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In acoustic black holes (ABH) at low frequencies, catastrophe sound energy flux behaviour occurs
spontaneously if the tip size of the ABHs reaches a critical value. This report demonstrates that this catas-
trophe behaviour can be quantified by analysing the relative phase transitions using Landau’s phase-
transition theory. Two catastrophe behaviours corresponding to two stable phases (states) were observed
using analytical calculations and a numerical analysis. The sound energy flux was proportional to 3 power
laws and square relationships with the tip diameters, respectively. The 3 power law relationships were
proved using low-frequency experimental observations. For engineering applications, ABH structures
with small tip diameters can isolate more than 11 dB of low-frequency sound waves below 1600 Hz.
We associated this cataclysmic phase transition with the geometric structure of the ABHs.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The transport process of acoustic energy flux in ABHs is an out-
standing phase-transition process whose theoretical description is
far from complete [1–4]. ABHs were first applied to beams, which
can manipulate bending waves to capture their energy by changing
the structure’s thickness in the form of a power function (y = A
(x)m). Bending wave deceleration in ABHs was also discovered.
The wave velocity tends to be zero at the end of ABHs without
reflection [5]. Subsequent experiments showed that the catastro-
phe energy flux sharply decreased at the small tips of ABHs [6].
Slow waves and sound energy-focusing effects also occur when
sound waves propagate in ABHs, which influences the absorption
of sound waves in ABHs [7,8]. The slow wave effect also gives ABHs
good absorption effects on sound waves in water, significantly
expanding the application of ABHs in absorbing waves [9]. From
the phase-transition perspective, slow waves and energy-
focusing effects in ABHs are catastrophe behaviours that occur
spontaneously as tip sizes in ABHs change, and sound energy-
focusing effects have also been found in ABHs, which make sound
insulation and absorption possible [10–12]. A double-leaf acoustic
black hole beam was proposed to expand the low-frequency range
of sound absorption [13]. The reflection properties of ABHs were
studied via an experimental method, demonstrating that the
reflection coefficient of the designed ABHs could be reduced by
more than 50% at low frequencies due to the acoustic behaviour
of two-dimensional ABHs at low frequencies, similar to a simple
hole with no scattering and reflection but exhibited scattering
effects at high frequencies [14–16].

Although phase transitions and catastrophe behaviour in ABHs
have been observed, there is no theoretical description or quantita-
tive relationships between the stable phases in this phase-
transition process. Understanding this process is extremely impor-
tant to reveal the nature of ABH sound transmission and its
applications.

We used Landau’s phase-transition theory to investigate spon-
taneous catastrophe behaviour in ABHs and the quantitative rela-
tionships under stable phases. Landau’s phase-transition theory
is the present focus of research into phase transitions [17–19]. This
subject lies at the intersection of two important concepts: on the
one hand, statistical mechanics and mathematical methods are
used to describe the spontaneous catastrophe behaviour and gradi-
ents in phase transitions of systems [20–22]. On the other hand,
some concepts and tools developed in the phase-transition field
are used to analyse complex non-equilibrium systems [22–24].
Therefore, Landau’s phase-transition theory can be used as an
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advantageous tool to analyse spontaneous catastrophe behaviour
of sound energy flux in ABHs.

In this paper, we propose a phase-transition model to analyse
spontaneous catastrophe behaviour in ABHs. Using Landau’s
phase-transition theory, we build a theoretical model to investi-
gate the catastrophe behaviour of acoustic energy flux in different
phases of ABHs in Section 2. In Section 3, the quantitative relation-
ships of each stable phase are studied and verified via numerical
simulations. We also verify our theoretical results on the quantita-
tive relationship using experiments in Section 4.
2. Methods

ABHs are similar to funnel structures with decreasing diame-
ters, forming a tip at the exit as shown in Fig. 1. The functional
expression of the diameter d at length x is as follows:

d ¼ Axm þ d0

2
ð1Þ

where A is the expansion index,m is the exponential parameter,
x is the length, 0 � x � L, and d0 is the tip diameter.

