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Abstract—Deep residual networks have the problem of
diminishing feature reuse, meaning that as the network depth
increases, the accuracy does not increase linearly but gradually
becomes smooth. Recent work has demonstrated that in addition
to increasing the depth, the performance of networks can also be
improved by explicitly embedding learning mechanisms. A broad
range of prior research has investigated channel and spatial
attention mechanisms to strengthen the representational power of
convolutional neural networks (CNNs). In this paper, we focus
instead on the block relationship. Inspired by the human visual
attention mechanism, we propose a novel block-wise attention
module, which we term the “focus-and-association” (FA) module,
that performs dynamic block-wise feature recalibration by
explicitly modelling interdependencies between blocks. We show
that FA module can be applied to various existing state-of-the-art
CNNs with few additional parameters and slight computational
burden, and it effectively generalizes across different datasets.
Extensive experiments show the effectiveness of the focus-and-
association network (FANet). In addition, we further
demonstrate the compatibility of the FA module by combining it
with the existing state-of-the-art embedded algorithm unit, and
achieve further improvements in accuracy. Finally, we visualize
part of the details from the network to further explore the
mechanism of action of the FA module.

Key words:  focus-and-association;  block-wise  feature
recalibration; attention mechanism; convolutional neural networks

1. INTRODUCTION

Deep learning algorithms based on convolutional neural
networks (CNNs) have made great progress in image
classification tasks[1][2][3]. A CNN is essentially an input-to-
output projection that learns the mapping relationship from a
large amount of data without precise mathematical
expressions[4][5], meaning that CNN extracts feature
representations from the image in an implicit way. With the
increasing of the network depth, the extracted features
continuously become more abstract, and finally they are
transformed into semantic information. It has been proved in a
large number of experiments that a deeper network is the key to
success. In[6], He et al. proposed a “residual learning”-based
structure, which greatly inhibits the "degradation" of the
network, making it feasible to stack thousands of layers in the
networks. Although the residual structure can extend the
network to an extremely deep form with consistent
improvements in accuracy, each fraction of a percent of
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improved accuracy costs nearly double the number of layers.
Veit et al. [7] pointed out that the residual network introduced a
series of shorter paths into the network and these paths had
certain redundancy, indicating that the reuse rate of features in
the deep residual network is gradually diminished, that is, a
large number of features cannot be fully utilized.

Recent studies have demonstrated that in addition to
increasing the depth of networks, the performance can also be
improved by explicitly embedding learning mechanisms. One
such approach are the Inception architectures [2][8], which
introduce multi-scale mechanisms into the networks, improving
the representational power of the network. More recent works
[9] [10] focused on channel and spatial dependencies,
establishing attention learning mechanisms at channel and
spatial aspects and improving the efficiency of feature
utilization for the network. Zhang et al. [11] pointed out that
not all the layers in CNNs play the same role; different layers
make different contributions to the process of feature extraction.
Therefore, we propose an explicit block-wise attention module:
the focus-and-association (FA) module. The block here can
theoretically contain any convolutional layer, any embedded
algorithm unit or any combination of them. From the
perspective of blocks in the network, we explicitly model the
interdependencies among them and provide a feature
recalibration mechanism. The proposed FA module can
selectively emphasize the informative blocks and suppress the
less useful blocks based on the global information of each
block and the associated information of multiple blocks to
reduce the redundancy among network blocks.

The structure of the FA module is illustrated in Fig. 1. A
given block B, (i€[0,n—1]) of the network, it can be
F.:X —>U, X, eR"™>4,
U, e R"*"% _ To model the interdependencies between B,
and B,, B, ..., B
for B, , including two steps of “focus”(F, in Fig. 1) and

represented as a transformation

when i >1, we create FA mechanism

i1
“association”( F, in Fig. 1). First, in the “focus” step, the
input feature X, (i.e., the final recalibrated output feature of
block B, ;) of block B, is passed through a global pooling
operation across spatial dimensions H;xW, and transformed

i

into a channel descriptor / € RS, which is also a descriptor



for the output of block B, . Then it is followed by a tiny

inference network composed of 2 fully connected (FC) layers,
further
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Fig. 1. Schematic diagram of a network with the FA module. © represents the concatenation operation of tensors.

abstracting the channel descriptor / into a global descriptor
kleR' of X,. In this paper, k/ is also called “focused

attention”. Until here, the “focus” step of B, realizes an
overall perception of the output tensor of B, ;. Second, the
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“association” step is used to generate the “associative attention
k.. Before block B,, a set of “associative attention” [ k,
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corresponding FA mechanisms. We concatenate [ %, &, , ...,

, ] are generated from [B,, B, ,..., B, ] by the

k_, ] with the focused attention & of B,, constructing an

attention descriptor s, € R'. Then s/ is passed through another
tiny inference network that is composed of 2 FC layers and
generates the output k . Finally, U, is recalibrated by &£,

through the weighting process (G,, in Fig. 1).

