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Recently, two-dimensional (2D) moiré superlattices have been extensively studied, and many interest-
ing physical phenomena have been observed. However, their one-dimensional (1D) counterpart—1D moiré
superlattices—have been rarely explored yet. Here, we performed theoretical calculations of low-energy bands
of 1D moiré superlattices of single-walled carbon nanotubes (CNTs) on hexagonal boron nitride (hBN) using
a newly developed low-energy effective continuum model for 1D superlattices. We observed moiré-induced
opening of small band gaps ranging from a few meV to a few tens of meV, which depends sensitively on the
CNT chirality. The observed band-gap opening can be well understood by considering the coupling of electronic
states between CNTs and the hBN using the effective continuum model. The results have been confirmed by the
density functional theory calculations.
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I. INTRODUCTION

Two-dimensional (2D) moiré superlattices have attracted
tremendous research interest due to their intriguing physi-
cal properties. In 2D moiré superlattices, it has been found
that the moiré superlattice potential strongly modifies the
electronic band structure at the low-energy region [1,2], and
at certain moiré periods, a flat band emerges [3–6], which
offers a new platform to study electronic strongly corre-
lated systems. Many interesting physical phenomena, such
as Wigner crystals, Mott insulators, and superconductivity,
have already been observed in 2D moiré superlattices [7–13].
However, their one-dimensional (1D) counterpart—the 1D
moiré superlattice—has been rarely explored. On the other
hand, a 1D heterostructure composed of a single-walled car-
bon nanotube (CNT) on top of hexagonal boron nitride (hBN)
has recently exhibited many interesting physical phenom-
ena [14–18], including a homogeneous Coulomb blockade
[14], long-lifetime plasmons [16], and ultranarrow-linewidth
photoluminescence [18], indicating an unprecedentedly high
quality of the 1D heterostructure. We note that due to the
1.8% lattice mismatch a 1D moiré superlattice may appear in
the CNT/hBN heterostructure, which is expected to alter the
electronic bands as well as physical properties.

In this paper, we performed theoretical calculations of low-
energy bands of 1D moiré superlattices composed of three
representative types of single-walled CNTs on top of hBN
substrate using a newly developed low-energy effective con-
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tinuum model for 1D superlattices. The effective continuum
model is constructed using long-wavelength components of
the moiré superlattice potential, and we verify its validity by
demonstrating that the calculated band structures agree well
with those of the density functional theory (DFT) calculation.
In the band structure calculation, we observed moiré-induced
opening of small band gaps ranging from a few meV to a few
tens of meV, which depends sensitively on the CNT chiral-
ity. The observed band-gap opening can be well understood
within the effective continuum model.

II. THEORETICAL METHODS

A. Atomic structure

We consider a moiré superlattice system composed of a
single-walled CNT on top of hBN. A single-walled CNT is
a hollow cylindrical structure composed of a hexagonal lattice
of carbon atoms. The hBN is a 2D hexagonal lattice of boron
and nitrogen atoms. The bond length of hBN aB-N is ∼1.446 Å
[19], which is 1.8% larger than the CNT’s carbon-carbon
bond length aC-C ∼ 1.430 Å. The distance between the bottom
atoms of the CNT and hBN is set to be d = 3.220 Å, the same
as the graphene/hBN superlattice case [15,20,21].

Rolling up a monolayer graphene sheet along different
directions yields CNTs with different structures, which de-
fines the chirality of the CNTs. Each CNT can be specified
by a chiral vector C corresponding to the circumference of
the CNT and a translation vector T being a primitive vector
perpendicular to chiral vector C. The chiral vector C can
be described by a set of two integers (n, m), i.e., the chiral
index of the CNT, such that C = na1 + ma2, where a1 and
a2 are two primitive lattice vectors of monolayer graphene.
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FIG. 1. (a) The perspective view of and (b) the moiré pattern of
a single-walled carbon nanotube on top of a hBN substrate with an
exaggerated lattice constant ratio for clarity. The inset in (a) shows
the AB-stacking arrangement.

In this paper, we consider three representative types of CNTs,
the (6, 6) armchair CNT (AC-CNT), the (9, 0) zigzag CNT
(ZZ-CNT), and the (10, 0) ZZ-CNT on top of hBN.

The geometry of the CNT/hBN system is at zero twist
angle, i.e., the bottom graphene hexagons of the CNT align
perfectly with the hBN crystal with zero twist angle. The
mismatch of the bond length between CNT and hBN results
in the 1D moiré pattern, with the moiré period |Lm| along
the CNT direction. For the AC-CNT/hBN system, we have
moiré period |Lm

AC | ≈ 13.76 nm, and for the ZZ-CNT/hBN
system, we have moiré period |Lm

ZZ | ≈ 23.86 nm. Figure 1
shows the atomic structure and the 1D moiré interference pat-
tern of CNT/hBN system with an exaggerated lattice constant
ratio for clarity. We define the direction along CNT as the y
direction and the direction perpendicular to CNT in the hBN
plane as the x direction.

