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ABSTRACT
Material recognition, as an important task of computer vision, is
hugely challenging, due to large intra-class variances and small
inter-class variances between material images. To address those
recognition problems, multi-scale feature fusion methods based
on deep convolutional neural networks are presented, which has
been widely studied in recent years. However, the past research
works paid too much attention to the local features of the image,
while ignoring the non-local features that are also crucial for fine
image recognition tasks such as material recognition. In this pa-
per, Non-local Attentional Feature Fusion Network (NLA-FFNet) is
proposed that combines local and non-local feature of images to
improve the feature representation capability. Firstly, we utilize the
pre-trained deep convolutional neural network to extract the image
feature. Secondly, a Multilayer Non-local Attention (MNLA) block
is designed to generate a non-local attention map which represents
the long-range dependencies between features of different posi-
tions. Therefore, it can achieve stronger noise-robustness of model
and better ability to represent fine features. Finally, combined our
Multilayer Non-local Attention block with bilinear pooling which
has been proved to be effective for feature fusion, we propose a
deep neural network framework, NLA-FFNet, with noise-robust
multi-layer feature fusion. Experiment prove that our model can
achieve a competitive classification accuracy in material image
recognition, and has stronger noise-robustness at the same time.
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1 INTRODUCTION
Material characteristics are a very important visual clue, which
is widely present on the surface of natural objects. It is visually
diverse and complex, and difficult for the human eye to distinguish
their differences. Due to the influence of lighting conditions, shoot-
ing angle of view, and shooting distance, the texture appearance
feature of material images usually change greatly, directly leading
to the low accuracy of material image recognition. Material image
recognition occupies an important position in practical applications
such as scene recognition, industrial inspection, and medical image
recognition, which has been a hot research issue in the field of
computer vision in recent years. It is generally believed that how
to mine robust and detailed image features is the key to improving
the recognition accuracy.

Initially, researchers proposed a variety of handcraft classic fea-
ture descriptors, such as SIFT [23], SURF [2] and so on, in order to
reduce or eliminate the influence of factors such as illumination,
rotation, and viewing angle. For decades, these local feature descrip-
tors have dominated the field of computer vision.With the springing
up of deep learning, Deep Convolutional Neural Networks (DCNN),
driven by big data, have achieved better feature extraction and
description [13][14][31]. Cimpoi [8] et al. combined Fisher Vector
with CNN and proposed the FV-CNN network model. Subsequently,
based on FV-CNN [26], Song et al. proposed a Locally-transferred
Fisher Vector (LFV) model, which combined Fisher Vector coding
and neural network in a simple and effective way and obtained
lower dimensional feature descriptors than FV-CNN [26]. Lin et al.
[22] proposed the Bilinear CNN (BCNN) model for texture and ma-
terial recognition. The BCNN designed a bilinear structure to aggre-
gate the pairwise feature of two independent CNNs, which adopted
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outer product of feature vectors to produce a high-dimensional
feature for quadratic expansion. Inspired by BCNN [22], Yu et al.
[28] proposed the Hierarchical Bilinear Pooling (HBP) model in
which each convolutional layer of CNN is regarded as a feature
extractor of different object parts, and features of multiple convo-
lutional layers is fused in a simple way. However, it just expands
on the channel and does not pay attention to the possible gain
effects of the non-local features, ignoring the influence of noise and
background information when HBP extracts the feature maps of
different convolutional layers.

Therefore, in order to obtain a more noise-robust feature repre-
sentation, building on [22][28], we propose a Non-local Attentional
Feature Fusion Network (NLA-FFNet) which combines the local and
non-local features of multiple convolutional layers. The NLA-FFNet
can obtain a more noise-robust feature descriptor by considering
the non-local similarity of Multi-layers of CNN. The main contri-
butions of this paper are as follows:

1. Based on the non-local block [27], we proposed two different
multilayer attention modules combined with the non-local module,
named MNLA-1 and MNLA-2 respectively, which can be easily
applied to classic CNN architectures;

2. We proposed a deep neural network model, NLA-FFNet, for
material recognition by applying MNLA-1 and MNLA-2, which has
competitive classification accuracy and strong noise-robustness on
the DTD [7] and MINC [4] datasets.