The FA module is a lightweight method, that involves only
few additional parameters and slight computational burden,
and it has good extensibility. By appropriately partitioning a
network into blocks (i.e., how most networks were originally
designed), the FA module can be used directly in various state-
of-the-art architectures and effectively improve the
performance. In addition, FA module has good compatibility,
it can be used in conjunction with the existing state-of-the-art
algorithm to achieve further performance improvement. To
support these claims, we conduct multigroup experiments on
various networks(ResNet [6], VGGNet [12], Inception-v4 [13]
and ResNeXt [14]) with various datasets(CIFAR-10[15],
CIFAR-100[15], Tiny ImageNet and ImageNet[16]), which
show that FA Module has consistent performance
improvements and is applicable to different networks and
datasets.

Section II of this paper introduces related works. Section
III provides the detailed structure of the proposed FA module.
Section IV conducts experiments to verify and analyze the
performance of FA Module. Section V concludes this paper
and provides future research direction.

II.RELATED WORK

A. Deep networks

Since large-scale neural network has been successfully
applied in visual tasks [1], deeper networks have become an
important concern of researchers. VGGNet [12] explored the
relationship between the depth and the performance of
networks, successfully constructing deep CNNs with the
deepest layer up to 19, and indicats that increasing the depth of
the network can improve the performance to a certain degree.
Inception architectures[2][8] used multiple convolution
kernels to extract and fuse the information from different
scales of the feature map, generating a better feature
representation. By introducing skip connections, ResNet [6]
greatly inhibits the "degradation" of networks and made it
feasible to construct extremely deep CNNs. Combined with
the basic residual structure of ResNet, various new networks
have been proposed, such as WideResNet [17], Inception-
ResNet[13] and ResNeXt[14]. WideResNet is a residual
network with increased width (i.e., more convolutional filters)
and reduced depth, demonstrating the effectiveness of the
wider network depth. Inception-ResNet combins the Inception
units with skip connections, increasing the depth and width of
the network, and further optimized the Inception units on the
basis of [2], making it more concise and efficient. ResNeXt,
based on ResNet, uses the group convolution method to
improve the performance of networks without increasing the
complexity of the parameters, and this structure has strong
extensibility to be applied to various existing residual-based
architectures.

The above methods mainly focus on factors such as depth,
width and the complexity of the network. In this paper, we
focus on the "attention" aspect of the network, and use the
attention mechanism to make the network pay more attention
to important information, thereby improving the network's
abilities of feature extraction and representation.



B. Attention mechanism

Attention mechanism is an important part of human
cognitive behavior[18][19][20], and humans tend to
consciously focus on the information with more significance.
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Fig. 2 Schematic diagram of the ideal block-wise attention module.

The importance of the attention mechanism has been
extensively studied in previous work[21][22][23][24]. Long
short-term memory (LSTM)[25] uses a gating mechanism,
which is a kind of bottom-up attention mechanism based on
saliency, to "memorize" important information and "forget"
secondary information, and shows a huge advantage in
processing long sequences. Highway networks[26] introduced
a method similar to the gating mechanism in LSTM, through a
"transform gate" and a “carry gate” to control “how much of
the output is produced by transforming the input and carrying
it”, which allows the features to be flexibly selected and
learned by the network. Wang et al. [27] proposed an
attention-based residual learning method, using an encoder-
decoder-style attention module to refine the feature maps,
which not only improved the precision but also the robustness
to noise. Different from the above methods, which directly
calculate the attention map of the three-dimensional feature,
“squeeze-and-excitation” (SE) network SENet [9] and
convolutional block attention module (CBAM) [10] separately
calculate the channel attention and spatial attention by
explicitly modelling the interdependencies among channels
and among spatial pixels. SENet focuses on channel-wise
attention information, extracting and expressing channel
features through the SE block, which gives networks the
capability to learn channel-wise interdependences from the
training data. In addition to channel attention, CBAM uses
spatial attention, which plays an important role in finding
where to focus [28]. CBAM connects the channel attention
block and the spatial attention block in series, and performed
feature recalibration along the channel and spatial dimensions.
In addition, recent works have shown that self-attention is also
a feasible method to build image processing models [29][30].
In a variety of tasks, it replaces recurrent and convolutional
models and achieves powerful performances [31][32][33][34].

In this paper, we focus on the interdependencies of the
blocks which can theoretically be any convolutional layer, any
embedded algorithm unit or any combination of them. By
viewing the block as a whole unit, we establish a block-wise
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attention mechanism to perform feature recalibration to the
blocks, making the network pay more attention to important
blocks.

III.BLOCK-WISE ATTENTION MODULE
A given block B, (ie€[0,n—1]) of the network can be
X, 2 U, X, e R,
can be any convolutional layer,

represented as a transformation K,
U, e R™"*%  Ideally, F,,

any embedded algorithm unit or any combination of them. The
block-wise attention module is used to dynamically control the
effectiveness of block B, , which can be described as:

ﬁi =F, (X;,U)=X,+(U,-X)) xk, )

For block B, , whose input feature is X, and output feature
is U,, its effectiveness can be described as (U,-X;) . The
transformation F,, in equation (1) uses a weighting factor
k, €(0,1) to perform feature recalibration, recalibrating the

response of B, . Ideally, the block-wise attention module

should have the capability to fully capture the
interdependences among blocks, making the blocks influence
and compete with each other, and finally generate attention for
each block.

