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 A C T 

der detection is essential for maintaining the security and stability of energy supply in distribution networks. How

 difficult to identify a specific faulty feeder owing to small fault currents and complex fault transients. To improv

accuracy, this study proposes a faulty-feeder detection method based on image recognition of superimposed 

currents. A convolutional neural network (CNN) is utilized to recognize the superimposed currents in the same

 a raw single current, which can realize correlation comparisons between the currents. In addition, the zero-sequ

f different feeders are superimposed according to a specific sequence, and the CNN can adapt to the chan

 of distribution networks while conducting correlation comparisons. Because zero-sequence currents decay ra

 an attention learning block is embedded into the CNN to enhance the discriminative capability. A total of 14,718

ental data obtained from simulations and practical distribution networks were collected to verify the effectivene

ed method. Comparisons with other traditional methods and learning-based methods adopted in previous studies ju

ority of the proposed method in terms of detection accuracy and detection efficiency. Therefore, the proposed me

lemented in real distribution networks for faulty feeder detection. 

: attention strategy, correlation comparison, waveform superposition, faulty feeder detection, topology adaptabil

duction 

izing the period of power interruption is essential for improving power quality and customer satisfaction in the ro

of electrical power grids. Recent research has shown that most interruptions are caused by faults in distrib

[1], where single line-to-ground (SLG) faults account for 80% of all faults [2]. Serious faults may occur, resulti

t damage, casualties, and power outages if an SLG faulty feeder cannot be reliably identified [3]. However, it is dif

ne a specific faulty feeder owing to the small SLG fault current and complex fault transients [4]. Consequently

to propose SLG faulty-feeder identification methods with high detection accuracy and reliability to enhance the s

of distribution networks. 

esearch studies have been conducted on SLG faulty feeder identification, ranging from fault characteristic analy

ion algorithms. For fault characteristic analysis, digital signal processing (DSP) techniques are extensively us

ecific fault characteristics from bus voltages and feeder currents. The fast Fourier transform (FFT) [5], discrete wa

[6], and S-transform [7] algorithms are the most popular DSP methods for the identification of fault characteri

 help in the identification criteria. In addition, mathematical morphology [8], Hilbert transform [9], and variat

omposition (VMD) [10] have been used in this field to obtain exact fault characteristics from weak signals. Fo

ion algorithm, steady-state fault characteristics, such as amplitude, polarity, power, and admittance [11]

y used to propose identification criteria in the early stages. Subsequently, transient components, such as differ

rgy [12], spectral characteristics [13], and traveling waves [14], have recently become more popular for impro

 However, most DSP techniques adopt fixed basis functions [15], which can easily result in inadaptability o

characteristics. In fact, the adaptability of the extracted characteristics is usually an inherent limitation for impro

accuracy [16]. 

ly, artificial intelligence (AI) has been introduced to propose learning-based methods in combination with mu

cteristics to improve identification accuracy. In [17], an integrated faulty-feeder detection method was propos

n with an adaptive network-based fuzzy inference system, and decaying direct current (DC) components, wave

coefficients, and energy entropy were combined. In addition, other intelligent algorithms, such as fuzzy theory

learning algorithms [19], artificial neural networks [20], long short-term memory neural networks (LSTM) [21]

nal neural networks (CNN) [22] have been used as classifiers, which lead to a higher detection accuracy based o

ultiple fault characteristics. However, the aforementioned integrated schemes have a few drawbacks. Commonl

arning-based methods are expected to mine the effective fault characteristics based on the zero-sequence curren

der owing to the limitation of changing topologies, which implies that they fail to conduct correlation compar

eeders, thus leading to poor generalization capability under complex fault scenarios. Therefore, to enhanc

tion capability, it is necessary to conduct the correlation comparison while ensuring topology adaptability. 

udy proposes a faulty-feeder identification method based on image recognition of superimposed zero-sequence cu

s. The zero-sequence currents are superimposed in the same plot to facilitate the CNN to conduct correl

ns between the currents. In addition, there are different combinations of current superposition to adapt to chan