2 RELATE WORK
2.1 Deep feature fusion
In DCNN, it is an important way to improve the performance of the
network model by fusing the multi-scale feature which is extracted
from multi-layers. CNN’s shallow features, with high resolution,
contain more contour and texture information, but are poor in ex-
pressing semantic information of images; while deep features, with
low resolution, have stronger semantic information, but are poor
in perception of texture details. Therefore, it’s key to efficiently
fusing shallow and deep features. With the aim of synthesizing
more discriminative fusion features, the feature fusion strategies
can be mainly divided into two categories, Concatenation and Add:
The feature fusion methods used in [16][1][6] are directly concate-
nating features in dimensionality, that is, if the dimensions of the
two input features x and y are p and q, the dimension of the fus-
ing feature of concatenation is p + q; while in [21][11], the two
feature vectors, x and y, are directly added and combined into a
complex vector, which is element-by-element addition of input fea-
tures. However, Concatenation and Add only perform first-order
linear fusion for the feature vector, ignoring the second-order in-
formation of feature that was shown to be a highly effective for
image classification and semantic segmentation [8]. In [22], Lin et
al. proposed BCNN, in which the bilinear pooling can express local
features more efficiently by synthesizing the second-order fusion
information. Subsequently, Kim et al. [17] proposed a low-rank
bilinear model using Hadamard product in order to simplify the
computational complexity of BCNN [22].

Based on the low-rank bilinear model [17], we propose the non-
local attention feature fusion module including MNLA block, as
shown in Figure 1. The innovations of our feature fusionmethod are

shown in: 1) We fused the features of different convolutional layers,
while BCNN [22] only performed feature fusion for the last single
convolutional layer; 2) We enhance model’s ability to express local
and global information by use of the non-local attention block, while
BCNN only express single-layer features through the backbone
network.

2.2 Non-local attention
When facing complex visual scenes in real world, the human always
focus on certain specific areas that are most prominent through
rapid scanning of eye movement [9]. This selective visual atten-
tion mechanism has been widely used in various fields of com-
puter vision such as image recognition, object detection, image
segmentation, etc. [5][18], [16]. Hu et al. [13] proposed a squeeze-
and-excitation (SE) block, which calibrates the weights of different
channels of the feature map and adaptively adjust the channel
importance for image classification. Following Hu et al., Woo et
al. proposed a convolutional block attention module (CBAM) [3].
CBAM divides the attention process into two parts, channel atten-
tion and spatial attention, to focus on the most important spatial
area of the image. However, these methods, as a kind of local atten-
tion, only select the most important part of the entity in the global
scope, which may discard some important material entities, result-
ing in poor model performance when there are multiple entities in
one image.

Therefore, Wang [27] proposed a non-local attention model,
which calculates the weighted average of all pixels to ensure that
distant pixels can also contribute to the final prediction, thereby
the important entities are contained. Non-local attention has been
successfully used to improve the performance of natural image
recognition [30] and semantic segmentation [15], by enhancing the
long-range dependencies of visual features.

3 METHODOLOGY
3.1 Non-local attentional feature fusion

network architecture
In image classification and image segmentation tasks, DCNN shows
great advantage that DCNN has stronger feature representation
capability and better performance, comparedwith traditional neural
networks. When faced with large-scale and more complex data, the
convolutional layer in DCNN can automatically learn and extract
hierarchical features. At the same time, DCNN can also build a
deeper convolutional layer to allow the network model to better
extract themore discriminative andmore noise-robust deep features
in the image. Based on the above analysis, our model, NLA-FFNet,
also uses the CNN model as the image feature extractor.

The overall architecture of NLA-FFNet, as shown in Figure 1, is
divided into three parts: the first part uses VGG-D [25] as the im-
age feature extractor, named backbone network whose the specific
parameters will be given in section 4.1. The main task of backbone
is to extract the multi-scale features of the image through VGG-D
which is well pre-trained; the second part is the multi-layer projec-
tion based on MNLA block, whose purpose is to use the non-local
attention block to obtain more non-local (NL) detailed information
when fusing the extracted multi-layer features, and significantly
eliminate the influence of noise on network performance; the third
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Figure 1: the architecture of NLA-FFNet

part is the bilinear pooling model [17]: it combines the attention fea-
ture maps of the MNLA block in pairs, and obtains the vector with
second-order information after the two features are fused through
bilinear pooling. Finally, the output, a class vector, is synthesized.

