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A B S T R A C T   

Acoustic black holes (ABHs) have garnered increasing attention in the field of vibration and noise reduction due 
to their excellent wave aggregation effect. A large number of studies have been conducted in analyzing ABH 
structures, these analytical methods such as finite element and semi-analytical modeling, however, still suffer 
from limitations in the quantitative analysis of ABHs. The majority of the existing methodologies are intricate 
and computationally burdensome and do not furnish a quantitative assessment of the ABH structure. To meet this 
need, we design a theoretical analysis model from the catastrophe theory perspective. Based on the Hyperbolic 
umbilic model, the proposed analytical method can investigate the quantitative relationships among each 
parameter and their energy aggregation effects in ABHs. Combined with a dimensionless analytical solution, the 
underlying mechanism and the quantitative property of ABHs are expected to be revealed with significantly 
reduced computational complexity. Further, the proposed quantitative method is demonstrated by a numerical 
simulation test and a practical experiment. The findings illustrate a clear presence of a catastrophe effect across 
the range of ABH parameter variation, and establish a direct correlation between each ABH parameter and the 
ABH effect in the proposed approach. The proposed theoretical method holds significant potential in analyzing 
and applying of ABHs.   

1. Introduction 

The ABH structures, which were first proposed by Mironov et al. [1, 
2], are obtained by a power-law variation in the thickness of the struc-
ture [3]. This structure progressively decelerates both the group and 
phase velocity of the bending wave, thus causing compression of the 
wave inside the structure along a specific curve [4,5]. Ideally, the wave 
speed of the bending wave also approaches zero at the tip while the 
energy is also gathered at the tip [6]. Due to processing technology 
limitations, the tip of the ABH must have truncation, which causes sig-
nificant reflection [7]. The addition of a small amount of damping ma-
terial at the tip of the ABH was found to be effective in dissipating the 
vibration energy by Krylov et al. [8,9]. O’Boy et al. [10] and Bowyer 
et al. [11,12] later conducted experimental investigations into the 
vibration-damping properties of two-dimensional (2D) ABHs. 

The aforementioned methods represent the early stages of ABH 
research. In recent years, ABH research has experienced a new surge in 
interest. But ABHs’ accurate modeling and theoretical analysis are 
challenging due to the dramatic changes in the wave number of 

propagating bending waves. 
Finite element software modeling is the most commonly used 

method for ABH analysis, as it is flexible and suitable for analyzing 
structures with complex geometries. Such as circular indentations [13], 
grooves on plates [14], double-leaf [15,16], Archimedes spiral shape 
[17,18], and ring-shaped ABHs [19] have also surfaced. In addition to 
structural shear, other methods can achieve the equivalent effect of 
ABH, including placing circular thin plates at regular intervals inside the 
pipe [20], controlling the structure’s mechanical impedance distribution 
using memory alloy material [21], embedding a gradient arrangement 
[22], or creating a gradient distribution of the material’s Young’s 
modulus [23]. These technologies enable the creation of structures with 
low wave reflection, ensuring the realization of favorable ABH states. 
Periodic studies have been conducted in addition to individual cell an-
alyses [24,25], and they all show positive outcomes [26–28]. All these 
new structures can be analyzed using the finite element method, which 
can be a valuable simulation and optimization tool for complex systems. 
However, the computational burden increases significantly as the sys-
tem undergoes changes, and the method cannot yield the precise 
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relationship between the structure’s parameters and the system. 
In addition to this many modeling approaches are still proposed. 

Krylov et al. [29] proposed an analytical method based on geometric 
acoustics. However, the calculation accuracy may not be sufficient for 
certain applications. Georgiev et al. [30], on the other hand, used the 
structural impedance to calculate the reflection matrix in ABH. Huang 
et al. [31] using the Taylor expansion method, and proposed a new 
method to determine the reflection coefficient [32]. Impedance matrix 
method [30,33] Transfer matrix method [34,35] can also be well 
applied to ABH. The Rayleigh-Ritz method is also widely used recently 
[34,36]. O’Boy et al. [14] used trigonometric functions for modeling 
rectangular plates. Then researchers have optimized the model by 
optimizing the basic functions. They examined the Mexican Hat Wavelet 
function [37] Morlet [38], Daubechies wavelets [39] and Gaussian basis 
functions [40–43] to obtain results for ABH beams and plates. 

