carbide

Lump quicklime (CaO) is the main raw material for the pro-
duction of calcium carbide. Taking advantage of the high 
content of Ca(OH)2 in carbide slag, high-purity CaO is pro-
duced as a calcium carbide raw material through processes, 
such as impurity removal, extrusion molding, and calcina-
tion. Carbide slag provides a source of calcium and can 
reduce energy consumption and carbon emissions caused 
by limestone mining and calcination. It is an effective way 
for the current recycling of carbide slag as shown in Fig. 8.

China National Salt-Hunan Zhuzhou Chemical Indus-
try Group Co., Ltd.  (Hunan, China) has built a set of 

(6)Ca(OH)2 + 2HCl = CaC2 + H2O

(7)
Na2SO4 ⋅ 10H2O + CaCl2 = CaSO4 ⋅ 2H2O ↓ + 2NaCl + 8H2O

Fig. 7  Preparation mechanism diagram of calcium sulfate whisker Fig. 8  Recycle route of carbide slag for generating  CaC2
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10000 tons/year carbide slag production units. The main 
processes include raw material pretreatment, impurity 
separation, calcination, and decomposition of carbide 
slag. The mass fraction of calcium oxide product can 
reach to more than 85% by calcination process at a tem-
perature of 900 °C for 5 h [56].

Lump CaO must have a certain strength when used as 
raw material for calcium carbide, and direct calcination of 
carbide slag usually only obtains powdered CaO. Zhang 
et al. [88] adjusted the strength of powdered CaO by add-
ing inorganic adhesive  H3PO4. Zhang et al. [26] prepared 
high-purity calcium oxide by a two-step method with car-
bide slag as raw material. The purity of the product was 
as high as 99.05%, and the recovery rate of calcium oxide 
in carbide slag was 84.02%. However, this method only 
stayed at  the laboratory stage and has not been applied 
in the industry. Fan et al. [89] adopted the wet process 
of “carbide slag slurry preparation → rotary liquid slag 
removal → impurity removal and purification → washing 
and filtration → extrusion molding → calcination → CaO”. 
It was found that the content of effective calcium oxide 
in lime products reached to more than 95%. They also 
performed feasibility analysis which was in line with the 
industrial policy of energy conservation, environmental 
protection, and circular economy at the present stage, and 
has good promotion value.

Preparation of feed‑grade calcium formate 
from carbide slag

In 2016, investigators from Xi’an Jiaotong University have 
discovered a new environmental cleaning technology, that 
is, preparation of feed-grade calcium formate from calcium 
carbide residue [90]. Calcium formate has been widely con-
cerned as a feed additive, food additive, or industrial and 
building material additive. This new technology is to pro-
duce calcium formate by the reaction of carbide slag and CO 
through carbonylation synthesis as shown in Fig. 9. And an 
industrial exhaust gas, the yellow phosphorus tail gas is used 
as a source of CO in this new finding. As the results show, 
using calcium carbide residue as raw material will give a 
higher conversion rate and the product quality is as good as 
that obtained from hydrated lime.

Preparation of new type cementitious materials 
from carbide slag

The production of cementitious materials is the most com-
mon and mature resource utilization way of carbide slag. For 
example, carbide slag is used in the production of cement as 
described in Section “Cement production with carbide slag”. 
Its products can replace Portland cement as concrete raw 
materials which can not only reduce production energy con-
sumption and  a large amount of  CO2 emitted in the process 
of calcining limestone but also inhibit the self-shrinkage of 
cement paste. Therefore, researchers have carried out a large 
number of research on the modification of carbide slag in the 
production of new cementitious materials.