A. Ideal Structure

According to our vision, ideally, the structure of the block-
wise attention module could have the form like Fig. 2. F,_

represents the feature extraction process, which extracts global
information from the output feature map of each block,
generating feature descriptors. Then all the descriptors are
passed into F, , which is an inference process, generating

attention for each block. Finally, the effectiveness of each
block is adjusted by recalibrating the output feature map of
each block through each corresponding G which is a

we



weighting process, recalibrating the feature based on attention
information.

However, this module exists only in ideal situations, and
cannot be practically realized. The network is constructed
serially while this module requires parallel feature processing.
Therefore, we propose an FA module, which is a feasible form
of the Block-wise Attention Module.

pooling i

G’ U
Fig. 3. The schematic diagram of the FA module. For block B, of the network,

X; is its input feature. In this figure, the orange part represents the “focus”

step Fp, and the green part represents “association” step F,_ . These colors

correspond to those in Fig. 1.

B. Focus-and-Association Module

For human visual attention mechanism, in addition to
screening information of interest based on focuses of attention,
we also tend to generate associations among them, thereby
obtaining a more reliable judgment. According to Treisman
and Gelade's research[35] on feature integration theory, the
human visual attention mechanism can be divided into two
steps: (1) saliency-based feature perception; (2) fusion of
salient features. Inspired by this mechanism, we proposed a
focus-and-association (FA) module to generate block-wise
attention by associating features from different blocks. This

process K, can be described as:

U, =F,, (k.k,,...k_,X.,U,)
=G, (F, (k. ky,...k_,F,(X)).X,,U)
=G, (F, (k.ky,....k, ,k),X,,U,)
=G, (k.,X,,U)

we \"Vi
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Here F, represents the “Focus” step. For the input feature
X, of B, , F,

focused attention &/ €(0,1) , which includes a preliminary

is a mapping from X, e R""*% to the

feature extraction and inference process, similar to the first
response of human visual attention mechanism. F, represents
the “association” step, which is a mapping from
[k, k,,....k,_,,k/]e R" to the associative attention k, €(0,1),
which is an associated attentional inference process, similar to
the association of human visual attention mechanism. G,

represents a weighting process that performs feature
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recalibration to the output of B, based on & to dynamically
control the effectiveness of B, . The overall diagram is shown
in Fig. 1. When i =0, we do not recalibrate B, with the FA

module, but regard it as the benchmark block. When i=1,
equation (2) equals:

ﬁi =F, (Xi’Ui)
= Gwe (Fa\ (Fﬂ;(Xz))in’Ui) (3)
In this case, the input of F,. only contains F, (X;,) subject
to R', and because the output of F, also subject to R', F,

is only a multiple mapping of the input, which is meaningless
for the network. Therefore, we skip F,, letting k, =k', and

equation (3) will be simplified to:
ﬁi =F, (X;,U)
=G, (F,(X,),X,,U)

we

“
In addition, when i >1(1i € Z, FA module can be strictly
designed according to equation (2).

1)Focus: Saliency-based Feature Perception
Given a neural network with n blocks, we view the output

U, of each block B, as a feature, then the network can be

regarded as a feature set M containing n features. [35]
pointed out that “without focused attention, features cannot be
related to each other.” For a feature X, (i.e., the final

recalibrated output of block B, , ) in M, the proposed “focus”

step is corresponding to the first step of the human visual
attention mechanism: saliency-based feature perception. It
generates a focused attention k; based on the saliency of the

feature. Specifically, it contains two sub-processes: (1)
saliency feature extraction and (2) saliency map inference. The
detailed composition of the “focus” step is illustrated in Fig. 3
(the orange part) and can be expressed as:

k =F,(X;)=F, (F, (X)) ®)

F, realizes the first subprocess: Saliency feature

extraction. For CNNGs, there is richer spatial information in the
shallow layer of the network, and richer semantic information
in the deep layer. The continuous convolution operation is
essentially a process that compressing the spatial information
of the spatial dimension into the channel dimension to
generate semantic information. Here we concern more about
semantic information, therefore, for F,_ we suggest

compressing the spatial information into the channels. The
input feature X, can be viewed as a set of channel descriptors,

whose statistics are prevalent in feature engineering works
[36][37][38]. Here, we use global average pooling, which is a
common method for the abstraction of spatial information.
Zhou et al. [39] pointed out that global average pooling can be
used to explore the extent of the target object, and Hu et al. [9]
and Woo et al. [10] both used it to calculate spatial statistics.

We perform global average pooling to X, across spatial



dimensions H;xW, to get a channel descriptor /, and the ;-
th element /; of I can be calculated by:

1 K
I =F (X, )=—— X (p.
=F.(X,) wa;; (2D

(6)

F,, realizes the second subprocess: saliency map inference,
where the saliency map is an attention value subject to R'. [9]
proved that a network composed of two FC layers can learn
the nonlinear interaction relationship from channels, and we
adopt a similar structure for F, :

F, ()= o(W,5(W,D) -
Where & denotes the rectified linear unit (ReLU)
activation function [40], o denotes the sigmoid activation
QXC" lxg

function, W, e R" ,and W,eR " .

layers and reduces / € R“ to the focused attention &/ e R'.

