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Abstract: Data-driven and artificial intelligence based transformer protection has attracted increasing attention but not been
widely applied in the power system owing to the poor generalisation ability. In this study, a feature transferring method is
proposed for a knowledge-based artificial neural network (ANN) to develop a transformer protection with an improved
generalisation ability. Normally, power experts can reliably identify the running states based on the professional knowledge of
only focusing on the unsaturated parts of equivalent magnetisation curve (voltage of magnetising branch-differential current). In
order to imitate the power experts, the images of equivalent magnetisation curves whose saturated parts are removed are
defined as source domain and the original samples are target domain. An ANN named as S:ANN is firstly trained through the
source domain where the extracted features are equivalent to the professional knowledge. Then another ANN with the same
structure as S:ANN is trained through the target domain and named as T:ANN. It is specially designed for T:ANN that adaptive
layers are employed between S:ANN and T:ANN to reduce the feature differences. Finally, simulations and experiments reveal
that the knowledge-based ANN namely the determined T:ANN shows a better generalisation ability through paying more
attention to the unsaturated parts.

1 Introduction
Power data has been expanding continually along with the rapid
development of smart grid in recent years. The advancement of
artificial intelligence (AI) is also unarguably accelerating.
Therefore, the research methods based on data-driven and AI
become hotspots in the planning, operation, maintenance, and
marketing of power grid. Meanwhile, the protection based on data
driven and AI has also attracted rising attention [1–10].

Power transformer, as one of the critical equipment in the smart
grid, plays an important role in energy conversion, power
transmission, and grid recovery. It requires better reliability of the
configured protection. How to reliably identify internal fault and
inrush current is still the core issue of transformer protection.
Generally, the single feature-based transformer algorithms [11–25],
including second harmonic restraint, dead angle principle and
waveform symmetry, cannot meet the reliability requirements in
the complicated power grid. According to the research idea of
multi-feature fusion, many protection algorithms integrating data
driven and AI have been published for transformer protection. At
present, the differential current is still the main research object, for
instance: (i) it is directly used as an input to train machine learning
algorithms, such as decision tree [26, 27], random forest [28],
artificial neural network (ANN) [29–33], probabilistic neural
network [34–36], radial basis neural network [37], and so on; (ii)
the features that are extracted from the differential current by the
tools, such as wavelet transform [38–44], Clarke transform [45],
principal component analysis [46], and so on, are used as the inputs
of machine learning algorithms; (iii) the running states are
identified through pattern recognition methods such as fuzzy
theory [32, 47, 48]; (iv) according to the theory of image
recognition, mathematical morphology [49, 50] is used for
identifying the running states, in addition, deep learning algorithms
such as convolutional neural networks (CNNs) [51, 52] have also
received attention in recent years. Besides the methods mentioned
above, some scholars put forward the concept of equivalent
magnetisation curve [53] whose several geometric features are
extracted to train an support vector machine (SVM) for the
identification of running states. However, it is difficult to apply the
multiple feature-based methods in the engineering field owing to

the following issues: (i) the reliability cannot be ensured due to the
inconsistency of training process with professional knowledge; (ii)
the recorded data of internal faults and transformer energisations is
insufficient for the training process of machine learning algorithm;
(iii) the running environment of on-site transformer is so
complicated that it is impossible for the training samples to cover
all the scenarios. Therefore, the generalisation ability of the
determined model is poor for the mere application of a machine
learning algorithm.

Integrating data and professional knowledge, this paper
proposes a special feature transferring method to develop a
knowledge-based ANN for reliable transformer protection. To be
specific, the images of equivalent magnetisation curve whose
saturated parts have been removed are used to train an ANN called
S:ANN. S:ANN is equivalent to a power expert who only focuses
on the unsaturated parts. Then another ANN called T:ANN is
trained through the original images, where the adaption layers are
employed in the hidden layers to reduce the feature differences
with S:ANN. The determined T:ANN is the knowledge-based
ANN that has a good generalisation ability based on the interaction
of data and professional knowledge.