B. Density functional theory

In the DFT calculation, the superlattice system must have a
definite unit cell, so we rationalize the relative bond length of
CNT and hBN aB-N/aC-C ∼ 1.018 to 56/55 [21]. This ratio-
nalization is not necessary in the effective continuum model
that can deal with incommensurate superlattice systems [4].

DFT calculations are performed on the CNT/hBN moiré
superlattice unit cell with the SIESTA ab initio package
[22,23]. We use the local-density approximation [24] and
norm-conserving pseudopotentials [25]. The moiré superlat-
tice is constructed using a 56-unit supercell of the CNT and a
55-unit supercell of hBN. The width of the hBN substrate for
a unit cell is 20 Å and the size of the out-of-plane direction
was 50 Å to avoid fictitious interactions between periodically

repeated unit cells. The wave functions are expanded using a
double-zeta plus polarization basis with a cutoff of 80 Ry. The
Gamma point is sampled in the Brillouin zone (BZ) to obtain
the self-consistent charge density.

C. Effective continuum model for 1D superlattice

When the moiré period |Lm| is much larger than the lattice
constant in each layer, the interlayer interaction is dominated
by long-wavelength components, allowing us to treat the
problem in the effective continuum model which has been
introduced for the twisted bilayer-graphene system [4], the
graphene/hBN system [21], and the CNT/graphene system
[26].

The effective continuum model uses the Bloch states in
each layer as the basis to construct the effective Hamiltonian
matrix, and the interaction between two layers mixes these
Bloch states allowing interlayer tunneling, i.e., the nonzero
off-diagonal terms in the Hamiltonian matrix. Here, we derive
the low-energy effective continuum model for the CNT/hBN
superlattice system following the similar approaches in previ-
ous studies [4,21,26].

A CNT can be viewed as a graphene nanoribbon plus the
curvature effect. If neglecting the curvature effect, a CNT’s
wave function can be obtained by imposing the periodic
boundary condition ψ (r) = ψ (r + C) on the graphene’s wave
function, resulting in the quantization of crystal momentum
perpendicular to the CNT direction kx = 2π

|C| j, with j being an
integer [27]. Hence the CNT’s BZs are a set of parallel straight
lines in the 2D graphene BZ.

For an (n, m) CNT, when the condition n − m = 3N is sat-
isfied, with N being an integer, the CNT’s energy bands cross
through the graphene’s Dirac points (K and K′ points) without
a gap [27]. The typical interlayer tunneling strength between
CNT and hBN is much weaker than the energy separation of
minibands in CNT, so that we can truncate the low-energy
Hilbert space to the subspace of the CNT’s lowest minibands.

In the tight-binding description, the Hamiltonian of CNT
near the K point is written as

HCNT ≈ −h̄vk · σ, (1)

where v ≈ 0.8 × 106 m/s is the Fermi velocity near the Dirac
cone [28], k is the 1D relative wave vector of the CNT mea-
sured from the K point, and σ = (σx, σy) is the Pauli matrix.
The Hamiltonian of the CNT near the K′ point can be obtained
using the time-reversal symmetry.

The curvature of the tube modifies the band structure of
CNTs [29–31]. Some metallic CNTs would be modified to
small-gap semiconducting ones. The gap-opening of CNTs

due to the curvature effect is expressed as Egap = tgπ2

8|C|5 (n −
m)(2n2 + 5nm + 2m2) [29], where (n, m) is the chiral index
of the CNT, tg is the nearest-neighbor transfer integral of the
CNT, and |C| is the circumference of the CNT in units of√

3aC-C. When considering the curvature effect, the (N, N )
AC-CNTs are still exactly metallic while the (3N, 0) ZZ-
CNTs start to have a small band gap.

In this paper, we calculate moiré band gaps for three rep-
resentative types of CNTs with different original band gaps,
i.e., metallic (N, N ) AC-CNT with an exactly zero band gap,
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FIG. 2. (a) The BZ folding in graphene/hBN moiré superlattice,
with an exaggerated lattice constant ratio for clarity. (b) The zoomed-
in illustration of moiré BZ of AC-CNT/hBN and ZZ-CNT/hBN
systems.

metallic (3N, 0) ZZ-CNT with a small band gap, and semi-
conducting ZZ-CNT with a large band gap.