Sun et al. [91] synthesized a new cement material with 
carbide slag and silica fume  (SiO2 = 94 wt%), its specific 
surface area is very similar to that of Portland cement and 
shows better porous properties. The contents of 2CaO·SiO2, 
Ca(OH)2, and  Ca3Si3O8(OH)2 in the material are 40.6%, 
34.2%, and 13.6%, respectively, which are potential active 
components of the new cement material. In addition, the 
preparation of new cementitious materials from carbide slag 
and fly ash  (SiO2 +  A12O3 >70 wt%) is also a hot topic in 
recent years [92, 93]. Yi et al. [94] studied the use of car-
bide slag and reactive magnesia (MgO) activated ground 
granulated blast furnace slag (GGBS) to stabilize soft clay 
subjected to accelerated magnesium sulfate  (MgSO4). The 
results showed that carbide slag GGBS stabilized clay has 
a higher resistance to magnesium sulfate corrosion with no 
additional carbon dioxide emissions or related energy 
consumption. Lang et al. [95]. studied the use of lime and 
25%–30% carbide slag to activate ground granulated blast-
furnace slag, which can replace Portland cement to stabilize 
dredged sludge and achieve the highest unconfined compres-
sive strength. Li et al. [96] studied that carbide slag can be 
used to activate ground granular blast furnace slag instead 
of hydrated lime. The compressive strength of the slurry is 
similar to that of hydrated lime-based slurry. Guo et al. [97] 
developed a new multi-strength level binder system. The 
28 days strength of the new binder system is 17.5–43.2 MPa.
This system can be applied to concrete blocks, pavement 
bricks, slope protection concrete, and other unreinforced 
products.

Fig. 9  Schematic diagram of 
preparing feed-grade calcium 
formate
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Application research on carbon emission 
reduction of carbide slag

With the increasingly stringent environmental governance 
and the implementation of dual-carbon goals, the carbon 
emission reduction efforts of the calcium carbide indus-
try are also gradually increased. Using the solid waste 
carbide slag produced by the calcium carbide industry to 
absorb  CO2 and convert it into useful products not only 
improves the utilization value of carbide slag but also 
helps to control and reduce  CO2 emission, and truly real-
izes the purpose of treating waste and turning waste into 
treasure. The carbon emission reduction applications and 
effects of carbide slag are shown in Table 4.

Carbide slag is rich in Ca(OH)2 and has low decom-
position heat. It can replace limestone to produce cement 
and other building materials by calcination or other 
means, which not only realizes the multiple resource recy-
cling utilization of carbide slag but also reduces the  CO2 
emission during the limestone calcination [100, 101]. 
Besides, the limited exploitation of raw limestone is one 
of the important factors restricting the long-term stable 
operation of  the calcium carbide industry [102, 103]. 
Therefore, the researchers propose that carbide slag min-
eralizes  CO2 to prepare nano and light calcium carbonate, 
and the generated  CaCO3 can replace part of limestone 
[104, 105]. Furthermore, feed-grade calcium formate 
is synthesized with Ca(OH)2 and CO as raw materials. 
The product has high purity with low cost, and reduces 
greenhouse gas emissions caused by CO combustion. In 
addition, the solubility of limestone is 10000 times lower 
than that of Ca(OH)2 [57]. When carbide slag is used 
as a desulfurizer, its main component Ca(OH)2 has high 
activity, which makes the absorption rate of  SO2 higher 
than that of limestone method, and achieves the effect of 
carbon emission reduction [99, 106, 107].

In summary, the rational use of solid waste carbide slag 
can not only turn waste into treasure but also promote 
the carbon emission reduction of the calcium carbide 
industry.

Perspectives

China’s special coal-based energy structure determines the 
important position of calcium carbide as an intermediate 
product of the coal chemical industry. It is an important 
raw material for plastics, fibers, and other products that are 
indispensable in life and industry. At the same time, with 
the massive production of solid waste carbide slag and its 
inefficient utilization, it has caused an urgent environmental 
pollution problem. At present, to maximize economic and 
environmental benefits, enterprises and research institutes 
have improved the existing technologies and developed new 
technologies in terms of calcium carbide and carbide slag, 
which is summarized in Fig. 10.

It should be noted that as industrial solid waste, carbide 
slag is conducive to the healthy development of the whole 
industry only by seeking breakthroughs in process tech-
nology, comprehensive utilization, and turning waste into 
treasure. Although there are many comprehensive utiliza-
tion methods of carbide slag, most of these technologies 
are still at the laboratory development stage, such as cal-
cium chloride, calcium oxide, and nano-calcium carbonate. 
However, due to the huge amount of carbide slag produced, 
these methods only consume a small amount of carbide 
slag, and the main comprehensive utilization method is to 
prepare the cement. Besides, it is recommended to increase 
the development of closed-loop technology, especially for 
the production of calcium oxide from carbide slag which 
is directly used for the production of calcium carbide, so 
as to achieve efficient cycle conversion of calcium carbide 
production and reduce direct  CO2 emissions in the process 
[108–110]. Furthermore, vigorously promoting the carbon 
emission reduction application of carbide slag is also an 
important measure in response to the current dual-carbon 
goal [111–117]. For example, Yang et al. [118–120] used 
carbide slag as a carbon capture agent to realize the nega-
tive carbon pyrolysis of coal or biomass. Hu et al. [13, 107, 
121–127] have done a lot of research on the absorption of 
 CO2 by modified carbide slag. Ma et al. [123] used Mn/
Mg to co-precipitation carbide slag, and the  CO2 capture 