F. includes 2 FC

in

To limit the complexity and aid generalization, we create a
dimensionality-reduction layer (the first FC layer) with
reduction ratio 7 , followed by a ReLU and another
dimensionality-reduction layer (the second FC layer) with the
output subjected to R'. Finally, it’s activated by sigmoid
function, outputting the focused attention £, .

Discussion. The proposed “focus” step is a process of
saliency-based feature perception, including saliency feature
extraction and saliency map inference. In essence, this process
achieves a high degree of abstraction from the input feature,
which contains spatial and semantic information, to the
focused attention that contains only semantic information.

2)Association: Fusion of Salient Features
The “association” step is corresponding to the second step
of the human visual attention mechanism: fusion of salient
features. It generates an associative attention &, by associating

features from different blocks.
Before block B, , a set of “associative attention” s, ,
.» k. ]) is generated from [B,, B, ,

B, ,] by the corresponding FA mechanisms. We concatenate

(composed of [k, k,, ..

s,, with the focused attention &/ of B, , constructing an
attention descriptor s; e R’ , which contains the attention
information of [B,, B, ,..., B, ]. Then s/ is passed through the
“association” step F_, which is illustrated in Fig. 3 (the green
part), and it can be described as:

k =F, (s) = 6(W,5(W,s)))

Where W, e R*™, W, e R"”" . Similar to
composed of 2 FC layers. The difference is that here, the input
s, is a feature with a very small size while contains a large

®)

F,, F, isalso

in 2

amount of information (attention for the blocks). To fully
extract interdependences among blocks, we create a
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dimensionality-increasing layer (the first FC layer) with
increasing ratio 7, , which improves the ability to utilize
ReLU
activation, a dimensionality-reduction layer (the second FC
layer) and sigmoid activation. Finally, the associative attention
k. is generated and is concatenated with s, ; to construct s,

features. The rest part of F_ is the same as F, :

which is useful for later FA modules.

Discussion. The proposed “association” step is a process of
fusion of salient features, which integrates interdependences
among blocks, generating reliable associative attention for the
block. On the other hand, from the perspective of
backpropagation, it provides multiple paths for blocks with
different feature levels, thereby making the learning process
more coordinated.

3)Weighting: Feature Recalibration
The weighting process is used to control the effectiveness
of block B, based on the associative attention k;, recalibrating

the output feature U, of B, and generating the recalibration

result U,, which is also the input feature X, of block B,,, .
This process is defined as:
X = i]i =G, (6, X, U,) =X, +(U;-X;) xk,

i

€

A similar feature weighting method is also used in [26],
and it has been proved to have good generality in feature
selection, which is defined as:

U,=U, TX,)+X, -C(X,) (10)
[26] explain equation (10) from the perspective of the gating
mechanism, where T(X,) is called the “transform gate” and

C(X,) is called the “carry gate”. When C=1-T,
U,=U, - TX)+X, (1-T(X,) (in

Apparently, after expanding equations (9) and (11), they
will have a similar form. However, since our £, is different

from T(X,) both in size and calculation process, we explain

the mechanism of equation (9) from another point of view: For
the block B,, (U,-X,) represents all its effectiveness. From

the perspective of the effectiveness of the block, we rescale
(U,-X,) with the associative attention £, to control how much

B. works. In particular, there are the following extreme cases:

- {xi,
U =
U,

When k =0, the effectiveness of B, is completely

l.-fk,':O:

if k=1. (12

suppressed, which is equivalent to skipping B,. When &, =1,
the effectiveness of B, is completely released, which is
equivalent to skipping G, . Therefore, depending on the value
of k , the effectiveness of B, can be smoothly controlled by

the weighting process G,, . In addition, U, and X, in



equation (9) must have the same shape. When mismatching,
we use the method mentioned in [6], performing a linear
projection with convolutions to match the features.
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Fig. 4. A multi-stage deployment form for the FA module
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C. Architecture Arrangement

The proposed FA module can be applied to most existing
state-of-the-art CNNs. Because it’s a block-wise attention
mechanism, here different definitions of the block lead to
different forms of deployment.

For VGGNet[12], which has 5 blocks, the FA module can
be easily deployed by directly constructing the FA module for
each block. The detailed structure is the same as the case of
n=4 in Fig. 1. For networks with multiple stages, such as
ResNet[6], Inception-v4[13] and ResNeXt[14], their
architectures are not just a stack of multiple blocks; these
networks are divided into multiple stages, (i.e., the image
processing task is divided into multiple stages), and each stage
contains multiple blocks. In this case, we make corresponding
adjustments to the deployment of FA module. In section III we
mentioned that B, can contain any convolutional layer, any

embedded algorithm unit or any combination of them.
Therefore, the stage can also be viewed as a block, based on
which, we proposed a multi-stage deployment form for the FA
module in Fig. 4, which contains 2 steps: First, we separately
build the FA module for the blocks in each stage, which is
same as Fig. 1; Then we regard each stage as a block unit and
repeatedly build the proposed FA module at the stage aspect.
In this way, we establish connections for different blocks and
stages with FA module. In addition, we take the Residual
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block [6] and SE-Residual block [9] for example, showing the
corresponding combination with FA module in Fig. 5.