Although all of the above methods provide a good analysis of ABH 
structures, as a result of the nonlinearity involved in ABH vibrations, 
attaining accurate solutions becomes exceedingly difficult. Previous 
nonlinear analytical models, such as finite element and semi-analytic 
modeling, involve complicated solution processes with high computa-
tional costs. Furthermore, the exact relationship between each geo-
metric parameter of an ABH and its energy aggregation effect remains 
elusive. 

Given the nonlinear nature of the ABH structure, our primary focus 
lies on the system’s geometric parameters. Catastrophe theory, a theo-
retical model that is well-equipped to analyze phase transitions, offers a 
viable solution to surmounting the complexities posed by this nonlinear 
scenario. 

The non-equilibrium phase transition is the phenomenon of shifting 
a system from one phase to another [44]. Catastrophe theory explain the 
process of phase transition [45]. Thom et al. [46] posited that all pri-
mary catastrophes could be generalized into seven basic forms, as long 
as the number of control parameters remained below five. The method 
has widespread use across many fields and boasts incredible potential in 
the analysis of complex problems. Anirudh used catastrophe theory to 
classify singularities in electron dispersion [47], and then used a dove-
tail model for the transitions between different topological singularities 
[48]. Damian proposed two new spiking neuron models in neural net-
works using this theory [49]. 

In recent years, applications of catastrophe theory in mechanics and 
machinery have also emerged. Catastrophe theory was used for failure 
prediction [50,51] and modeling of the chip flow angle [52] the force 
load curve [53]. In mechanics, Liang employed catastrophe theory to 
investigate turbulent phase transitions [54] and porous metallic mate-
rials [55]. Further research about these studies are discussed by Zhou et. 
al [56]. 

As can be seen above, the catastrophe theory is stable and effective in 
solving nonlinear problems. The focus of the method is on the selection 
of the potential function. In order to create a more efficient ABH 
structure, it is essential to understand and analyze the underlying 
physical processes involved in the system. In this paper, we begin by 
deducing the existence of a phase transition process in the ABH struc-
ture. Next, we based on the catastrophe model and generate a new 
model dependent on the Hyperbolic umbilical catastrophe model to 
analyze the ABH structure’s phase transition process. After solving the 
model, the quantitative relationships between each geometric param-
eter of ABH and the energy aggregation effect can be obtained and the 
power law value of each relationship can be found. This analysis will 
enable the establishment of a direct relationship between the geometric 
parameters and the overall performance of the ABH structure. 

The structure of this study is as follows. In Section 2, we explicate the 
modeling principle of catastrophe theory and elucidate the process of 
constructing a new catastrophe model, all while introducing the Hy-
perbolic umbilical catastrophe model. Subsequently, we substitute the 
vibration problem of ABH into the catastrophe model to obtain the 
proportional relationship between each ABH parameter and vibrational 

velocity of the tip of the structure. In Section 3.1, we acquire the ABH 
model using Comsol and employ finite element simulation results to 
verify the theory-derived conclusions from Section 2. Section 3.2 con-
firms the accuracy of the simulations from Section 3.1 with available 
experimental results. We present our conclusions in Section 4. 

2. ABH property analysis based on the catastrophe theory 

ABH structures show remarkable aggregation effects on elastic 
waves, thereby rendering it a promising structure for energy harvesting. 
In the process of practical engineering applications, however, the abrupt 
changes in the wave numbers of ABH structures make it hardly possible 
to obtain exact solutions. Therefore, it is preferable to ignore process 
intricacies during vibration and then concentrate on deriving quantita-
tive correlations between physical model parameters. In this regard, 
unknown quantities of ABH structures are expected to derive with 
known quantities through means of proportional relationships. As pre-
viously stated, we have chosen catastrophe theory for our analytical 
model. Our first step is to assess the suitability of this model in relation 
to the research object presented in this paper. 