3.2 Non-local attentional feature fusion
3.2.1 Multilayer Non-local Attention (MNLA) Block. In order to
obtain the long-range dependencies of the feature map, the non-
local block [27] enhances the information of the location corre-
lation by aggregating the information of other locations in the
long distance. We assume that the feature map of the single con-
volutional layer is X ∈ Rhw×c , where h,w, c denote the height,
width and channel number of the feature map respectively. Let
x = (x1,x2,x3, . . . xhw )T ∈ Rhw×1 as the column vector of the fea-
ture map X. Then the output vector of the non-local block can be
expressed as

zi = xi +Wz

hw∑
j=1

f
(
xi ,x j

)
N(x)

(
Wθx j

)
, i = 1, 2, . . . ,hw (1)

where f
(
xi ,x j

)
denotes the correlation similarity of the vector x

at the position i, j;Wθ denotes the linear mapping matrix at the
position j of x;N(x) represents the correlation similarity regulariza-
tion factor of x;Wz denotes the linear mapping matrix which can
be implemented by convolutional operation (e.g., 1x1 convolution
layer).

Let the correlation feature be ωi j =
f (xi ,x j )
N(x) , which represents

the correlation of the feature vector x at position i, j . Following the

selection in [27], ωi j can be denoted as ωi j =
⟨Wφxi ,Wϕx j ⟩

N , where
N = hw is the dimensionality of the feature vector x;Wφxi ,Wϕx j
are the linear mapping matrixes and ⟨, ⟩ denotes the inner product.

Figure 2: illustration of non-local attention.

Therefore, we can get the matrix form of non-local operation{
Z = X +WzΩatt WθX

Ωatt =
⟨WϕX,WφX⟩

N
(2)

where X,Z ∈ RN×c denote the feature maps of input and output
respectively;Wz ,Wϕ ,Wφ ,Wθ ∈ RN×N are all learnable mapping
matrixes, which can be realized by convolution operation, and
Ωatt ∈ RN×N is a non-local attention map, as shown in Figure 2.

A. Parallel-Projection-Based multi-layer non-local attention
Following Eq. (2), we propose a non-local attention block based

on parallel projection for multi-layer feature maps. For a feature
map in the l-th convolutional layer, hl ,wl and cl denote its height,
width and the number of channels respectively. And we denote the
feature map as Xl ∈ Rh

lw l×c l . Then, for each map Xl as shown in
Figure 3(a), the output Zl ∈ Rh

lw l×c l of non-local operation can
be obtained respectively

Zl = Xl +Wl
zΩ

l
at tW

l
θX

l

Ωl
at t =

〈
Wl

ϕX
l ,Wl

φXl
〉

N l

, l = 1, 2, . . . (3)
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(a) Multilayer Parallel Projection

(b) Multilayer Cross Projection

Figure 3: illustration of multi-layer non-local attention.

where N l = hlwl is the number of positions in Xl and
Wl

z ,Wl
ϕ ,W

l
φ ,Wl

θ ∈ RN
l×N l

are all learnable mapping matrixes.
B. Cross-Projection-Based multi-layer non-local attention
Deep features are sensitive to large objects in the image because

they have a larger receptive field. On the contrary, shallow features
are more sensitive to smaller targets which contain more detailed
information, such as image contours and texture information. So
as to get trade-off between the two kinds of features, we design
the non-local attention based cross projection, as shown in Figure
3(b), which can weight different feature maps of multiple layers and
improve the representation ability of details information. According
to Eq. (2), we define the Cross-Projection-Based multi-layer non-
local attention as

Zl = Xl +
∑
p,l

Wz
pΩatt

pWθ
pXp , l = 1, 2, . . . ,p = 1, 2, . . . (4)

Different from the Parallel-projection-based multi-layer non-
local attention above, the cross-projection- based non-local block
aggregate features with other different convolutional layers, and
therefore can learn more discriminative and detailed multi-scale
features which contribute to reducing the impact of meaningless
background noise.

3.2.2 Bilinear Pooling. The bilinear pooling can express the local
feature information fusion more precisely through the synthesis
of two feature vectors, as shown in Figure 1. Let z1, z2 ∈ RN×1 as
input column vectors, fi as output value and bi as bias. Thereby
the bilinear pooling model can be define as

fi = zT1 Wi z2 + bi , i = 1, 2, . . . ,d (5)

where Wi denotes the low-rank matrix that can be factorized as
Wi = UiVTi [17]. T denotes a transpose of matrix.

We denote the output, class vector, as f = (f1, f2, . . . , fd ) ∈ Rd×1

where d denotes the number of category. Then, as for the image

Table 1: Details of Our Basic Backbone Network. In the table,
the input image size is 224x224.