This paper is organised as follows: Section 2 firstly illustrates
the related work based on equivalent magnetisation curve, then
states the definition of professional knowledge, finally puts
forward the features transferring method for the knowledge-based
ANN. Section 3 presents the specific implementation method of
transformer protection. Section 4 shows the better performance of
knowledge-based ANN utilising large amounts of simulations and
experiments and makes a comparison with the second harmonic
restraint. Section 5 discusses the adaptability of knowledge-based
ANN to several typical scenarios and future work. Section 6 is the
conclusion.

2 Proposed interaction method of data and
professional knowledge
2.1 Theoretical basis and related works

Equivalent magnetisation curve that describes the relationship
between the voltage of magnetising branch and differential current
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demonstrates the running states of the transformer, such as normal
operation/external fault, internal fault, energising healthy
transformer and energising faulty transformer. As shown in Fig. 1,
the unsaturated parts coloured in blue and purple can reliably
indicate whether the transformer is healthy; besides, the parts
coloured in red parts depict the saturation characteristics of iron-
core. At present, several works have been completed based on
equivalent magnetisation curve for transformer protection, for
instance, three geometric features extracted from the curves are
used as input to an SVM, or the images of the curves are used to
train a CNN. However, the determined SVM and CNN behave
unstably because they fail to mine the essential features of the
equivalent magnetisation curve. In fact, the simulation samples
have the same essential features as the recorded ones.

Generally, power experts can reliably identify the running states
through the professional knowledge which is defined as only
focusing on the unsaturated parts of equivalent magnetisation
curves in this paper. The purpose of this paper is to improve the
generalisation ability by means of mathematically embedding this
professional knowledge into the training process of ANN.
Combining data and professional knowledge, the proposed
knowledge-based ANN will adaptively focus on the unsaturated
part of the equivalent magnetisation curve even with the limited
training samples.

2.2 Proposed features transferring method

No matter whether the iron core is saturated, power experts will
only focus on the unsaturated features Exp:F.

Comparatively, the saturated features will be inevitably
introduced in the training process of the common ANN. As can be
concluded that the features ANN:F extracted by ANN will exhibit
different distributions from Exp:F. Consequently, the common
ANN has a poor generalisation ability. Aiming at developing a
knowledge-based ANN only focusing on the unsaturated parts, a
features transferring method is proposed to reduce the feature
differences between ANN:F and Exp:F, namely d(ANN:F, Exp:F)
→0.

2.2.1 Features transferring: A data window of 13 ms is adopted
to deal with a binary classification task: healthy transformer
labelled with ‘1’, including energising healthy transformer, normal
operation/external fault; faulty transformer labelled with ‘2’,
including energising faulty transformer, internal fault. The images
of equivalent magnetisation curve whose saturation parts are
removed manually are defined as source domain S, namely the
unsaturated parts; correspondingly, the original samples containing
both saturated and unsaturated parts are target domain T. The
training process of knowledge-based ANN through the source and
target domains has been shown in Fig. 2. To be specific firstly, an

ANN defined as S:ANN is trained with the source domain S. The
loss function ES is

ES = 1
N ∑

i = 1

N
(yi − y^i)2 (1)

where yi and y^i are the label and actual output, respectively; and N
is the number of training samples. An optimal S:ANN is
determined with a higher accuracy and smaller classification loss
and the hidden layers’ features Exp:F are saved. Define the features
of lth hidden layer as Exp:Fl.

Secondly, another ANN with the same structure as S:ANN is
trained with target domain T, defined as T:ANN. Suppose that the
features of lth hidden layer is ANN:Fl. To reduce the feature
differences d(ANN:Fl, Exp:Fl), an adaption layer is embedded
between the hidden layers of T:ANN and S:ANN. Combining the
adaption and classification losses, the loss function ET of T:ANN is
given:

ET = δ1 ∑
i = 1

N
(yi − y^i)2 + δ2 ∑

i = 1

N

∑
l = 1

L
d(ANN:Fl, Exp:Fl) (2)

where δi denotes the weight of classification loss or adaption loss.
With the objective function of (2), T:ANN will pay more attention
to the unsaturated parts of target domain T when the feature
differences d(ANN:F, Exp:F) are as small as possible. Finally, the
determined T:ANN is the knowledge-based ANN mentioned
above, which will be used to construct reliable transformer
protection.