2.1. Adoption of the catastrophe model 

ABH beam is analyzed to demonstrate the derivation process of the 
proposed ABH model. Fig. 1 illustrates the research object, which is 
subject to fixed boundary conditions. The curve of ABH is H = ε*xm, H 
denotes the thickness of the homogenous part, H0 to the truncation 
height of the ABH center, L and x0 to the length and the truncated po-
sition of the ABH part, respectively, and ω to the input excitation 
frequency. 

Fig. 1. ABH structure with truncation.  

Fig. 2. Energy flow diagram of ABHs.  
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We first conduct a preliminary analysis of the study subjects utilizing 
Comsol. In Fig. 1, the unit excitation is applied at a designated point. The 
specific simulation parameters and settings will be comprehensively 
described in the simulation section of Section 3. When the excitation is 
set at 3000 Hz, the response corresponding to various Lvalues is 
analyzed using the energy flow method. 

Fig. 2 reveals that when L is large, such as in Fig. 2(a), the energy 
flow demonstrates a parallel and relatively regular flow line. And the 
energy is also concentrated towards the tip of the beam. At this time, the 
vibration amplitude of the bending wave is enhanced, and the ABH 
structure also shows a strong energy aggregation effect. As L decreases, 
some of the energy flow is reflected (as observed in Fig. 2(b)). However, 
most of the bending waves still tend to converge towards the tip. As L 
continues to vary, as shown in Fig. 2(c) and Fig. 2(d), the energy flow 
line becomes increasingly reflective and disorganized. As L further de-
creases, the disorder of the flow lines also intensifies. This leads to en-
ergy being distributed throughout the beam in various positions, causing 
the structure to lose the effect of energy aggregation. 

By analogy with our most familiar solid-liquid first-order phase 
transition. When the molecules are arranged in a neat manner, the 
substance assumes a solid state. As the ambient temperature rises, the 
molecules begin to lose this arrangement and progressively become 
more disordered. Eventually, the substance transforms into a liquid 
state. Analogously, we refer to the state of energy flow with relatively 
regular streamlines as the phase that demonstrates the ABH effect. The 
state with disordered energy flow lines refers to the phase without the 
ABH effect. In these two phases, the same parameters exhibit different 
power-law relationships with the response of the system. We verify these 
findings in the subsequent Section 3 utilizing simulations. 

That is why the vibration process can be characterized in ABH 
structure as a transition from one steady state to the other, which is 
consistent with variation patterns in the catastrophe theory. Thus, the 
catastrophe theory is introduced in this study. 

As we all know, the state function of a system takes unique extreme 
values when the system is in steady states. Consequently, the change of 
system state can be transformed into that of change of the extreme 
values. Mathematically, the system state function can be expressed as 
FV1 ,….,Vm (x1,x2,…, xn), where V1,…., Vm are influence factors of system, 
x1,x2,…, xn are state variables. The threshold points for the state change 
of the system are points that satisfy the potential function equal to 0, that 
is, solving the following partial differential equation: 

∂
∂xi

FV1 ,…,Vm (x1, x2,…, xn) = 0, i = 1,…, n 

According to the catastrophe theory, there are seven basic types of 
different properties in Table 1, where x, y are state variables, and t, u, v, 
w are control variables. 

To enable a better study of the energy aggregation effect within ABH 
beam, selecting the appropriate catastrophe model for analyzing the 
entire system becomes crucial to the analysis. 

The behavior of a one-dimensional ABH is influenced by several 
variables, including ABH length L, maximum height H, modulus of 
elasticity E, density ρ, tip vibration speed v and frequency ω. Since both L 
and H have an impact on the structural dimensions of ABH beam, similar 
to the previous analysis in Fig. 2, we discovered that: when L is fixed, 
there exists a critical height H0 at the tip, below which the ABH state 
occurs, leading to the concentration of most of the energy at the tip. 
Similarly, when H is fixed, there is a critical length L0 that triggers the 
ABH state. 