. For a distribution system with N feeders, N + 1 superimposed images are generated, including one image with 

current superposition of all feeders, called completed feeder (CF) image, and N images with superimposed 
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sequence current waveforms of N - 1 feeders, called one-feeder missing (OFM) images. Among them, the CF image is utilized 

to determine the fault type: bus or line faults, and the OFM images are used to select the faulty feeder under a line fault. To 
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e discriminative capability of image recognition, a CNN with attention strategy is designed to distinguish images

ut faulty-feeder current superposition. To verify the reliability and generalization of the proposed method, d

s using power system computer-aided design (PSCAD) and real-time digital simulation (RTDS) simulator

 based on considerations of different topologies, grounding modes, feeder parameters, and fault conditions o

n networks. In addition, practical fault data in real distribution systems are employed in the test process. The re

 the proposed method can significantly improve the accuracy of fault-feeder detection, thereby demonstrating its s

tion capability and good applicability. 

ainder of this paper is organized as follows. Section 2 introduces background theories related to the proposed me

 3, the proposed strategy based on the image recognition of superimposed zero-sequence current waveform

in detail. The conducted case verifications are discussed in Section 4. Furthermore, the simulation models, cases

ault data are presented along with some necessary analyses and comparisons. Finally, Section 5 concludes the stu

ground theories 

olutional neural network 

ate-of-the-art method in image processing and recognition, the CNN is extensively used in the field of computer v

 comprises convolutional, pooling, and fully-connected (FC) layers. The convolutional and pooling layer

 stacked for feature extraction, and the FC layers are finally utilized for classification based on the extracted fea

re of the CNN is the convolutional layer, which imitates the visual perception mechanism using a series of filters

fields. Multiple filters are used to capture the notion of left/right and up/down of the feature maps generated b

ayers. The convolution process can be described as  

,

1( )l l l

j t j j

t

l
tx f k x b  , 

xl 

j  denotes the output of jth filter in the lth convolutional layer, xt
l-1 denotes the output of tth feature map in th

lutional layer, kl 

t,j denotes the learned weights of jth filter in the lth convolutional layer, and bl 

j  is the bias te

s the non-linear activation function. 
uently, the pooling layer is utilized to reduce the learning parameters and avoid over-fitting. There are three typ

ethods: average pooling, max pooling, and norm pooling. The max pooling method is the most common and it c

 as  

 ( )
j

l l

j j
r M

p max x r


 , 

pl 

j  denotes the output of jth filter in the lth pooling layer and Mj is the area of the pooling operation. 

tacking several convolutional and pooling layers, the learned features of each filter are flattened and input to th

lassification. The Softmax function is commonly applied here, and its output can be expressed as  

( )
( | )

( )

i

i

i

exp z
P y i z

exp z
 


, 

z is the input of the FC layer and P(y = i | z) is the probability value of the ith category.  

y feeder detection based on superimposed waveforms 

ing to the transition impedances, there are four different types of SLG faults that occur in distribution networks

n Fig. 1. These include low impedance and under-damped (LIU) faults, low impedance and over-damped (LIO) f

dance and under-damped (HIU) faults, and high impedance and over-damped (HIO) faults. Typical zero-sequ

hen an LIU fault occurs are illustrated in Fig. 2. It can be seen that the zero-sequence current of the faulty feede

 magnitude, and it flows in the direction opposite to that of the healthy feeder. 

Feeder 1110kV 110kV/10kV

Lp

Rp

Grounding 

mode

Load

Load

Load

Bus

f
i10

i20

iN0

Feeder 2

Feeder N

...

 
Fig. 1. Non-effectively grounded distribution network. 
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Fig. 2. Zero-sequence currents when an LIU fault occurs in feeder 1. 

e the topologies, parameters, and fault scenarios vary under different distribution networks, the zero-sequence cur

lty feeder exhibit changing fault characteristics under various fault scenarios. This is the same as the zero-sequ

f healthy feeders. However, when zero-sequence currents are superimposed in a specific sequence, the differ

he superimposed waveforms with and without the zero-sequence current of the faulty feeder are always obviou

he superposition form ensures adaptability to changing topologies.  