Modules Blocks Basic Layers Output sizeConv Size Conv Number

VGG-D

Block0
[

3 × 3, 64
3 × 3, 64

]
2 112 × 112 × 64

Block1
[

3 × 3, 128
3 × 3, 128

]
2 56 × 56 × 128

Block2

[ 3 × 3, 256
3 × 3, 256
3 × 3, 256

]
3 28 × 28 × 256

Block3

[ 3 × 3, 512
3 × 3, 512
3 × 3, 256

]
3 14 × 14 × 512

Block4

[ 3 × 3, 512
3 × 3, 512
3 × 3, 256

]
3 7 × 7 × 512

classifier FC f c layer × 3 => n n classes

classification task, the low-rank bilinear pooling can be defined as

f = zT1 UV
T z2 + b = PT

(
UT z1 ◦ VT z2

)
+ b (6)

where P ∈ RN×d denotes the all-in-one matrix (all elements are 1)
and U,V ∈ RN×N are the learnable parameters of feature projec-
tion; b ∈ Rd×1 is learnable bias vector; ◦ denotes Hadamard product
which is element-wise multiplication

4 EXPERIMENT
4.1 Implementation and training details
4.1.1 Implementation. We choose VGG-D [25], shown in Table 1,
as backbone network of NLA-FFNet. The convolutional layer of
VGG-D is divided into 5 blocks, among which Block0 and Block1
contain two convolutional layers with 3x3 convolution kernels,
and Block2, Block3, and Block4 all contain three 3x3 convolutional
layers. The classifier part of VGG-D is composed of three full con-
nection layers. In NLA-FFNet, we contain all the convolutional
layers and discard classifier part of backbone. In addition, batch
normalization and wavelet pooling are also applied to reinforce
the convergence performance of the network, similar to the imple-
mentation details of [20]. For a fair comparison, we constructed the
VGG-D network, named baseline, for CIFAR, DTD and MINC data
sets with the same trick. Besides, both the baseline and the NLA-
FFNet use network parameters that have been fully pre-trained in
the ImageNet dataset [24], in order to speed up the learning process.

4.1.2 Training. The two MNLA blocks, MNLA-1 and MNLA-2,
are added into NLA-FFNet respectively for training and testing
which follow the same rules of data augmentation. For the CIFAR
dataset, the input image is directly resized to a fixed size (32x32,
64x64 and128x128), while for the DTD and MNC dataset, images
are resize to 256×256 and randomly crop patches to 224×224. The
training images of all datasets are further augmented via horizontal
flip (p = 0.5) and normalization.

The training procedure is divided into two stages: in the first
stage, the parameters of backbone of NLA-FFNet are frozen to adjust
the parameters of the non-local attention feature fusion module in
which the initial learning rate is 0.1; in the second stage, we cancel
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Table 2: Results of the Ablation Experiments on CIFAR10.
MNLA-1,MNLA-2 are represent of the parallel and cross pro-
jection of NL attention structure (section 3.2).

Method Feature Fusion Input Image Size
32 × 32 64 × 64 128 × 128

Baseline N/A 91.94% 94.78% 95.37%
NLA-FFNet-v1 MNLA-1 93.35% 95.70% 95.85%
NLA-FFNet-v2 MNLA-2 93.64% 95.84% 95.91%

the freezing of parameters of NLA-FFNet and fine-tune the entire
network of NLA-FFNet whose learning rate is set to 0.01. Our model
is trained using the stochastic gradient descent (SGD) optimizer
whose optimizationmomentum, weight-decay and batch size are set
to 0.9, 1e-5 and 12 respectively. We do not use the validation dataset
during training, and directly perform on the test dataset. We train
NLA-FFNet for 120 epochs on a PC (Nvidia GeForce GTX2080Ti,
RAM: 64GB), and finally save the best trained model.

4.2 Effectiveness of NLA-FFNet
The main contribution of our work is to propose a network based
on the non-local attention feature fusion module. In order to verify
the impact of different non-local attentional feature fusion struc-
tures on image recognition, we conduct ablation experiments on
our network architecture, in which the general image recognition
datasets, CIFAR10 and CIFAR100 [19], are chosen. The CIFAR10
consists of 60,000 color images with a size of 32×32 pixels in 10 cat-
egories and each category includes 5000 training images and 1000
testing images respectively. While the CIFAR100 is more complex
which includes 100 classes, each with 500 training images and 100
testing images.

Figure 4: the Top1-accruacy of different image size. The left
and right figure represent the experiment on CIFAR10 and
CIFAR100, respectively.