Thus, by observing the changes in L and H, we can reveal the 
changing state of ABH in our chosen catastrophe model. We designate L 
and H as state variables. For the problem we are investigating, the 
chosen model must be capable of revealing the effects of both state 
variables on the state of the system. We discovered that the Hyperbolic 
umbilical model places the two state variables in symmetric positions, 
allowing each change in the two variables to be accurately captured 
without the small change in one variable being masked by the other. 
Therefore, we substitute the Hyperbolic umbilical model for the calcu-
lation. At this point, the potential function equation is expressed as 
follows: 

V = L3 + H3 + tLH − uL − wH (1) 

The equation for the corresponding equilibrium surface is: 
{

3L2 + tH − u = 0
3H2 + tL − w = 0 (2) 

We chose the model based on the system under investigation and 
developed the corresponding system equations. To ensure a more all- 
encompassing analysis of the ABH state, it is necessary to introduce all 
variables that impact the system within the model. 

2.2. Exact derivation of abh property by non-dimensional analysis 

We include additional variables that would have an effect on the 
system as described in the previous section and expand the column of 
control variables. To obtain the impact of multiple parameters on the 
system’s phase transition properties, we expand the potential function of 
the two-dimensional collapsed catastrophe model into a multi- 
dimensional multiple multivariate improved collapsed catastrophe 
model function. By expressing the control variables t, u, and w in the 
model shown in Eq. (3), where A, B, and C are constants and α1,α2,α3,α4 
represent the power exponent ofω, ρ, E, v, we can express t, u, and w 
using the following set of equations: 
⎧
⎨

⎩

t = Aωα1 ρα2 Eα3 vα4

u = Bωα1 ρα2 Eα3 vα4

w = Cωα1 ρα2 Eα3 vα4

(3) 

When Eq. (3) is substituted into Eq. (2), a potential function with 
multiple parameters and dimensions is obtained. Nonetheless, this 
equation is not closed, and the number of variables exceeds the number 
of equations. As a result, the quantitative relationship between physical 
quantities in the system cannot be resolved. To address this issue, we 
introduce the dimensionless analysis method and establish new equi-
librium relations. This allows us to extend the equation and solve for the 
relationship between variables. We select M (mass), T (time), and L 
(length) as the fundamental dimensions. This is because every other 
derived quantity can be expressed either by definition or according to 

Table 1 
The seven catastrophe models.  

Catastrophe 
models 

Number 
of state 
variables 

Number 
of control 
variables 

Potential 
function 

Equilibrium surface 
equation 

Fold 1 1 VF = x3 +

tx 
3x2 + t = 0 

Cusp 1 2 VC = x4 +

tx2 + ux 
4x3 + 2tx + u = 0 

Swallowtail 1 3 VS = x5 +

ux3 + vx2 

+ wx 

5x4 + 3ux2 + 2vx + w = 0 

Butterfly 1 4 VB = x6 +

tx4 + ux3 

+ vx2 +

wx 

6x5 + 4tx3 + 3ux3 + 2vx 
+ w = 0 

Hyperbolic 
umbilic 

2 3 VH = x3 +

y3 + txy −
ux − wy 

{
3x2 + ty − u = 0
3y2 + tx − w = 0 

Elliptic 
umbilic 

2 3 VE = x3/3 
− xy2 + w 
(x2 + y2) 
− ux + vy 

{
3x2 − y2 + 2wx − u = 0
− 2xy + 2wy + v = 0 

Parabolic 
umbilic 

2 4 VP = y4 +

x2y + wx2 

+ ty2 − ux 
− vy 

{
2xy + 2wx − u = 0

4y3 + x2 + 2ty − v = 0  
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objective laws as a combination of these three basic dimensions. And we 
derive the following Table 2 of dimensions for each variable: 

It is crucial that any equation that reflects a physical law must have 
equivalent dimensions of each physical quantity on both the left and 
right sides. Hence, dimensional analysis also delivers an equilibrium 
equation for determining the quantitative relationship of a system at a 
specific state. By employing this principle, we can deduce from Eq. (2) 
the dimensional units of the control variables to be t → [L1],u → [L2],w 
→ [L2]. 