At low frequencies, a small tip diameter causes sound waves to
decelerate, producing sound energy-focusing effects [5,7], and
catastrophe changes in the sound energy flux appear sponta-
neously. The critical value dc of the tip diameter is used to deter-
mine these catastrophe changes. When d0 > dc, sound waves flow
from the entrance of ABHs and can completely flow from their out-
let tips. However, when d0 < dc, not all acoustic waves can flow
from the tip of ABHs, causing sound energy-focusing effects, which
trigger catastrophe changes in the acoustic energy flux. Acoustic
energy-focusing behaviour is a typical non-equilibrium phase tran-
sition, and the two stable phases are distinguished by the critical
diameter dc.

Non-equilibrium phase transitions occurring in various ways in
applied sciences are important to engineers and scientists [25]. We
used Landau’s phase-transition theory to establish a mathematical
model for the phase-transition process in ABHs at low frequencies.
According to an analysis of reports in the literature [5,7], a small tip
diameter d0, a change rate in the wave velocity @v/ot related to
wave deceleration in ABHs, and the parameters related to acoustic
energy flux, sound energy E, sound velocity c, and medium density
q are important physical parameters that determine catastrophe
behaviour in ABHs and phase transitions [5,7,26]. Therefore, a
potential function U that can describe transitions in ABHs is their
function, that is, U = f(q, @v/ot, c, E, d0).
d=Axm+d0/2

Fig. 1. ABH structural model according to Eq. (1) (colour online).

2

U q;
@v
@t

; c; E;g
� �

¼ U0 þ tðq; @v
@t

; E; cÞg2 þ 1
2
uðq; @v

@t
; E; cÞg4 ð2Þ

where t and u are the functions of q, @v/ot, c, and E, and g is the
order parameter that denotes the macroscopic physical properties
or structures of a system after and before phase transitions that
describe the system’s phase transitions. Catastrophe phase transi-
tions occur when the critical top diameter dc is reached [18]. There-
fore, the order parameter g is g = d0-dc.

Fig. 2 shows the distribution of the potential function U in Eq.
(2) when t � 0 and t < 0. When t � 0, the system only has a stable
phase when g = 0, that is, d = dc, and when d – dc, the system is
unstable (black and red lines in Fig. 2). When t < 0, the system
has two stable phases when g = ± (�t/u)1/2 (red points in Fig. 2)
and an unstable phase when g = 0 (green point in Fig. 2) [23].

In a stable equilibrium state, the potential functionU should be
the minimum and satisfy [25]:

@U=@g ¼ 2tgþ 2ug3 ¼ 0 ð3Þ
We obtain g = 0 or g = ± (�t/u)1/2 using Eq. (3). For sound energy

flux of ABHs at low frequencies, the stable phase occurs when
d – dc, and the critical dimension dc is a critical point for distin-
guishing the two stable phases. Therefore, t < 0 and g = d-dc = ±
(�t/u)1/2. Constructing the t and u functions is the key to research-
ing catastrophe phase transitions in ABHs and the quantitative
relationships between the two stable phases. Eq. (3) demonstrates
that t and u should satisfy g = d-dc = ± (�t/u)1/2, and for catastrophe
sound energy flux in ABHs, we can construct a simple power-law
function using the parameters q, @v/ot, c, and E to describe the
catastrophe phase transitions of sound energy flux in ABHs.