2.3 Feature differences definition

From the definitions, any sample in the source domain must be a
part of the corresponding sample in the target domain. T:ANN will
only focus on the unsaturated parts when ANN:F is equal to Exp:F.
Therefore, d(ANN:Fl, Exp:Fl) is formulated by Euclidean distance.
Let

Exp:Fl = f S, il1, f S, il2, …, f S, il j, …, f S, iln
T,

ANN:Fl = f T, il1, f T, il2, …, f T, il j, …, f T, iln
T,

where n is the number of neurons, i denotes the ith sample, and f is
the output of a neuron. The feature differences between ANN:Fl
and Exp:Fl can be expressed as the following formula:

Fig. 1  Equivalent magnetisation curve
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d(ANN:Fl, Exp:Fl) = 1
n ∑

j = 1

n
f T, il j − f T, il j

2 . (3)

Therefore, the loss function of T:ANN can be reformulated:

ET = δ1 ∑
i = 1

N
(yi − y^i)2 + δ2 ∑

i = 1

N

∑
l = 1

L

∑
j = 1

n
f T, il j − f S, il j

2 . (4)

The loss function (4) will be optimised through gradient descent
algorithm.

2.3.1 Optimisation process of T: ANN: Take T:ANN with double
hidden-layer as an example to illustrate the optimisation process of
the loss function (4). As shown in Fig. 3, the inputs of neurons 1, 2
and 3 are ai11, ai21 and ai31, respectively, then

E = E1 + E2

= δ1 ∑
i = 1

N
(yi − y^i)2 + δ2 ∑

i = 1

N

∑
l = 1

2
∑
j = 1

n
( f T, il j − f S, il j)2 . (5)

The parameters’ optimisations of the output layer are only affected
by the classification loss, like w3

w3
(t) = w3

(t − 1) − δ1

N ∑
i = 1

N ∂E
∂y^i

∂y^i
∂ai31

∂ai31

∂w3
(t − 1)

= w3
(t − 1) − 2δ1

N ∑
i = 1

N
(y^i − yi)g′(ai31) f T, i21

(6)

where t denotes the iterative times and g(x) denotes the activation
function. 

Based on the chain rule, the parameters optimisations of the
second hidden layer will be affected by classification loss and
adaption loss, like w2

w2
(t) = w2

(t − 1) − δ1

N Δ1 − δ2

N Δ2

Δ1 = ∑
i = 1

N ∂E1

∂y^i

∂y^i
∂ai31

∂ai31

∂ f T, i21

∂ f T, i21

∂ai21

∂ai21

w2
(t − 1)

= 2w3
(t − 1) ∑

i = 1

N
(y^i − yi)g′(ai31)g′(ai21) f T, i11

Δ2 = ∑
i = 1

N ∂E2

∂ f T, i21

∂ f T, i21

∂ai21

∂ai21

w2
(t − 1)

= 2∑
i = 1

N
f T, i21 − f S, i21 g′(ai21) f T, i11 .

(7)

Fig. 2  Training process of ANN
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Similar as (7), the parameters optimisations of the first hidden layer
will be affected by classification loss, and first and second adaption
losses.

3 Transformer protection algorithm
3.1 Start-up criterion

To start reliably and rapidly, both voltage of magnetising branch
and differential current are considered in start-up criterion:

e(k + M) − e(k) > eset (8)

where e denotes the voltage of magnetising branch, u, or the
differential current, i; eset is the threshold uset or iset; M is the
samples number in one cycle; k denotes the kth sampling point. As
the knowledge-based ANN has sufficiently considered the normal
operation/external fault, the threshold can be as small as possible
regardless of the sensitivity.

3.2 Operation criterion

Equivalent magnetisation curve of each phase is used as the input
to the knowledge-based ANN once the start-up criterion (8) is met.

3.2.1 Data processing: Data processing involves: (i) data
conversion from discrete sampling data to images; and (ii)
dimension reduction of the images.

Data conversion: Equivalent magnetisation curve in the data
window of 13 ms is normalised to be limited within a fixed range:

u ∈ [ − 1, 1], i ∈ [ − 1, 1] .