The low-energy effective Hamiltonian of hBN consists of
a kinetic off-diagonal term similar to that of graphene around
its Dirac points and extra diagonal on-site potential terms.
This Hamiltonian yields a massive Dirac cone separated by
an energy gap |VB − VN|, with a quadratic energy dispersion.
Since the band gap of hBN (∼5 eV) is very large, in the
low-energy region, we can safely neglect the dispersion by
retaining only the diagonal potential term in the Hamiltonian
[32], i.e.,

HhBN ≈
(

VN 0
0 VB

)
, (2)

where VN = −1.4 eV and VB = 3.34 eV are the on-site poten-
tials of nitrogen and boron atoms, respectively.

When the CNT is on top of hBN, the two layers interact and
the CNT’s BZ folds into the 1D moiré BZ. Figure 2 illustrates
the BZ and miniband folding in the CNT/hBN moiré super-
lattice with an exaggerated lattice constant ratio for clarity,
where the solid black and dotted black hexagons are auxiliary
graphene’s and hBN’s BZs, and Gm

2 and Gm
3 are two super-

lattice reciprocal lattice vectors in the graphene/hBN system.
The 1D reciprocal lattice vector can be represented as Gm

AC =
1
2 (Gm

2 + Gm
3 ) for AC-CNT/hBN and Gm

ZZ = 1
2 (Gm

2 − Gm
3 ) for

ZZ-CNT/hBN.
The interlayer tunneling matrix has the same form as the

case of CNT/graphene system with θ = 0◦ rotation, and the
tunneling matrix Tq,ky describing a process in which a Bloch
electron in one valley with momentum ky of the CNT hops to
a Bloch state in the same valley with momentum q of the hBN

is written as [21,26]

Tq,ky = t√
2π

3∑
j=1

Tj exp

[
−R2

2

(
qx − Gm

jx

)2
]
δqy−ky,Gm

jy
, (3)

where q and ky are the wave vectors measured from the
same CNT Dirac point, t ≡ t (kD) is the in-plane Fourier
transform of the transfer integral t (�r) [4], kD is the magni-
tude of reciprocal vector of Dirac point in CNT, Gm

1 = 0,
Gm

2 and Gm
3 are two vectors depicted in Fig. 2, R is the

radius of CNT, and Tj are the tunneling matrices of Gm
j

with T1 = (1 1
1 1), T2 = (e−iφ 1

eiφ e−iφ ), T3 = ( eiφ 1
e−iφ eiφ ), and φ =

2/3π . Higher-order tunneling, such as t (2kD), is much smaller
than the first-order t (kD), and thus can be safely neglected
[33].

From Eq. (3), we see that the moiré potential couples the
Bloch states in CNT and those in hBN, and therefore allows
tunneling. In the tunneling process, the crystal momentum
along the CNT direction (ky direction) is conserved which is
similar to the case in 2D moiré superlattice systems, while
the crystal momentum perpendicular to the CNT direction (kx

direction) does not have to be conserved because there is no
translation symmetry along this direction. We denote these
matrices with kx 	= Gm

jx as the vertical tunneling T ⊥
j .

In the k-space representation, the Hamiltonian matrix
can be written at discrete k points k = k0 + nGm

AC for AC-
CNT/hBN and k = k0 + nGm

ZZ for ZZ-CNT/hBN, where k0
is a vector defined within the one-dimensional moiré BZ, and
k0 = 0 corresponds to the �m point. We choose sufficient k
points to diagonalize the Hamiltonian. Due to the vertical
tunneling T ⊥

j , a Bloch electron at k in CNT can tunnel to
many hBN states with wave vectors perpendicular to it. In
order to improve the calculation efficiency, when constructing
the total Hamiltonian matrix, we only allow the CNT state at
k to tunnel to three representative hBN states at q = k + Gm

j
with j = 1, 2, and 3, and use the result of DFT to fit the band
gaps. The dimension of the Hamiltonian matrix in the effec-
tive continuum model is roughly 102, and the diagonalization
is much faster than that in DFT, which is similar to the 2D
case [34].