Table 4  Application of carbide slag in carbon emission reduction

Application type Carbon emission reduction effect

Cement The production of 1 ton of cement can reduce about 0.6 tons of  CO2 emissions and reduce the amount of limestone mining 
by about 1 ton [2]

Nano/light  CaCO3 1 ton of carbide slag can replace 1.28 tons of limestone and reduce the emission of 0.56 tons of  CO2 [98]
Ca(HCOO)2 Synthesizing 1 ton of Ca(HCOO)2 consumes about 1.36 tons of calcium carbide slag and more than 344  Nm3 CO [90]
Desulfurizer Carbide slag replaces limestone for desulfurization. Every 1 ton of  SO2 removal will reduce the emission of 0.57 tons of 

 CO2 [99]
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capacity of carbide slag after 10 cycles is 0.52 g  CO2/g. Liu 
et al. [125] adopted carbide slag to synthesize CaO-based 
adsorbent. After 1 cycle and 15 cycles, the  CO2 adsorption 
capacity are 619.8 mg/g and 542.6 mg/g, which are 6.6% 
and 33.9% higher than the original carbide slag. Cai et al. 
[124] synthesized binary-doped carbide slag by liquid-phase 
precipitation method. The  CO2 capture capacity was 0.32 g 
 CO2/g after 20 cycles, and the  CO2 capture performance 
degradation rate was 67.75% lower than that of the original 
carbide slag. In summary, with the in-depth understanding of 
carbide slag, the carbide slag recovery process of CaO and 
carbon emission reduction process technology are gradually 
improved, and industrial application is possible. Large-scale 
utilization of industrial solid waste resources will produce 
obvious social and economic benefits.

Conclusion

In summary, the calcium carbide industry is an indispen-
sable industry to support the basic life of the people, and 
the comprehensive utilization of carbide slag is to achieve 

maximum economic benefit under the premise of ensuring 
environmental benefits. Future research could focus on the 
following issues:

1. Calcium carbide has a high production capacity, which 
is accompanied by large investment and large water 
consumption. The prominent problems are that more 
energy saving and emission reduction measures should 
be addressed to improve the economy and protect the 
environment. Moreover, calcium carbide can be used in 
organic synthesis as a catalytic in the biological transfor-
mation process, and can produce porous carbon materi-
als. These new technologies open up a new situation for 
the vigorous development of calcium carbide chemistry.

2. The traditional utilization of carbide slag, such as 
cement building materials, flue gas desulfurization, 
and waste water treatment, can only be used at a large 
industrial scale, needs large investment, low efficiency, 
and slightly insufficient profit creation. It is a new way to 
use carbide slag to produce light, nano-calcium carbon-
ate, calcium chloride, calcium sulfate whisker, and other 
chemical products. Carbide slag has strong profitability 

Fig. 10  Summary of the application fields of calcium carbide and carbide slag
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in the production of these chemical products which can 
actively develop high value-added downstream products 
of carbide slag.

3. Calcium oxide or calcium carbonate prepared from car-
bide slag is further used in calcium carbide production. 
On the one hand, it can get rid of the dependence of 
calcium carbide production on lime resources, and on 
the other hand, it can realize the recycling of calcium 
sources and reduce carbon emissions. It is the most val-
uable and significant means of recycling carbide slag, 
which needs large-scale promotion and industrialized 
production.

4. The conversation of solid waste carbide slag into useful 
products, such as cement, calcium carbonate, and cal-
cium formate, is worthy of key research which not only 
improves the utilization value of carbide slag but also 
helps to control and reduce  CO2 emission.
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