It is notable that the features of the curves cannot be changed
during the normalisation process. Therefore, the voltage and
current are simultaneously normalised through the maximum and
minimum values of the sequence [u; i]:

e′ = 2 × e − emin

emax − emin
− 1 (9)

where emax and emin are the maximum and minimum values of [u; i],
respectively; and e′ is the normalised voltage or current. Finally,
the G × G images are obtained.

Dimension reduction: As shown in Fig. 4, owing to harmonics
or non-periodic components, some pixel points even the whole
curve will suffer translation but the essential features keep
invariant. Correspondingly, the performance improvement of
T:ANN is limited when the training samples are insufficient.

Max-pooling of CNN [34, 35] is employed to reduce image
dimension for translation invariance. Suppose the filter size and
step size are p × p, s, respectively. Then image size after dimension
reduction is g × g:

g = G − p
s + 1. (10)

Fig. 4 details the positive effects of max-pooling on translation
invariance when both p and s are 3. It is helpful to improve the
generalisation ability of S:ANN and T:ANN.

3.2.2 Transformer protection algorithm: The proposed
protection method is illustrated in Fig. 5. Once the start-up
criterion is met, the equivalent magnetisation curve of each phase
after data conversion and dimension reduction is used as input to
the knowledge-based ANN to identify the running state. A tripping
signal is issued when at least one phase is identified as an internal
fault.

4 Case study
All the training samples are collected on PSCAD; and test samples
include simulation and experimental samples. The simulation and
experimental model is shown in Fig. 6. 

4.1 Training and test samples collection

4.1.1 Training samples: Transformer ratio, sampling rate and
other system parameters are shown in Table 1; and magnetic
properties of iron core are detailed in Table 2. In addition,
energisation time, fault occurrence time, fault turns etc. should be
fully considered owing to the influences on equivalent
magnetisation curves, as shown in Table 1.

Fig. 3  Example of T: ANN for optimisation illustration
 

Fig. 4  Influences of harmonics and a periodic component on curves and
process of dimension reduction

 

Fig. 5  Transformer protection algorithm
 

Fig. 6  Simulation and experimental model
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4.1.2 Test samples: Test samples are divided into two groups to
verify the good generalisation ability of the knowledge-based
ANN, namely the ones collected on PSCAD and the ones collected
in dynamic model experiments. 

(1) Simulation samples: The test samples on PSCAD adopt
different system parameters from the training samples, as shown in
Tables 2 and 3.

(2) Experimental samples: The experimental samples can partially
verify the generalisation ability of the knowledge-based ANN to
the on-site transformers. The experimental system and schematic
diagram have been exhibited in Figs. 7 and 8, respectively. Table 4
shows the parameters and scenarios of experimental transformer. In
order to accurately obtain the image of equivalent magnetisation
curves, the Waveform Recorder with Hall sensor (DF1024), instead
of the electromagnetic transformers, was used to construct the data
acquisition system.

Table 1 Parameters and scenarios of training samples
PSCAD simulation Training samples

1st transformer 2nd transformer
parameters connection Y/Δ-11 Y/Δ-11

ratio 230/11 kV 230/35 kV
leakage resistance 0.1 p.u. 0.1 p.u.

copper loss 0.005 p.u. 0.005 p.u.
iron loss 5, 7, 10% 5, 7, 10%

sampling frequency 20 kHz 20 kHz
operation conditions NO start-up time: 1.001, 1.002, …, 1.020 s

EF occurrence time: 1.001, 1.002, …, 1.020 s
type: single phase-to-ground, two phase faults; two phase-to-ground faults.

EHT occurrence time: 1.001, 1.002, …, 1.020 s
IF occurrence time: 1.001, 1.002, …, 1.020 s; fault turns: 1.5, 2.0, 2.5, 3.0, 5.0%.

EFT occurrence time: 1.001, 1.002, …, 1.020; fault turns: 1.5, 2.0, 2.5, 3.0, 5.0%.
number NO/EF 564

EHT 478
IF 760

EFT 760
aNO: normal operation; EF: external fault; EHT: energising healthy transformer; IF: internal fault; EFT: energising faulty transformer.
 