ðd� dcÞ2 ¼ � t
u
¼ aqa1 ð@v

@t
Þ
a2
ca3Ea4 ð4Þ

where a is a constant and a greater than 0. According to Lan-
dau’s phase-transition theory, u is considered a constant [22]. Thus,
the following relationship is obtained:

ðd� dcÞ2 ¼ � aqa1 ð@v=@tÞa2ca3Ea4
u

¼ bqa1 ð@v
@t

Þ
a2
ca3Ea4 ð5Þ

where b = -a/u.
Using a dimensionless analysis, we further reduce the number

of power exponents of the parameters q, @v/ot, c and E. Note that
d-dc has [L] dimensions, and the dimensions of q, @v/ot, c, and E
are [L]�2[M]1, [L]1[T]�2, [L]1[T]�1, and [L]2[T]�2[M]1, respectively.
To satisfy Eq. (5), the dimensions of qa1 ð@v

@tÞ
a2ca3Ea4 should be [L]2,
Fig. 2. Distribution of the potential function U when t > 0, t = 0, and t < 0 (colour
online).
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and the exponents obtained using the dimensional analysis are
related as shown in Table 1.

The following relationships between the exponents are derived:

�2a1 þ a2 þ a3 þ 2a4 ¼ 2
�2a2 � a3 � 2a4 ¼ 0

a1 þ a4 ¼ 0

8><
>: )

a1 ¼ �a4

a2 ¼ 2� 2a4

a3 ¼ 4� 6a4

8><
>: ð6Þ

Eqs. (4) and (6) are used to obtain the expression of t:

t ¼ aq�a4 ð@v
@t

Þ
ð2�2a4Þ

c4�6a4Ea4 ð7Þ

Substituting Eq. (7) into Eq. (2), we obtain:

Uðq; ð@v
@t

Þ; c; E;gÞ ¼ U0 þ aq�a4 ð@v
@t

Þ
ð2�2a4Þ

c4�6a4Ea4g2 þ 1
2
ug4 ð8Þ

The power index a4 in the potential function Eq. (8) is an impor-
tant parameter that determines the phase transitions and catastro-
phe behaviour in ABHs. Using Eq. (8), we draw a graph of the
relationship among the potential function U, the order parameter
g = d-dc, and the power index a4 when U0 = 0 as shown in Fig. 3.

There are two critical values of a4 = 2/3 and a4 = 1 where the
potential function U has two minima and a maximum value when
the order parameter d-dc = 0, which shows that there are two
stable phases and one unstable phase. As demonstrated in Fig. 3
(a) and (b), when a4 = 2/3, the order parameter k-kc = 0 is an extre-
mely unstable critical point, the system is in an unstable phase,
and this unstable phase spontaneously and rapidly reaches the
adjacent stable phase. In ABHs, when the tip diameter decreases
d and equals the critical diameter dc, it moves from stable phase
1 to a critical state, and a small decrease near the dc point causes
the spontaneous transfer to another stable phase 2 as shown in
the red line in Fig. 3(a) and (b). When the tip diameter d crosses
the critical diameter dc while decreasing, it is a spontaneously
catastrophe behaviour from stable phase 1 to stable phase 2 that
corresponds to the first-order phase transition (or discontinuous
phase transition) in Landau’s phase-transition theory as shown
by the blue lines in Fig. 3(a) and (b).

As demonstrated in Fig. 3(c), a similar catastrophe phase transi-
tion is also observed at a4 = 1, which is easier to assess using log-
arithmic coordinates.

3. Quantitative relationships of different phases in ABHs

To obtain the phase-transition process in ABHs and further
reveal the quantitative relationships between these parameters
in each stable phase using Eqs. (5) and (7), the order parameter g
is:

g ¼ ðd� dcÞ2 ¼ bq�a4 ð@v
@t

Þ
ð2�2a4Þ

c4�6a4Ea4 ð9Þ

The sound energy E is obtained from Eq. (9):

E ¼ b� 1
a4 � q1 � ð@v

@t
Þ
2a4�2
a4 � c

6a4�4
a4 � ðd� dcÞ

2
a4 ð10Þ

Using Landau’s phase-transition theory, the first-order phase
transition is regarded as catastrophe sound energy flux in ABHs
Table 1
Relationships between q, @v/@t, c, E, and g = d-dc.