We can analyze Eq. (2) by considering the length L corresponding to 
the ABH part as the object of analysis. To ensure dimensional homoge-
neity on both sides of the equation for t, we obtain the following set of 
equations: 
⎧
⎨

⎩

− 3α2 − α3 + α4 = 1
− α1 − 2α3 − α4 = 0

α2 = − α3

(4)  

⎧
⎨

⎩

− 3α2 − α3 + α4 = 2
− α1 − 2α3 − α4 = 0

α2 = − α3

(5) 

From, Eq. (3), Eq. (4) and Eq. (5), the control variables t and u can be 
derived. 
⎧
⎨

⎩

t = Aω− 1ρ
α4 − 1

2 E
1− α4

2 να4

u = Bω− 2ρ
α4 − 2

2 E
2− α4

2 να4

(6) 

The equation mentioned above is obtained by substituting Eq. (6) 
into Eq. (2): 

3L2 + H⋅Aω− 1ρ
a4 − 1

2 E
1− a4

2 va4 − Bω− 2ρ
a4 − 2

2 E
2− a4

2 va4 = 0 (7) 

As A and B are arbitrary constants, we consider their universality and 
establish B = 0 in the aforementioned equation, which represents the 
most uncomplicated scenario encompassing all variables. Let the cut-on 
frequency of ABH be ωcut on, and because the alteration of ωcut on is 
irrespective of the value of v, we set α4 = 0. Upon deriving the equation 
of the catastrophe point for the frequencyω, we arrive at the cut-on 
frequency ωcut on, the following formula is presented: 

3L2 + AHω− 1
cut on × ρ− 1/2 × E1/2 = 0 (8) 

The cut-on frequency ABH can be acquired by solving Eq. (8), 

ωcut on = AL− 2HE1/2ρ− 1/2 (9) 

The findings we obtained are aligned with those derived from 
theoretical derivations in the literature [57], demonstrating the accu-
racy and validity of the research model utilized in our study. Addition-
ally, ωcut on can be used as frequency critical point to differentiate 
between the two ABH phases. 

Subsequently, the catastrophe feature of L can be computed by 
solving for v using Eq. (7): 

v = − 3L
2

α4

(
Aω− 1ρ

α4 − 1
2 E

1− α4
2 H − Bω− 2ρ

α4 − 2
2 E

2− α4
2

)− 1
α4 (10) 

Using a similar methodology, we derive the catastrophe property of 
H. Assuming the length L of the ABH is constant, we analyze the 
vibrational velocity of the tip of the structure v that corresponds to the 
tip height H0. Taking the partial derivative of Eq. (2) gives: 3H2 + tL − w 
= 0. Substituting the extended control variables obtained in the previous 
section through Eq. (3), we arrive at: 

v = − 3H
2

α4

(
Aω− 1ρ

α4 − 1
2 E

1− α4
2 L − Cω− 2ρ

α4 − 2
2 E

2− α4
2

)− 1
α4 (11) 

The equation obtained provides insight into the multidimensional 
vibrational process between the tip velocity v and the remaining 
variables. 

It is essential to note that in Eq. (10) and Eq. (11), this relation is not 
an exact quantitative relation since it comprises an unknown power 
exponent α4. Consequently, it can only be deemed a semi-quantitative 
relation. To analyze this relation, we employed MATLAB. 

2.3. The quantitative relationship between ABH parameters and ABH 
effects 

By substituting the remaining variables in the system, we can derive 
a 3D plot using MATLAB to reveal the relationship between the tip ve-
locity v and L, as depicted below: 

In Fig. 3(a) we can obtain the relationship between the lengthL of the 
ABH section, the power index α4 and the tip velocity v. Fig. 3(b) is ob-
tained by intercepting the cross section parallel to the v − α4 plane in the 
3D diagram. From Fig. 3(b), we can get that α4 possesses two special 
points on the curve. We know from the theory that the special points 
correspond to the points at which the state of the system changes, thus, 
these two points also correspond to the two states of ABH, respectively. 
As previously shown in Fig. 2, when ABH is taking place, the energy flow 
tends to converge towards the tip of the structure. Hence, the tip is the 
area with the highest energy, and the vibration at this location is the 
strongest. As L decreases, the tendency of energy gathering at the tip 
gradually wanes, leading to a reduction in vibration at the tip. If we 
compare this process with Fig. 3, when α4 = 1.8, the tip velocity v attains 
its highest value. Therefore, this point α4 = 1.8 corresponds to the status 
when the ABH effect emerges in the structure. In Fig. 3.2 (b), we observe 

Table 2 
Dimensional relationship of the four physical quantities.   