D. Implementation

In this paper, FA module is applied to 4 architectures:
VGG [12], ResNet [6], Inception-v4 [13] and ResNeXt [14].
For each of them, we use same optimizing strategy. During the
training process on CIFAR-10 and CIFAR-100 datasets [15],
we use the same data augmentation method with [6]:
performing 4 pixels zero padding operations on each side of
the images and taking a random 32x32 crop after horizontal
flipping. Mean channel subtraction is also applied to perform
normalization. When training the Tiny-ImageNet, we make
adaptive adjustments based on the image size: 8 pixels zero
padding and 64x64 crop size. When testing we evaluate only
the single view of the original images (unless specifically
pointed). The Models are trained using stochastic gradient
descent (SGD) with a momentum 0.9 and a mini-batch size of
128. We use a weight decay of 0.0005 and start with the
learning rate of 0.1, dividing it by 10 every 60 epochs. All the
models are trained until converging, with a maximum of 240
epochs.

We compare the performances between networks deployed
with FA module (FANet) and SE block [9] (SENet). For a fair
comparison with SENet, we set the reduction ratio r(reported
in[9]) to be 4 and 8, and take the one with better performance
as the final result. For the proposed FANet, to show the
general effect of this structure, we set the ratio (mentioned in
section III.B) 7, =r, =4 to perform experiments.

IV.EXPERIMENTS

In this section, we perform experiments to verify the
effectiveness of FA module in a range of datasets and
architectures.

A. Experiments on CIFAR-10 and CIFAR-100

1)CIFAR-10:

We first perform experiments on the CIFAR-10 dataset
[15], which contains 10 classes, 50K training images and 10K
test images with an image size of 32x32. We separately
experiment on VGG[12], ResNet[6], Inception-v4[13] and
ResNeXt[14], deploying FA module into the networks and
comparing it with SENet[9].

For VGG-19, we add batch normalization [8] before the
activation function in each block to accelerate the training
process. We delete two FC layers, leaving only one FC layer
as the classifier. In addition, we use the pretrained weights on
the ImageNet 2012 classification dataset[16] to initialize
convolutional layers. The structure of FA-VGG-19 has the
same form with the case of n =4 in Fig. 1.

For ResNet, we reproduce the network according to the
structure [6], which contains 3 stages. Each stage contains #
residual blocks, and each residual block contains 2 3x3
convolutions. In addition to the first convolutional layer and
the last FC layer, there are totally 6n+2 layers in the network.
We deploy FANet according to the structure shown in Fig. 4.
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Fig. 5. Original blocks and combinations with FA module. (a): The original residual block [6]. (b): The SE-residual block, which is reported in [9]. (c): The
proposed FA-residual block, which is suitable for the cases where i > 1. (d) The proposed FA-SE-residual block, which is suitable for the cases where

i > 1.7Scale_SE” means the scaling process reported in [9] and ”Scale_FA” means the weighting process G e mentioned in section III.B.

Inception-v4 [13] contains a total of 3 stages, including 4
Inception-A blocks, 7 Inception-B blocks and 3 Inception-C
blocks. Similar to the case of ResNet, we respectively deploy
the FA module to stages and blocks. In addition, we use zero
padding expanding the input image size to 96x96, and we
fine-tune the reduction part (valid padding to same padding)
and Inception-B block (kernel size of [1,7],[7,1] to [1,5],[5,1])
of Inception-v4 to fit the small size of input images. For
ResNeXt, we follow the settings of [14], build an ResNeXt-29
which has 3 stages with 3 residual blocks in each stage. We set
cardinality to 8 and width to 16 for ResNeXt in the
experiments. ResNeXt has similar structure with ResNet,
therefore it is deployed in the same way.

As is shown in Table I, apart from the comparison with the
corresponding baseline, FANet is also compared with the
state-of-the-art architecture SENet [9]. We first perform
experiments on ResNets across different depths. Obviously the
proposed FANet achieves consistent accuracy improvement in
ResNet with various depths, and FA-ResNet-110 achieves a
top-1 error of 5.57%, bringing only an extremely small
increase in amount of parameters and computational
complexity at the same time. Compared with SENet, FANet

consumes similar additional parameters and computations.
When the baseline network is shallow, SENet shows a larger
improvement: SE-ResNet-20 achieves a 0.07% accuracy
improvement over FA-ResNet-20. Under the baseline of
ResNet-32, FANet achieves almost the same accuracy as
SENet. When the baseline network is deep, FANet shows
better performance than SENet. When the baselines are
ResNet-44, ResNet-56 and ResNet-110, FANet achieves
0.19%, 0.24%, and 0.04% improvements in accuracy
compared to SENet. Remarkably, FA-ResNet-56 achieves a
higher accuracy than ResNet-110 (top-1 error of 5.86 versus
top-1 error of 5.97) with only half of the total computational
burden (6.278 MFLOPs versus 12.33 MFLOPs) and
parameters (0.892M versus 1.751M).

Then we also perform experiments on VGG-19, Inception-
v4 and ResNeXt-29, in which cases, the FANets achieve
consistent accuracy improvements compared to the baselines
and SENets. In particular, FA-ResNeXt-29 achieves a
minimum top-1 error rate of 5.37%. From these results, the
proposed FA module shows great potential to be deployed in
various architectures and produce consistent performance
improvements.