Ρ (a1) @v/@t (a2)

L �2 1
T 0 �2
M 1 0

3

caused by the sound energy-focusing effect incited by wave decel-
eration that is induced by a decrease in the diameter. Therefore,
the extreme point of this first-order phase transition can be solved
using the first partial derivative of E when the other parameters
(@v/ot and c) are zero [23], that is, @E=ð@v

@tÞ ¼ 0 and @E
@c ¼ 0. Of note,

when @E
@ðd�dcÞ ¼ 0 and @E

@b ¼ 0, a4 is infinite and Eq. (10) will diverge,

so it has no practical significance. We calculate that a4 = 1 and
a4 = 2/3, respectively. Bringing a4 = 1 and a4 = 2/3 into Eq. (10),
we obtain

E ¼ b�1 � q � c2 � ðd� dcÞ2 ð11Þ

E ¼ b�3
2 � q � ð@v

@t
Þ � ðd� dcÞ3 ð12Þ

Eqs. (11) and (12) describe the quantitative relationships of the
two stable phases in the sound energy catastrophe flux and phase-
transition process. The sound energy E is proportional to the tip
diameter d to the square relation (d2) and the 3 power law (d3).
Eqs. (11) and (12) can also be deduced using the first partial deriva-
tive of g when @v/ot and c are zero, that is, @g=ð@v

@tÞ ¼ 0 and @g
@c ¼ 0.

To study the behaviour of the catastrophe flux in ABHs and
quantitative relationships between the two stable phases, a 3D
ABH finite element model is developed via the acoustic solid cou-
pling module in COMSOL software, which is used to calculate the
transmission coefficient under different tip diameters as shown
in Figs. 4 and 5.

As shown in Fig. 4, the inlet diameters dL = D of the simulated
ABHs are 100 mm. The tip diameters are 1 mm, 10 mm, 12 mm,
30 mm, 60 mm, 66 mm, 70 mm, and 80 mm in Fig. 4(a)–(h),
respectively. The incident wave is a plane wave. We simulate the
sound field distribution in these ABH and calculate the ratios of
the transmitted sound energy Et to the incident sound energy Ei
to obtain the sound insulation characteristics and analyse the
catastrophe and quantitative relationships in the phase-transition
process using the sound field distribution.

As shown in Fig. 4(a)–(c), for small tip diameters whose tip
diameter ratios to inlet diameter d/D are only 0.01, 0.10, and
0.12, the sound energy-focusing effect can be clearly observed.
The sound pressure at the tip is much greater than that at the inlet,
which can be seen from the sound pressure contours. However, as
the tip diameter increases to 30, the sound energy-focusing effect
persists but is not very obvious. The sound pressure contours indi-
cate that the difference between the tip sound pressure and the
inlet sound pressure is smaller, indicating that the sound energy-
focusing effect weakens as the tip diameter increases as shown
in Fig. 4(d). When d/D = 0.6, the sound energy-focusing effect
becomes extremely weak, and the sound pressure difference
between the inlet and outlet is only 0.8 Pa. The catastrophe acous-
tic energy flux appears until d/D = 0.66, where there is almost no
sound pressure, which indicates that the sound wave completely
passes through the ABHs as demonstrated in Fig. 4(e) and (f). When
d/D > 0.66 (d/D = 0.7 and d/D = 0.8), the situation is almost the same
when d/D = 0.66 as shown in Fig. 4(g) and (h).