ω ρ E v 

L 0 − 3 − 1 1 
T − 1 0 − 2 − 1 
M 0 1 1 0  

Fig. 3. (a) The relationship among ABH length L, coefficient α4, and tip velocity v; (b) The relationship between the tip velocity v and coefficient α4.  
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thatv at point α4 = 1.07 is comparatively low, denoting that point α4 =

1.07 corresponds to the state when the ABH effect has not yet taken 
place. 

By substituting α4 = 1.07and α4 = 1.8into Eq. (10), the proportional 
relationship between the tip velocity v and the ABH length L can be 
obtained for the two states of the ABH, while keeping the material pa-
rameters and geometric parameters of the system constant. As previ-
ously mentioned, A and B are arbitrary constants, we consider their 
universality and establish B = 0 in the aforementioned equation, which 
represents the most uncomplicated scenario encompassing all variables. 

From Eq. (10), the quantitative relationship between the tip velocity 
v and the ABH length L can be expressed as: v∝L2/α4 . 

Integrating the aforementioned relationship with Fig. 3(b), it can be 
inferred that for this particular geometric parameter, the structure ex-
hibits the ABH state when its length (L) exceeds the critical threshold, as 
indicated by the following relationship: v∝L1.1. Conversely, when the 
length is less than the critical value, the structure does not assume the 
ABH state, indicated by the following relationship: v∝L1.87. 

Using a similar methodology, the velocity relationship with the rest 
of the variables can be obtained through Eq. (11). To establish a rela-
tionship between the tip velocity and H0, the remaining variables in the 
system are substituted, resulting in a three-dimensional plot in MATLAB 
as shown in the Fig. 4. 

The Fig. 4(a) illustrates the relationship between the ABH tip height 
H0, power exponent α4, and tip velocity v. According to Fig. 4(b) we can 
obtain, the two special points, α4 = − 0.8 and α4 = − 1.7, are consistent 
with our previous analysis and correspond to the two distinct states of 
the ABH. At point α4 = − 0.8, the ABH exhibits low velocity and no ABH 
state occurs. In contrast, at point α4 = − 1.7, the tip velocity increases 
sharply and the ABH undergoes a catastrophe change in state, with the 
ABH part in the ABH state and energy concentrated at the tip of the ABH. 

From Eq. (10), the quantitative relationship between the tip velocity 
v and the ABH tip height H0 can be expressed as:.v∝H2/α4

0 
Integrating the aforementioned relationship with Fig. 4(b), it can be 

inferred that for this particular geometric parameter, the structure ex-
hibits the ABH state when its height (H) exceeds the critical threshold, as 
indicated by the following relationship: v∝H1.17

0 . Conversely, when the 
height is lesser than the critical value, the structure does not assume the 
ABH state, indicated by the following relationship: v∝H2.5

0 . 
This section details the establish and analysis of a novel catastrophe 

analysis method based on the Hyperbolic umbilical model for quanti-
tatively evaluating complex phase transition systems. We apply this 
model to the object of study in this paper and derive the associated so-
lutions. Our results demonstrate that the ABH beam displays two distinct 
phases as the geometric parameters vary. Additionally, we establish a 
power-law relationship between these two phases and the energy ab-
sorption effect of the system. In the next section, we further verify our 
findings through simulation. 