TABLE I. Top-1 error rates (%) on the CIFAR-10 dataset and complexity comparisons.

original re-implementation SENet[9 FANet (Proposed)

Baseline top-1 err. top-1 MFLOPs #param top-1 MPFLOPs #param top-1 MFLOPs #param
err. err. err.

ResNet-20[6] 8.75 7.70 2.063 0.293M 7.25 2.122 0.301M 7.32 2.093 0.297M
ResNet-32[6] 7.51 7.05 3.431 0.487M 6.50 3.482 0.495M 6.51 3.484 0.495M
ResNet-44[6] 7.17 6.43 4.800 0.682M 6.33 4.870 0.692M 6.14 4.879 0.693M
ResNet-56[6] 6.97 6.31 6.168 0.876M 6.10 6.259 0.889M 5.86 6.278 0.892M
ResNet-110[6] 6.43 5.97 12.33 1.751M 5.61 12.51 1.778M 5.57 12.67 1.802M
VGG-19[12] - 7.34 140.2 20.03M 6.57 142.4 20.34M 6.45 143.9 20.56M
Inception-v4[13] - 17.9 258.1 36.84M 12.7 284.5 40.60M 12.3 284.2 40.56M
ResNeXt-29[14] - 593 39.78 5.647TM 5.70 47.04 6.685M 5.37 46.91 6.665M
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The “original” column gives the results reported in original
paper. To make a fair comparison, we retrain the baseline
models and report the scores in the re-implementation column.
We compare the performance of the proposed FANet with the
state-of-the-art SENet [9]. The SENet column refers to the
corresponding architectures where the SE block has been
deployed and the FANet column refers to the corresponding
architectures where the FA module has been deployed.

TABLE II. Top-1 error rates (%) on the CIFAR-100 dataset and complexity
comparisons.

MFLOPs | #param | top-1err.
VGG-19[12] 140.6 20.08M 28.58
VGG-19[12]+SE[9] 142.7 20.39M 27.34
VGG-19[12]+FA 144.2 20.60M 26.61
ResNet 56[6] 6.209 0.882M 29.16
ResNet-56[6]+SE[9] 6.300 0.895M 27.93
ResNet-56[6]+FA 6.319 0.898M 28.01
Inception-v4[13] 259.1 36.97TM 61.56
Inception-v4[13]+SE[9] 285.4 40.74M 4438
Inception-v4[13]+FA 285.1 40.70M 38.20
ResNeXt-29[14] 40.43 5.739M 22.92
ResNeXt-29[14]+SE[9] 47.68 6.77TM 20.80
ResNeXt-29[14]+FA 47.55 6.757TM 22.47

2)CIFAR-100

To verify the performance of the FA module in a complex
dataset with a larger number of classes, we also perform
experiments on CIFAR-100 dataset, which contains 100
classes, 50K training images and 10K test images with an
image size of 32x32. When deploying the FA module, the
settings are the same as those on the CIFAR-10 dataset, except
that the last FC layer is adaptively modified to 100 neurons to
match the number of classes. As is shown in Table II, for each
baseline network, the corresponding FANet achieved a
consistent accuracy improvement, in particular, a 23.36%
accuracy improvement was achieved in Inception-v4 network.
Compared with SENet, FANet achieves better performances
than SENet in the baseline of VGG-19 and Inception-v4 (0.73%
and 6.18% respectively, over SENet) while in the baselines of
ResNet and ResNeXt, SENet achieves a better performance
because FANet improves the performance mainly by reducing
the redundancy among blocks. For ResNet and ResNeXt,
which have residual blocks, the original residual learning
mechanism has already reduced this redundancy to a certain
extent; therefore the effectiveness of the corresponding FANet
is not as remarkable as SENet, which mainly reduces
redundancy among channels. Especially in the ResNeXt
baseline, which has far more channels than ResNet (1024
versus 64 for the last convolutional layer), the corresponding
SENet greatly reduce the channel-wise redundancy and
achieves an improvement in accuracy of 1.67% compared to
FANet.
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Experiments on Tiny ImageNet

TABLE III. Top-1 error rates (%) on the Tiny ImageNet dataset and
complexity comparisons.

MFLOPs | #param | top-1 err.
VGG-19[12] 140.9 20.13M 55.30
VGG-19[12]+SE[9] 142.0 20.28M 39.99
VGG-19[12]+FA 144.6 20.65M 41.81
ResNet-56[6] 6.254 0.889M 45.44
ResNet-56[6]+SE[9] 6.345 0.902M 44.49
ResNet-56[6]+FA 6.364 0.904M 44.64
Inception-v4[13] 260.2 37.13M 93.72
Inception-v4[13]+SE[9] 286.5 40.90M 54.73
Inception-v4[13]+FA 286.2 40.85M 51.69
ResNeXt-29[14] 41.14 5.841M 36.54
ResNeXt-29[14]+SE[9] 48.40 6.880M 35.04
ResNeXt-29[14]+FA 48.27 6.860M 35.60

We also perform experiments on a more complex dataset,
Tiny ImageNet, which contains 200 classes, 100K training
images, 10K validation images and 10K test images with an
image size of 64x64. We train the model on the training set
and test the top-1 error rate on the validation set. The
experiments are also performed on VGG[12], ResNet[6],
Inception-v4[13] and ResNeXt[14]. We follow the settings in
section IV.A and make adaptive adjustments to fit the Tiny
ImageNet dataset: First, for each network, the last FC layer is
adaptively modified to 200 neurons to match the class number.
Second, for VGG-19, we add a global max pooling before the
last FC layer. Third, for ResNet and ResNeXt, we adjust the
stride of the first layer of 3%3 convolution from 1 to 2. The
other configurations remain unchanged.