We also calculated the transmission coefficient of the simulated
ABHs as shown in Fig. 5. Note that the sound transmission coeffi-
cient tw is the ratio of the sound energy transmitted out from ABHs’
Et to the incident sound energy Ei, which is expressed as [16]:
c (a3) E (a4) Η = d-dc

1 2 2
�1 �2 0
0 1 0



Fig. 3. The relationship between the potential function U, order parameter g = d-dc, and power index a4 (colour online).
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tw ¼ Et

Ei
¼ ðPt

Pi
Þ
2

ð13Þ

where Et is the average sound energy density of transmitted
waves, Et = Pt

2/2q0c0, Pt is the sound pressure of transmitted waves,
Ei is the average sound energy density of incident soundwaves, Ei =-
Pi

2/2q0c0, and Pi is the sound pressure of incident waves.
The transmission coefficient tw increases as the ABH tip diame-

ter increases, reaching 100% at d/D = 0.7 as shown in Fig. 5. For low-
frequency sound waves, decreasing the tip diameter can signifi-
cantly reduce the transmission coefficient. When the tip diameter
is <1 mm, the low-frequency transmission coefficient is close to 0,
which means that almost all of the sound waves are localised
within ABHs.

To explore the catastrophe and quantitative relationship
between transmission coefficient tw and tip diameter d, we calcu-
lated the relationships between the transmission coefficient tw
and tip diameter d at different frequencies (50 Hz, 100 Hz,
200 Hz, and 300 Hz) through simulation results as shown in
Fig. 6. The spontaneous catastrophe sound energy in ABHs occurs
at d/D = 0.66 as demonstrated in Fig. 6(a) and (b), which is consis-
tent with the simulation results.

To calculate the relationship between the transmission coeffi-
cient tw and tip diameter d in our model as shown in Eq. (13), we
assume that the transmitted sound energy Et is equal to the sound
energy E in our theoretical model, that is, Et = E. Thus, the sound
transmission coefficients of ABHs are:
4

tw ¼ ðPt

Pi
Þ
2

¼ Et

Ei
¼ E

Ei
¼ b�1qc2d2

Ei
¼ Ad2 ð14Þ

and

tw ¼ ðPt

Pi
Þ
2

¼ Et

Ei
¼ E

Ei
¼ b�2=3qð@v=@tÞd3

Ei
¼ Bð@v=@tÞd3 ð15Þ

where A is a constant, A = b-1qc2/Ei, B is a constant, and B = b -
2/3q/Ei, so, in the first and second stable phases, the sound trans-
mission coefficient tw is proportional to d2 and d3, respectively.

As shown in Fig. 6(b), when d/D � 0.3, the transmission coeffi-
cient tw is proportional to the 3 power law of the tip diameter d,
that is, tw~d3. When 0.3 � d/D � 0.5, the square relationship
between the transmission coefficient tw and tip diameter d
(tw~d2) is observed. This simulation result fully verifies our theo-
retical results.
4. Experimental validation

To verify the quantitative relationship obtained using our theo-
retical method, a sound experiment is conducted on a standing
wave tube. The sound transmission loss (STL) of samples #1, #2,
and #3 is measured using a BK4206 standing wave tube. As shown
in Fig. 7, the inlet diameters of the three samples are 99 mm. The
tip diameters of samples #1, #2, and #3 are 12 mm, 14 mm, and
20 mm, respectively, and the lengths of three acoustic black holes



Fig. 4. The numerical sound field distribution results of ABHs under different tip diameters at 100 Hz (colour online).
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are 150 mm. In this experiment, the samples are produced by 3D
printing with resin material. The material parameters are as fol-
lows: the density is q = 1.18 � 103 kg/m3, Young’s modulus is
1 � 109N/m2, and Poisson’s ratio is 0.38.

The test frequency range of the standing wave tube is
50 Hz ~ 1.6 kHz. The inner diameter of the standing wave tube is
100 mm, so the diameter of the acoustic black holes is 99 mm.
The gap between the acoustic black holes and standing wave tube
is sealed with rubber cement, which meets the requirements for
effective sealing. The sound absorption end of the standing wave
tube has a sound absorption wedge. The sound insulation test error
is 1 dB, ensuring the experiment’s accuracy.