3. Simulation and experimental verification 

3.1. Simulation verification 

To validate the accuracy of the proposed ABH model, this section 
employs finite element simulation results to investigate the vibration of 
an ABH beam. Specifically, a one-dimensional ABH with a circular cross- 
section is created, as illustrated in the previous Fig. 1. The uniform part 
has a diameter of x, while the non-uniform part’s local radius H(x) is 
determined by the function H(x) =ε*xm relationship. The material and 
structural parameters are provided in Table 3, where x0 denotes the 
distance from the edge of the homogeneous part to the coordinate 
origin, and xABH represents the demarcation point between the homo-
geneous and non-homogeneous sections. Due to processing technology 
constraints, the ABH structure must have a truncated part, which we set 
at coordinate position x0. In line with the preceding theoretical deri-
vation, two variations of the ABH are depicted in Fig. 5(a) and Fig. 6(a). 
One involves fixing L and gradually decreasing H, while the other entails 
fixing H and decreasing L. To construct the finite element model, the 
multiphysics field analysis software Comsol Multiphysics is utilized. 

In order to improve the analysis of the effect of the ABH section on 
energy clustering, the fixed uniform length is shortened, and one end is 
held in place while the other remains free. The excitation is applied at 
the end of the ABH as a shift with a frequency ranging from 2000 to 5000 
Hz, with the direction of loading being perpendicular to the shaft axis of 
the ABH. 

To derive the model, we consider a fixed value of length H for the 
ABH and varying length L. Our simulation object was modeled based on 
the fundamental unit depicted in Fig. 1. The graph shown in Fig. 5(a) 
depicts the varying length L of the ABH, with the height H of the ABH 
being kept constant. The three sections - indicated by arrows in the 
figure - corresponding toA′, B′, C′, serve as the object of our research. By 
providing a given displacement input, we can obtain tip velocity for 
different ABH structural parameters, which can account for the effect of 
energy clustering. The logarithm of tip velocity versus the ABH length L 
is plotted in Fig. 5(b) after extracting the tip velocity response. 

From Fig. 5, it is clear that the tip velocity increases as L gets larger, 
which is in line with our observations in Fig. 2 and the analysis in 
Section 2. However, while the velocity demonstrates an overall upward 

Fig. 4. (a) The relationship among ABH tip height H0, coefficient α4, and tip velocity v; (b) The relationship between the tip velocity v and coefficient α4.  

Table 3 
Material parameters and geometric parameters of ABH.  

Geometrical parameters Material parameters 

ε = 0.005 E = 210Gpa 
m = 2 ρ = 7800kg/m3  

η = 0.005 

where E is the modulus of elasticity, ρ is the material density, and η is 
the material loss factor. 
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trend, Fig. 5(b) highlights that the velocity growth rate has two distinct 
stages. When L is small, the velocity increase rate is relatively rapid as L 
grows. At this stage, L corresponds to Fig. 2(c) and Fig. 2(d), a state 
where the energy flow does not tend to accumulate at the tip but instead 
spreads throughout the structure due to a relatively large truncation, 
resulting in a large number of reflections. Subsequently, as L continues 
to increase, the energy flow starts to move towards the tip, consistent 
with the comparison of Fig. 2(a) and Fig. 2(b). During this process, the 
entire structure is in a state with ABH effect. 

As the truncation L becomes larger, the vibration velocity also in-
creases. Nevertheless, Fig. 5(b) shows that the increase in tip velocity 
becomes steadily slower as L nears a certain point. And after this point, 
corresponding to Fig. 2(a) and Fig. 2(b), the energy flow gradually be-
gins to enter into an ordered phase. This marks the system is in a stable 
phase with ABH effects, which we define that point as the critical point. 
The growth in the left and right velocities near this point exhibits two 
noticeably different slopes, indicating that the vibrational state of the 
system is split into two distinct states around this point. Thus, this point 
represents the state change point, i.e., the phase transition point 
described in the previous section. This point corresponds with the 
extreme value point in Fig. 3 of the previous section. The entire process 
validates our prior deduction that there are indeed two states and ca-
tastrophe point of the system as the variables change. 