As for CIFAR10, compared to the baseline model, the NLA-FFNet
can improve the Top-1 accuracy by 1.41% with MNLA-1, and 1.7%
with MNLA-2 when input image size is 32x32, as shown in Table
2. It can be easily seen that our approach greatly improve classifi-
cation performance. Similar results can be observed on CIFAR100
(shown in Table 3), which demonstrates the effective and validity
of the proposed methods. Besides, our model has a higher degree of
improvement than baseline in CIAFR100 which is shown in Figure
4.

Table 3: Results of the ablation experiments on CIFAR100

Method Feature Fusion Input Image Size
32 × 32 64 × 64 128 × 128

Baseline N/A 72.15% 78.38% 80.10%
NLA-FFNet-v1 MNLA-1 74.45% 79.50% 81.39%
NLA-FFNet-v2 MNLA-2 74.65% 79.96% 81.86%

Table 4: Test accuracy (Top1-accuracy) compared with other
methods.

Method DTD MINC-2500

baseline[25] 65.17% 76.87%
FV-CNN[8] 72.30% 63.10%

Deep-TEN[29] 69.60% 80.40%
BCNN[22] 72.90% N/A

Compact BCNN[12] 67.70% N/A
FASON[10] 72.90% N/A

NLA-FFNet-v2(ours) 73.04% 79.94%

4.3 NLA-FFNet for material recognition
To show the generality of NLA-FFNet for material recognition, we
experiment on two material/texture recognition datasets: Describ-
able Textures Database (DTD) [7] and Materials in Context Data-
base (MINC-2500) [4]. The proposed method was compared to other
state-of-the-art material classification methods as well as the base-
line model [20] with batch normalization and wavelet pool. Over-
all, NLA-FFNet performed better or comparably than FV-CNN [8],
Deep-TEN [29], BCNN [22], Compact BCNN [12], FASON [10], as
shown in Table 4. For DTD, proposed method, NLA-FFNet, achieves
slightly better Top1-accuracy which improves by 0.14% compared
with FASON [10] and BCNN [22]. This is because the DTD data set
contains more images with homogeneous textures. That is to say,
non-local attention module can get more non-local similar patches
to further enhance the query feature. As for the MINC-2500 dataset,
NLA-FFNet still outperforms baseline [25] and FV-CNN [8] with
3.07% and 16.84% increment of top1-accuracy respectively, while
NLA-FFNet almost achieves the same Top1-accuracy of Deep-TEN
[29], it is only 0.46% lower in accuracy. It should be noted that most
MINC images only have textures of interest at local in which the
global information, such as non-local feature, is difficult to for the
model to enhance representation capability because the non-local
attention block can only obtain a minority of non-local features.
Nevertheless, our model still performed comparably an accuracy
and becomes more noise-robust.

4.4 Noise-robustness and visualization
We visualize the feature maps to verify the noisy-robustness of NLA-
FFNet. Firstly, clean input image with size of 224x224 is corrupted
by Gaussian noise and Salt and pepper noise respectively. Then,
after these noisy images are feed into our network, we extract
and visualize feature maps of convolutional layer of baseline and
NLA-FFNet, respectively. The result is shown in Figure 5, in which
Gaussian noise’s variance (mean equals 0 in default) is 0.02 and
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Baseline

NLA-FFNet-

v2

Block1.1 Block2.2 Block3.3

Baseline

NLA-FFNet-

v2

Block1.1 Block2.2 Block3.3

(a) Gaussian noise, variance σ 2 = 0.02

Baseline

NLA-FFNet-

v2

Block1.1 Block2.2 Block3.3

Baseline

NLA-FFNet-

v2

Block1.1 Block2.2 Block3.3

(b) Salt and pepper noise, noisy ponit rate r = 0.02

Figure 5: illustration of non-local attention. The visualization of feature maps of noisy image. The Block2.2 is represent of
2nd convolutional layer of Block2 of backbone (Table 1).

the rate of salt and pepper is 0.02. As shown in Figure 5(a), we can
find that our method could suppress the noise and maintain the
object structure better in different convolutional layer, compared
with baseline model. And it’s following the same discovery when
input image is corrupted by salt and pepper noise in Figure5(b).

5 CONCLUSION
In this paper, we proposed NLA-FFNet, a CNN architecture com-
bined with non-local attention block, fusing long-range dependen-
cies information to build up more noise-robust and detailed feature
representation. We also designed two multilayer non-local atten-
tion block with parallel projection (MNLA-1) and cross projection
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(MNLA-2), which can easily embedded into feature fusing model.
We have demonstrated the validity and noisy-robustness of the
proposed method through ablation and quantitative study on three
datasets. In the future, we will further explore the application of
MNLA to other image tasks such as segmentation.
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