Table 2 Magnetic properties of iron-core (p.u.)
Training: simulation Test: simulation:

1st transformer 2nd transformer
Voltage Current Voltage Current Voltage Current
0 0 0 0 0 0
0.1 9.2280×10−05 1.0 0.0025 0.10 0.0000533

0.5 4.4895×10−04 1.1 0.005 0.50 0.000259

1.0 1.04754×10−03 1.2 0.02 1.00 0.000605

1.1 7.18316×10−03 1.25 0.04 1.10 0.00415
1.2 9.95666×10−02 1.28 0.1 1.20 0.0575

1.4 0.6285765 1.32 0.2 1.40 0.3629
1.6 1.352529 1.36 0.3 1.60 0.78088
1.8 2.179491 1.535 1 1.80 1.25834
1.9 2.6178888 3.7 10 1.90 1.51145
Bold values indicates the saturation point where the iron core begins to saturate. We find that we have reversed the order of ‘Voltage’ and ‘Current’ when filling in the values. In
addition, the primary unit of ‘Current’ is ‘%’ and we forgot to divide it by 100
 

Table 3 Parameters and scenarios of test samples in simulation system
PSCAD simulation Test samples
parameters Connection Δ/Y/Y-11

Ratio 35/220/500 kV
leakage resistance 0.1 p.u.

copper loss 0.005 p.u.
iron loss 6%

sampling frequency 2, 10 kHz
operation conditions Same as Table 1
number NO/EF 225

EHT 80
IF 160

EFT 160
aNO: normal operation; EF: external fault; EHT: energising healthy transformer; IF: internal fault; EFT: energising faulty transformer.
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The training and test samples are transformed into greyscale
images by saturated parts removal, data conversion and dimension
reduction successively, named as source domain S. The greyscale
images which are obtained only by data conversion and dimension
reduction are target domain T. The samples in S and T are 16 × 16
images according to the formula (10) where G, p and s are 50, 3,
and 3, respectively.

4.2 Training process of knowledge-based ANN

4.2.1 S:ANN: Train S:ANN utilising source domain S. Accuracy,
training and test time, vanishing gradient problem etc. are
considered comprehensively for an optimal S:ANN. S:ANN adopts
a double hidden layer with 10–19 neurons. Fig. 9 shows the
average accuracies of alternative S:ANNs after random
initialisation is employed repeatedly, where (x, y) denote the
neurons of first and second hidden layers. From Fig. 9, when the
neurons of hidden layers are (19, 17), (19, 13) or (15, 10), S:ANN
performs better with accuracies of over 98.5% and nearly 97% for
simulation and experimental samples, respectively.

S:ANN which has the highest accuracy for the experimental
samples among the structures with neurons of (19, 17), (19, 13) or
(15, 10) is used to extract the features Exp:F. Finally, the neurons
of input, first hidden, second hidden and output layers are 256, 15,
10 and 1, respectively. As shown in Fig. 10, the training and test
accuracies increase gradually as the classification loss decreases. 
The accuracy of experimental samples is 98.24%; and the
corresponding accuracies of simulation samples are 99.18 and
98.95% for training and test, respectively.

In the next step, Exp:F is used to employ the adaption layers for
training the T:ANN.

4.2.2 T:ANN: Train T:ANN utilising the recorded features Exp:F
and target domain T. Random initialisation of T:ANN with the
same structure as S:ANN is employed repeatedly and network
parameters is optimised with the objective of minimising loss
function (5). When δ1 and δ2 are 0.001 and 0.0002, respectively,
T:ANN has a more reliable performance. Average accuracies of the
target domain and highest accuracy of experimental samples have
been shown in Fig. 11. The performances of common ANN are
also added for the comparison with T:ANN.