The experimental acoustic transmission loss (STL) data of the
three samples are shown in Fig. 8. The lowest STL value in the test
5

samples appears at 32 Hz, and the lowest STL value of the ABHwith
a tip diameter of 12 is 11 dB. As the tip diameter decreases, the
low-frequency STL increases, which shows that the smaller the
ABHs’ tip diameter, the higher the STL, and more acoustic low-
frequency waves are focused in the ABHs. This demonstrates that
reducing the tip diameter d can improve the STL and sound insula-
tion performance of ABHs at low frequencies.

We converted the STL into a transmission coefficient tw to study
the acoustic transmission characteristics of the test samples. The
STL formula is:

STL ¼ �10log10ð
ET

Ei
Þ ¼ �10log10ðtwÞ ð16Þ

The expression of transmission coefficient tw is:



Fig. 5. The numerical results of the transmission coefficients of ABHs with different
tip diameters (colour online). Fig. 7. Standing wave tube testing system and the tested ABHs (colour online).
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tw ¼ 10�STL
10 ð17Þ

The acoustic transmission coefficients of the three test samples
are obtained using Eq. (17) as shown in Fig. 9. The largest transmis-
sion coefficient value tw in the test samples still appears at 32 Hz,
and the lowest tw value of the ABH with a tip diameter of 12 is only
0.09, demonstrating that 91% of the sound waves in the test fre-
quency band can be isolated. When the tip diameter increases from
0.12 to 0.2, the transmission coefficient increases from 0.09 to 0.6
at 32 Hz. This significant change indicates that a small change in
the tip diameter d has a significant impact on the transmission per-
formance of ABHs at very low frequencies (below 150 Hz).

The logarithmic relationships of sound transmission coefficients
with different tip diameters d are plotted at 48 Hz, 96 Hz, 152 Hz,
and 200 Hz. Fig. 10 demonstrates that the curves of the sound
transmission coefficients at these frequencies fully coincide with
the line of the slope of 3. The results show that the acoustic trans-
mission coefficient tw is proportional to the 3 power of the tip
diameter d at low frequencies. The experimental results also fully
verify the accuracy of Eq. (12) obtained using our theorical method.
Fig. 8. Experimental data on the sound transmission loss (STL) of the tested samples
(colour online).
5. Summary and conclusions

In summary, we have characterised the spontaneous catastro-
phe sound energy flux in ABHs at low frequencies and obtained
the quantitative relationships of the two stable phases in this
phase transition, which accurately agreed with both the experi-
mental and numerical data. According to the sound wave deceler-
ation in the ABHs, we analysed the mechanism of the sound
Fig. 6. The numerical results of the relationship between the transmissio

6

energy-focusing effects and thoroughly explored the spontaneous
catastrophe behaviour of sound energy flux caused by the sound
energy-focusing effects. The theoretical analysis shows that there
are two catastrophe behaviours in this phase transition that are
caused by decreasing the tip diameter of the ABHs, resulting in
n coefficients (Pt/Pi)2 of the ABHs and tip diameter d (colour online).



Fig. 9. Experimental data of the transmission coefficients of the tested samples
(colour online).

Fig. 10. Logarithmic relationship between the tested transmission coefficients and
tip diameter d (colour online).
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first-order phase transitions. The acoustic energy transmitted from
the tip of the ABHs is proportional to the 3 power law and square of
the tip diameter d, which was verified by our numerical method,
and the 3 power law of d was also observed in our experimental
results. Our experiments and simulation methods proved the
catastrophe sound energy behaviour in the ABHs and the quantita-
tive relationships obtained during the phase transitions.

For sound insulation engineering applications, ABHs with a tip
diameter of 12 mm can isolate more than 11 dB of low-
frequency sound waves below 1600 Hz, and the sound insulation
coefficient can be further increased by reducing the tip diameter.
Therefore, reducing the tip diameter of ABHs can improve the
sound insulation coefficients at low frequencies.
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