III. RESULTS AND DISCUSSION

A. Band-gap opening in a metallic (6, 6) AC-CNT/hBN
moiré superlattice

First, we calculate the band structure of a (6, 6) AC-
CNT/hBN moiré superlattice using both DFT and the
effective continuum model. Figures 3(a) and 3(b) compare the
electronic band structures calculated by the two methods on
the k-space path shown in Fig. 2(b). The origin of the energy
axis is reset to the charge neutral point in all the calculations in
this paper. From Fig. 3, we see that the results of two methods
are consistent. Figures 3(c) and 3(d) describe two tunneling
processes accounting for the gap opening g1 and g2 at two
high-symmetry points denoted by dashed circles in Fig. 3(b),
respectively, which provide an intuitive understanding of the
moiré-induced opening of band gaps.
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FIG. 3. Band structures of a (6, 6) AC-CNT/hBN system cal-
culated by (a) DFT, and (b) the effective continuum model on the
k-space path shown in Fig. 2(b). Two tunneling processes accounting
for (c) gap opening g1 and (d) gap opening g2 denoted by dashed
circles in (b), where the solid black dots denote the CNT states, the
hollow black dots denote the hBN states, and the dashed arrows stand
for the tunneling process.

Comparing the electronic bands in Figs. 3(a) and 3(b),
we recognize that two sets of identical band structures come
from two valleys of the (6, 6) AC-CNT, which are colored
by red and blue in Fig. 3(b). We also find that the band gaps
only appear at the crossing points of bands with the same
color (the same valley). It is because the intervalley tunneling
component, i.e., the short-wavelength component of the moiré
potential is negligible, and thus the valley-index remains a
good quantum number.

A (6, 6) AC-CNT should remain exactly metallic with
zero band gap even if considering curvature effect. There-
fore, the tiny band gap g1 at the original Dirac point about
3 meV in DFT is purely caused by the moiré potential. In
the effective continuum model, this band gap g1 can be cap-
tured by a tunneling process shown in Fig. 3(c), and the
effective Hamiltonian of the system truncated in the first

moiré BZ is

Hg1
=

⎛
⎝ HCNT T †

2 + T ⊥†
3 T ⊥†

2 + T †
3

T2 + T ⊥
3 HhBN 0

T ⊥
2 + T3 0 HhBN

⎞
⎠, (4)

where HCNT is the Hamiltonian of AC-CNT at Dirac point,
HhBN is the Hamiltonian of hBN, the off-diagonal terms
are interlayer tunneling matrices, and T ⊥

j stands for vertical
tunneling of Tj . At the original Dirac point, two tunneling
processes T2 and T3 mix with each other because of the vertical
tunneling, and open a tiny gap g1 of ∼3 meV.

At the first-order superlattice Dirac point, the band split-
ting is larger in the hole side (∼6 meV) in DFT, while
it is much narrower in the electron side (<1 meV). The
same result appears in our effective continuum model. This
electron-hole asymmetry is consistent with previous results
of the 2D graphene/hBN moiré system [21]. We further find
that if we artificially exchange the ratio of bond length be-
tween carbon-carbon bonds and nitrogen-boron bonds, i.e.,
aB-N/aC-C = 56/55, the electron-hole asymmetry will reverse
accordingly, indicating that the electron-hole asymmetry is
relevant to the lattice mismatch. In the effective continuum
model, the splitting g2 at the first-order superlattice Dirac
point can be captured by a hBN-mediated tunneling process
as shown in Fig. 3(d), where the Hamiltonian of the system
truncated in the first moiré BZ is

Hg2
=

⎛
⎜⎜⎝

HCNT 0 T †
2 T †

3
0 HCNT T ⊥†

1 T ⊥†
1

T2 T ⊥
1 HhBN 0

T3 T ⊥
1 0 HhBN

⎞
⎟⎟⎠, (5)

where HCNT is the Hamiltonian of AC-CNT at the first-order
superlattice Dirac point in the moiré BZ. Two AC-CNT quan-
tum states with the same energy tunnel to two hBN states. This
tunneling mixes the Hilbert space of these two CNT states and
causes band anticrossing.

B. Band-gap opening in a small-band-gap (9, 0) ZZ-CNT/hBN
moiré superlattice

We also calculate band structure of a (9, 0) ZZ-CNT/hBN
moiré superlattice. Figures 4(a) and 4(b) compare the elec-
tronic band structure calculated by two methods on the
k-space path shown in Fig. 2(b). From Fig. 4, we can see that
the results of these two methods are consistent. Figures 4(c)
and 4(d) describe the tunneling processes accounting for the
gap opening g1 at the Xm point and g2 at the �m point of the
moiré BZ, respectively, in the effective continuum model.

In Fig. 4(a), the result calculated by DFT, we see two sets
of band structures with a tiny split (∼2 meV) originated from
K and K′ valleys of the (9, 0) ZZ-CNT, while in Fig. 4(b),
the degeneracy of two valleys is not broken in the effective
continuum model. This split is due to the breaking of rotation
symmetry around the axis of CNTs caused by the hBN sub-
strate, which is not included in the effective continuum model.
Although the valley degeneracy is broken, the valley index
remains a good quantum number due to negligible intervalley
coupling.