The same approach was used to establish the relationship between 
the height H of the ABH and tip velocity v, with ε = 0.0016. We 
employed the same modeling method to maintain a constant length L 
but vary the height H of the ABHs, as shown in Fig. 6(a). The region 
marked by an arrow in the figure corresponds to the object of our 
research. The resulting response relationship between H and v is shown 

in Fig. 6(b) when excitation is applied to the end. Analysis of the plots 
reveals that an increase in H is inversely proportional to tip velocity v, as 
displayed in Fig. 6(b).When L is fixed, the ABH’s tip is relatively small, 
and the velocity of the ABH tip is at its maximum. As H increases, v 
gradually decreases at a relatively slow rate. At this point, the structure 
has the ABH effect and the energy flow lines inside the structure are 
parallel and directed towards the tip. Subsequently, as the H value 
gradually increases, the catastrophe point appears. Following the ca-
tastrophe, the decrease in v abruptly increases, and the flow lines within 
the structure become disordered. 

Furthermore, we can calculate the two distinct slopes in Fig. 6(b) and 
find that they align with the power law relationship derived from our 
prior theoretical analysis. This represents a validation that our proposed 
model is effective at quantitatively analyzing the system’s phase 
transition. 

In this section, we investigated the phase variation of the entire 
structure via a combination of simulation and theoretical analysis. As 
the studied parameters vary, the ABH beam ’s entire process divided into 
two parts via the catastrophe point, leading to the phase with ABH effect 
and the phase without ABH effect, as proposed in the previous section. 
Then, we calculated the slopes of these two parts and discovered that the 
slopes acquired from simulation were in line with those obtained from 
our theoretical analysis. Therefore, our proposed model can quantita-
tively analysis the tip velocity and energy aggregation effect of ABH 
structures of varying sizes, and conclusively derive the associated 
power-law relationship. 

Fig. 5. The proportional relationship of variable L. (a) L is a variable and H is a quantitative analysis object; (b) The numerical results of the relationship between the 
tip velocity and ABH length. 

Fig. 6. The proportional relationship of variable H. (a) H is a variable and L is a quantitative analysis object; (b) The numerical results of the relationship between the 
tip velocity and ABH height. 
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3.2. Experimental verification 

As the research subject of this paper is a one-dimensional ABH with a 
circular cross-section, consistent with the experimental setup detailed in 
the literature [58], we have utilized these experiments to validate the 
simulations presented in this study. 

Similar to the previous model (Fig. 1), The uniform segment, with a 
length of 500mm, has been assigned a fixed value of 12mm for the 
parameter H. The non-uniform part LABH has been set to160mm, and the 
local radius H(x) at any point in the non-uniform part has been deter-
mined based on the relationship H(x) = A*εx2, where ε = 0.00015mm− 1. 
The excitation signal utilized is Gaussian white noise with a frequency 
range of 100 to 6000 Hz, and the system’s sampling rate is fixed at 
25600 Hz with 25600 sampling points. The experimental facility is 
shown in Fig. 7: 

Simultaneously, we developed an identical simulation model in 
Comsol, and the outcomes are also depicted in Fig. 6. 

From the literature [58], it can be concluded that the experimental 
results correspond with their simulation results. Additionally, as 
depicted in Fig. 8, the simulation results of our modeling are also 
consistent with the corresponding results in [58]. Consequently, the 
accuracy in modeling settings of our proposed model can be then 
demonstrated. In addition, the curves in Section 3 generated through 
modeling can also be verified. These curves in Section 3 reflect a perfect 
fit with our theoretical derivation, thereby verifying the accuracy of our 
theory. 

4. Conclusion 

In this study, we present an improved Hyperbolic umbilical catas-
trophe model for quantitative analyzing the vibration process of ABH. 
Based on our results and analysis, the following conclusions can be 
drawn:  

(1) We choose the Hyperbolic umbilical catastrophe model as the 
ABH length L and the tip height H belong to the same magnitude 
of influence parameters. Additionally, we introduce variable 
expansion and dimensionless analysis to establish a theoretical 
analysis model for ABH. 

(2) In the context of this study, by substituting ABH-related param-
eters into the model and solving for catastrophe points using 
MATLAB, we derive the quantitative relationship between the 
energy aggregation effect of the ABH and each geometric 
parameter of the system. 

(3) The accuracy of our theoretical analysis is verified through sim-
ulations using Comsol. Furthermore, we compare our simulations 
with existing experiments to demonstrate the correctness of our 
theoretical derivation. 
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