As is shown in Table III, for each baseline network, the
corresponding FANet achieved a consistent accuracy
improvement, in particular, a 42.03% accuracy improvement
was achieved in Inception-v4 network. It should be noted that
because of the high complexity both of the network and the
dataset, in this case it’s difficult for the baseline network to
converge under our default parameter settings, while the
corresponding SENet and FANet can significantly improve
that. Compared with SENet, in the baseline of Inception-v4,
FANet achieves a better performance (3.04% over SENet). In
other baselines, SENets achieve a better performance.

Discussion. Based on the results of section IV.A and IV.B,
we argue that the block-wise redundancy y , the channel-wise
redundancy 7, the depth of the network and the class number

of the dataset have certain connections: For y oy , with an

increase in the network depth and an decrease in the number of
classes, y will continue to increase; otherwise, y will continue
to decrease. The proposed FA module mainly reduce the
block-wise redundancy y , the state-of-the-art SE block
mainly reduce the channel-wise redundancy 7. These two
kinds of redundancies are not completely independent and are
related to each other. By reducing one of them, the other one is
also reduced to a certain extent. How to quantify y and 7,



and jointly analyze them with the network depth and dataset
complexity, will be one of our future research directions.

C. Combine FA Module with State-of-the-art

TABLE IV. Top-1 error rates (%) and complexity comparisons of SENet[9]
and FA-SENet on the Tiny ImageNet dataset.

. SENet[9] FA-SENet
Baseline
top-1 err. | #param | top-1err. | #param
Inception-v4[13] 54.73 40.90M 48.29 44.62M
ResNet-56[6] 44.49 0.902M 44.75 0.930M
ResNet-110[6] 43.96 1.790M 43.90 1.840M

FA-SENet represents the network deployed with both SE blocks and FA module, the diagram of FA-SE-
Residual module is shown in Fig. 5. (d).

TABLE V. Top-1 error rates (%) and complexity comparisons of SENet[9]
and FA-SENet on the CIFAR-100 dataset.

. SENet[9] FA-SENet
Baseline
top-1 err. | #param | top-1err. | #param
VGG-19[12] 27.34 20.39M 26.39 20.91M
ResNet-110[6] 26.50 1.784M 25.92 1.834M

In section IV.B, we analyzed the mechanism of the FA
module (proposed) and the State-of-the-art SE block [9],
indicating that they can reduce the block-wise and channel-
wise redundancies, respectively. In this section, we further
deploy the FA module to SENet to simultaneously reduce
network redundancies from both the block and channel aspects,
and it is compared with the original SENet. Taking ResNet as
an example, we illustrate the schema of an FA-SE-Residual
block in Fig. 5 (d). We perform experiments on the Tiny
ImageNet and CIFAR-100 datasets, and the settings are same
as those in section IV.A and IV.B.

We first experiment on Tiny ImageNet dataset, and the
results is shown in Table IV. In the baseline network of
Inception-v4, FA-SENet achieves an improvement of 6.44%
over SENet while in the baseline network of ResNet56, the
accuracy of FA-SENet is even lower than that of SENet.
Based on our reasoning in section IV.B, we argue that deeper
networks have a higher degree of block-wise redundancy on
which the proposed FA module works. Therefore, we further
experiment on ResNet110 and this time FA-SENet achieves an
improvement of 0.06% over SENet, which is in line with our
expectations, and the variation tendency in accuracy shows the
potential of FA the module to be applied to extremely deep
networks. To further verify the effectiveness of FA-SENet, we
also perform experiments on CIFAR-100 dataset. As shown in
Table V, FA-SENet achieves a consistent accuracy
improvement. When the baseline is VGG-19 and ResNet-110,
FA-SENet achieves improvement of 0.95% and 0.58%
respectively, over SENet.

Discussion. The mechanism of FA module reduces the
block-wise redundancy of the network, and in section III we
mentioned that this block can contain any convolutional layer,
any embedded algorithm unit or any combination of them. In
this section, we view SE block, which is a state-of-the-art
embedded algorithm unit, as part of the original block and
deploy the FA module. The results in this section show the
great potential of the FA module in compatibility, deployed
with state-of-the-art embedded algorithm units at the same
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time. In addition, the performance of the FA module in the
deep network (ResNetl110) shows that its application in the
extremely deep network is worth anticipating.