From Fig. 4, we see that band gaps appear in the band
structure of the ZZ-CNT/hBN system at the Dirac point, the
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FIG. 4. Band structures of a (9, 0) ZZ-CNT/hBN system cal-
culated by (a) DFT and (b) the effective continuum model on the
k-space path shown in Fig. 2(b). Two tunneling processes accounting
for (c) gap opening g1 and (d) gap opening g2 denoted by dashed
circles in (b), where the solid black dots denote the CNT states, the
hollow black dots denote the hBN states, and the dashed arrows stand
for the tunneling process.

zone boundary, and between the second and the third band
within one valley. A (9, 0) ZZ-CNT originally opens a band
gap of 140 meV at its Dirac point due to the curvature effect.
The moiré potential slightly shrink this band gap to 130 meV.

At the zone boundary Xm, a band splitting within one val-
ley appears between the first and the second hole (electron)
bands. The splitting is large in the hole side, about 6 meV
for one valley and 8 meV for the other valley in DFT, and
it is narrower in the electron side as shown in Fig. 4(a). In
the effective continuum model, the splitting g1 at the zone
boundary Xm can be captured by a hBN-mediated tunneling
process as shown in Fig. 4(d), where the Hamiltonian of the
system truncated in the first moiré BZ is

Hg1
=

⎛
⎝HCNT 0 T ⊥†

1
0 HCNT T †

2
T ⊥

1 T2 HhBN

⎞
⎠, (6)

where HCNT is the Hamiltonian of ZZ-CNT at the moiré BZ
boundary. Two CNT quantum states with the same energy

FIG. 5. Band structures of a (10, 0) ZZ-CNT/hBN system cal-
culated by (a) DFT and (b) the effective continuum model.

tunneling to the same hBN state causes band anticrossing at
the zone boundary, which also explains the BZ folding in the
ZZ-CNT/hBN moiré superlattice system.

The band gap g2 at �m shares features similar to the one
at the zone boundary, and the tunneling process which causes
the splitting is shown in Fig. 4(d). The band structure of ZZ-
CNT/hBN also shows electron-hole asymmetry as discussed
in the armchair case.

C. Band-gap opening in a semiconducting (10, 0)
ZZ-CNT/hBN moiré superlattice

The band structure of a semiconducting (10, 0) ZZ-
CNT/hBN moiré superlattice is also calculated. Figures 5(a)
and 5(b) compare the electronic band structure calculated by
two methods on the k-space path shown in Fig. 2(b). The
splitting of two valleys and the band-gap opening (∼20 meV
at �m, ∼5 meV at Xm) in this system is similar to the (9, 0)
ZZ-CNT/hBN system.

The original band gap of the (10, 0) ZZ-CNT at � is
0.94 eV, and is slightly shrinked to 0.93 eV by the moiré
potential based on the DFT calculations. This feature is con-
sistent with the previous study on substrate-induced band-gap
renormalization in the (10, 0) ZZ-CNT/hBN system [15].

From Fig. 3, Fig. 4, and Fig. 5, we find that there is a
positive correlation between the superlattice band gap and the
original CNT band gap. When the original band gap is large,
the superlattice band gap is also large. This can be explained
by the overlap of spinor states in the CNT [35]. If the original
band gap of the CNT is large, the overlap of two spinor states
in the CNT connected by a 1D reciprocal lattice vector is
also large. In an extreme case, when the original band gap
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in the CNT is exactly zero, i.e., the (N, N ) AC-CNT case, the
overlap of two spinor states connected by Gm

AC is zero. As a
result, the moiré-induced gap is the smallest [Figs. 3(a) and
3(b)]. Note that the nonzero moiré gap for the AC-CNT case
can only originate from a hBN-mediated tunneling process.

IV. CONCLUSION

We have calculated the electronic band structure of 1D
moiré superlattices of three representative CNTs on top of
hBN using a newly developed effective continuum model for
1D superlattice. The effective model provides a simple and
appealing physical interpretation of the band structure of the
moiré system and can be easily extended to other 1D/2D
moiré superlattice systems. We observe moiré-induced open-
ing of small band gaps ranging from a few meV to a few
tens of meV, which depends sensitively on the CNT chiral-
ity. The results have been confirmed by DFT calculations.
Additionally, the opening of moiré gaps can be understood

intuitively from the coupling between CNT states and hBN
states within the effective continuum model. The predicted
moiré gaps should have an effect on the electron transport as
well as the electronic transitions, and thus can be experimen-
tally verified by electrical transport and optical spectroscopy
measurements.
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