According to Fig. 11, the common ANN performs well if
adopting the neurons of (19, 17), with average accuracies of 99.15,
98.63 and 90.96% for training and test samples and highest
accuracy of 91.96% for experimental samples. Comparatively,

Fig. 7  Partial details of the experimental system
 

Fig. 8  Schematic diagram of the experimental system
 

Table 4 Parameters and scenarios of test samples in
experimental system
Test samples (experiments)
parameters connection Y/Δ-11

singe phase
voltage ratio

220/220 V

single phase rated
capacity

2 kVA

single phase no-
load current, loss

1.17%, 0.7%

single phase short-
circuit voltage, loss

11.2%, 1.0%

sampling
frequency

10 kHz

operation
conditions

NO load: 100, 75, 50, 25% of rated
load;

start-up time: random time
EF load: 100% of rated load;

occurrence time: random time;
type: single phase-to-ground,

two phase faults; location:
primary, secondary sides

EHT occurrence time: random time
IF load: 100% of rated load;

occurrence time: random time;
fault turns: primary side, 2.3,
4.5%; secondary side, 4.5%

EFT occurrence time: random time;
fault turns: primary side, 2.3,

4.5, 9.1%; secondary side, 4.5,
9.1%.

number NO/EF 139
IF 60

EHT 141
EFT 22

aNO: normal operation; EF: external fault; EHT: energising healthy transformer; IF:
internal fault; EFT: energising faulty transformer.
 

Fig. 9  Average accuracy (%) of S: ANN
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T:ANN has a better generalisation ability owing to the combination
of data and professional knowledge, with accuracies of 99.16,
98.40, 92.88 and 93.47%. Then T:ANN with the highest accuracy
for the experimental samples is selected as knowledge-based ANN.
Its losses and accuracies have been shown in Fig. 12. As adaption
and classification losses decrease, accuracies of training and test
samples increase gradually. Finally, accuracies of simulation
samples are 99.06, 98.17%; the improved accuracy of experimental
samples, 93.47%, verify the good generalisation ability of the
knowledge-based ANN.

4.3 Performances on turn to ground faults and lead wire fault

To further verify the generalisation ability of the proposed
transformer protection, the knowledge-based ANN is tested
through the turn to ground faults and lead wire faults that are not
involved in the training process. The operation conditions and
transformer parameters of turn to ground faults and lead wire faults
have been shown in Table 5. The magnetic properties of iron-core
are same as that of the first transformer in Table 2.

Fig. 13 exhibits the input images of two phases for several
faults occurring at 1.001 s, where they are the turn to ground faults
occurring at the positions of 5.0, 10, 50, 90, 95, 97, 98.5% and the
lead wire faults with the transition resistance of 0, 0.3, 0.5, 1, 2 Ω
from left to right and from top to bottom. Although these faults are
not involved in the training process, the images are similar to that

of turn to turn faults from the perspective of the curve shapes.
Therefore, the knowledge-based ANN performs well on the turn to
ground faults and lead wire faults with the accuracies of 100%
(180/180) and 97% (97/100).

4.4 Comparison with second harmonic restraint

This paper makes a comparison between the proposed method and
second harmonic restraint through the experimental samples. The
results have been shown in Table 6. For the samples of internal
faults, energising faulty transformers and energising healthy
transformers, the second harmonic restraint has a worse accuracy
of 90.49%, compared with 93.15% of the proposed method. In
addition, second harmonic restraint is not suitable for identifying
normal operation/external fault. Once the differential protection
starts by mistake, the lower second harmonic will lead to a
malfunction in the system. However, the proposed method can
reliably identify normal operation/external fault with the accuracy
of 100% because such scenarios have been sufficiently considered
in the training process of ANNs. In contrast, the accuracy of
second harmonic restraint is only 24.44%.

5 Discussion
This section will discuss (i) adaptability of T:ANN to CT
configuration, CT saturation and remanence; (ii) future work based
on the proposed features transferring method.

5.1 Adaptability analysis

5.1.1 CT configuration: When CTs are installed outside delta
winding, the ‘voltage of magnetising branch-differential current’
curves still have obvious differences among the transformer

Fig. 10  Classification loss and accuracies
 

Fig. 11  Comparison of T: ANN and common ANN
 

Fig. 12  Losses and accuracies
(a) Training process of 2462 epochs, (b) Training process of 1500–2462 epochs
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scenarios but are slightly different from equivalent magnetisation
curves in this paper. To be specific, when an internal fault occurs,
at least two phases will exhibit fault features; for energising healthy
transformer, differential current of at most one phase is symmetry
inrush current. Therefore, the proposed transformer protection is
still applicable. However, the knowledge-based ANN needs to be
re-trained with new training samples and tripping will be issued at
least two phases are identified as faults.