D. Visualization and Analysis

In this section, we visualize part of the details in the
network to further explore the mechanism of action of the FA
module. We extract 5 classes from the training set of the
ImageNet 2012 classification dataset [16] (in this paper, we
call this subset as ImageNet-5 dataset), and take 80% of the
dataset (for each class, i.e., 1040 images) as the training set,
and 20% (for each class, i.e., 260 images) as the test set.
During training, we resize the shorter side of the image to 256
pixels while maintain the aspect ratio of the image, and then
perform random cropping to obtain images with a size of
224x224 pixels. When evaluating the model, we use the
center-crop to obtain the single-crop top-1 error rate. We use
ResNet-56 [6] as the baseline, which has the same architecture
as is mentioned in section IV.B, except that the last FC layer is
adaptively modified to 5 neurons to match the number of
classes. In addition, the mini-batch size is set to 32. The other
settings are the same as those in section III. D.

TABLE VI. Top-1 error rates (%) on the ImageNet-5 dataset and complexity

comparisons.
MFLOPs | #param | top-1 err.
ResNet-56[6] 6.174 0.876M 10.62
ResNet-56[6]+SE[9] 6.265 0.889M 9.23
ResNet-56[6]+FA 6.285 0.892M 10.31
ResNet-56[6]+SE[9]+FA 6.375 0.905M 9.08

We train and evaluate 4 networks: ResNet-56, SE-ResNet-
56, FA-ResNet-56, and FA-SE-ResNet-56. As is shown in
Table VI, FANet achieves consistent accuracy improvement.
The corresponding FANets of ResNet-56 and SE-ResNet-56
(FA-ResNet-56 and FA-SE-ResNet-56) achieve accuracy
improvements of 0.31% and 0.15%, respectively, with only a
few additional parameters (0.016M) and slight computational
burden (0.11 MFLOPs), and particularly, a minimum top-1
error of 9.08% is achieved in FA-SE-ResNet-56. To explore
how the FA module works, we first draw training curves of
top-1 error rate and loss both on the training set and test set.
As is shown in Fig. 6, FANet produces consistent gains in
performance that are sustained throughout the training process.
The corresponding FANet has significantly faster convergence
rate than ResNet-56 and SE-ResNet-56. In addition, we can
see from (a) and (b) that in the early stage of training, FANet
can significantly reduce the fluctuation amplitude of the curve,
which indicates that the FA module makes the network
converge in the direction with better generalizability.

We also applied gradient-weighted class activation
mapping (Grad-CAM) [41] to the networks to visualize the
images in the test set. Grad-CAM uses gradients to calculate
the importance of spatial position in the convolutional layer.
By observing the regions that network has considered
important for predicting a class, we try to analyze how the FA
module affects the ability of the network to extract features.
We compare the visualization results of ResNet-56, SE-
ResNet-56, FA-ResNet-56 and FA-SE- ResNet-56. To explore



how the FA module works, we select some representative
results to show in Fig. 7, and the softmax scores for target
classes are also given.

In Fig. 7, the FA module makes the network more adept at
perceiving more detailed features from the whole space region
and associating these features with each other. For example,
for the visualization results in column 3, although ResNet-56
and SE-ResNet-56 can identify cats well (the corresponding
score P is close to 1), the focuses are scattered and
independent. However, FA-SE-ResNet-56 can continuously
focus on the entire body of the cat, and although the
corresponding P is not maximized, we argue that this
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SE-ResNet-56
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—— FA-ResNet-56
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classification result is the most robust. Remarkably, for the
visualization results in the last 2 columns, where the target
color is similar to the background color, ResNet-56 and SE-
ResNet-56 cannot locate the target, while the corresponding
FANets (FA-ResNet-56 and FA-SE-ResNet-56) can accurately
focus on it. We believe that this feature has a necessary
connection with the “association” step of the FA module. The
“association” step integrates the interdependencies among
blocks and establishes connections for different features of
different levels. When performing backpropagation, the
features of multiple levels and their connections are learned
integrally. In  response to the results of
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Fig. 6. Training curves of top-1 error rate and loss on ImageNet-5 dataset. (a) Top-1 error rate on test set. (b) Loss on test set. (c) Top-1 error rate on training set.
(d) Loss on training set. The results of ResNet-56, SE-ResNet-56, FA-ResNet-56 and FA-SE-ResNet-56 are shown.
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Fig. 7. Grad-CAM[41] visualization results. The visualization results of ResNet-56, SE-ResNet-56, FA-ResNet-56 and FA-SE-ResNet-56 are compared in the
columns. The ground-truth label is above the input image, and P denotes the softmax score for the ground-truth class.
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visualization, the network becomes more sensitive to the
features, which are from different scales and spatial locations,
and the associations among them in the image.

V.CONCLUSION

In this paper we propose the FA module, an explicit
embedding learning mechanism, performing dynamic block-
wise feature recalibration to reduce the block-wise redundancy
and improve the representational power of a network.
Experiments on multiple datasets and networks show the
effectiveness of FANet, and it involves only few additional
parameters and slight computational burden. In addition, the
FA module has good compatibility. We combine it with the
state-of-the-art SE block and achieve further improvements in
accuracy. Finally, more experiments are performed to study
how the FA module works, and we find that it makes the
network more sensitive to perceive features and their
connections, which may make a contribution to the field of
image segmentation. In our future work, we will further
explore the application of the FA module in extremely deep
networks and the combination of FA module with various
existing state-of-the-art methods.
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