5.1.2 CT saturation: CT saturation includes steady saturation and
transient saturation.

(1) Transient saturation: In one cycle, differential current under CT
transient saturation exhibits the features of unilateral saturation.
Therefore, the equivalent magnetisation curve is similar to that of
energising transformer. The proposed protection method is also
effective in CT transient saturation and it is unnecessary to re-train
the knowledge-based ANN.
(2) Steady saturation: Equivalent magnetisation curve under CT
steady saturation shows the bilateral features, as shown in Fig. 14.
However, in one cycle, it still contains unsaturated parts that can
reliably reflect whether the transformer is healthy. Therefore, the
proposed protection method is applicable but re-training the
knowledge-based ANN is necessary with the supplement of CT
transient saturation Fig. 14.

5.1.3 Remanence: Remanence only affects the duration and
occurrence time of iron-core saturation. In one cycle, the
equivalent magnetisation curve still contains sufficient unsaturated
parts. Therefore, the proposed protection method is applicable but
the knowledge-based ANN should be re-trained with a longer data
window to enhance the robustness to remanence.

5.2 Future work

CNN, as a deep learning algorithm, performs better than ANN in
capturing spatial features of equivalent magnetisation curves.
Theoretically, the performance of transformer protection will be
further improved if a knowledge-based CNN can be developed
with the proposed transferring method in this paper.

However, CNN has a higher requirement on the scale of
training samples; moreover, the response speed of CNN with a
large-scale network also hinder its application in transformer

Table 5 Transformer parameters of turn to ground fault and lead wire fault
PSCAD simulation
parameters connection Y/Δ-11

ratio 230/11 kV
leakage resistance 0.1 p.u.

copper loss 0.005 p.u.
iron loss 5%

sampling frequency 20 kHz
operation conditions (phase B) TTGF occurrence time: 1.001, 1.002, …, 1.020 s

fault positions: 1.5, 3.0, 5.0, 10, 50, 90, 95, 97, 98.5%
transition resistance: 0 Ω

LWF occurrence time: 1.001, 1.002, …, 1.020 s
transition resistance: 0, 0.3, 0.5, 1, 2 Ω

number TTGF 180
LWF 100

aTTGF: turn to ground fault; LWF: lead wire fault.
 

Fig. 13  Input images of turn to ground faults and lead wire faults
 

Table 6 Comparison between proposed method and second harmonic restraint
Performance comparison Second-harmonic restraint Proposed algorithm, %
IF/EFT 116 90.49 93.15
EHT 147
NO/EF 135 — 100
aNO: normal operation; EF: external fault; EHT: energising healthy transformer; IF: internal fault; EFT: energising faulty transformer.
 

Fig. 14  CT steady saturation
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protection. Therefore, developing a knowledge-based CNN with a
rapid response will be the emphasis of future work.

6 Conclusion
This paper develops a knowledge-based ANN through the
proposed features transferring method. This knowledge-based
ANN which integrates data and professional knowledge is used to
construct reliable transformer protection. To be specific, the images
of equivalent magnetisation curve whose saturation parts are
removed are defined as the source domain and the original samples
are target domain. Source and target domains are used to train two
ANNs with the same structure, respectively. The adaption layers
are employed between the hidden layers of these two ANNs to
reduce the feature differences. Through this features transferring
method, ANN which is trained with target domain will adaptively
focus on the essential features of equivalent magnetisation curves.
Finally, the determined ANN is selected as the knowledge-based
ANN, which is used to construct transformer protection.

The results of simulation and experimental samples show that
the knowledge-based ANN has a good generalisation ability with
the accuracies of 99.06, 98.17 and 93.47% for training samples,
test samples on PSCAD and test samples in dynamic model
experiments. As can be verified that the proposed features
transferring method and the knowledge-based ANN have certain
research values in the data-driven based power system problems.
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