istribution system with N feeders, as shown in Fig. 1, N + 1 superimposed images are created, as shown in F

em, one CF image is generated by superimposing the zero-sequence current waveforms of all feeders, and N 

e generated by superimposing the zero-sequence current waveforms of N – 1 feeders. The OFM images ca

d from the CF image by sequentially removing the waveform of each feeder. As shown in Fig. 3, the superimp

ith the faulty-feeder current, such as the CF, OFM 2, and OFM 3, are similar to each other, but they have 

s with the OFM 1 image that is superimposed without the faulty-feeder current. Notably, the superimposed im

e faulty-feeder current can be distinguished from those with the faulty-feeder current owing to the differences bet

-feeder and healthy-feeder currents, and they can be captured by conducting correlation comparisons betwee

hich are not limited to specific fault features.  
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Fig. 3. Superimposed images generated in sequence. 
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The OFM images of the zero-sequence currents for SLG faults under different fault conditions are shown in Fig. 4. Evidently, 

the OFM 1 image without the faulty-feeder current can be easily identified from the other OFM images through a correlation 

compariso hown 

in Fig. 4. 
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Fig. 4. OFM images when SLG faults occur in feeder 1 under different fault conditions: (a) LIO fault; (b) HIO fault; and (c) HIU fault. 

eder faults, only one image among the N OFM images does not include the faulty feeder current. The f

ding to the missing current waveform in the OFM image is the faulty feeder.  

more, for bus faults, no fault current waveform is included in the superimposed CF image, whereas the fault cu

nd in the CF image during feeder fault conditions.  

mary, the fact that superimposed images with and without the faulty-feeder current are different can be used 

ion criterion to detect faulty feeders in distribution networks. Among them, the correlation comparison bet

an be conducted in the generated superimposed images, and topology adaptability can also be realized by recogn

images. The correlation comparison based on the superposition form can always work under different fault scena

iled detection scheme is proposed in the next section. 

odology 

imposed image creation 

re three modules for generating the images: sampling, start-up, and image creation modules. The main responsi

pling module is to sample the raw zero-sequence voltage and currents. The start-up module is responsible for jud

 SLG fault occurs or not, and then the image creation module will be implemented to obtain the images for recogn

 image creation procedure is illustrated in Fig. 5. 
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Fig. 5. Image creation (Consider the zero-sequence current waveforms in a distribution network composed of four feeders as an example). 

alog zero-sequence voltage and currents are obtained using a potential transformer (PT) and current transformers (

ly. Subsequently, the analog signals are converted into digital signals after sampling by the protection devices

rther determine whether an SLG fault has occurred. The root-mean-square (RMS) value of the sampled volta

 using FFT and compared with the amplitude of the rated voltage Un. The SLG faults are identified if the calcu

e is greater than 0.15Un; otherwise, the devices would not perform further detection algorithms. 

an SLG fault occurs, the sampled first half-cycle zero-sequence current of each feeder is collected and the maxi

alues (i'M(n)) of the currents are obtained using (4). 

0( ) ( ( ) ) , [1, ], [0, ]
2

M n

T
n Max t n N ti i   ,  

T is the cycle of the zero-sequence current, N is the number of feeders, and in0 is the sampled value of the zero-sequ

 feeder n. 

that the zero-sequence current waveforms of the feeders are superimposed proportionally, it is necessary to con

tion as given below: 

20

( )
[1, ]

( ( ( )))
, , [0, ]

2
( ) ( ) M

M

n n

n
n N

Max n

T
t

i
i t i t

i
  





, 

duct a correlation comparison between the currents, the normalized zero-sequence currents are subsequ

sed in the same plot. However, the correlation comparison fails when most normalized zero-sequence curren

ro, which may result from a zero-sequence current with a much larger amplitude than the other currents. Therefo

ry to enhance several zero-sequence currents by increasing their normalized amplitudes. 

 use η, as expressed in (6), to describe the amplitude relationship of zero-sequence currents. 
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ith the second largest or third largest amplitude is smaller than 0.5, the amplitude of the corresponding zero-sequ

ll be increased by 0.5/ηn; otherwise, it will remain at the raw amplitude. 

ata processing of the zero-sequence currents, the processed currents are then used for image creation. To acce

 creation process, a novel image creation method is proposed as follows: 

 processed zero-sequence current in numerical form is converted into an image, the horizontal coordinate in the i

e sampling time and the vertical coordinate denotes its amplitude. Suppose the required image size is H × W

 coordinate is divided into H sections and the vertical coordinate is divided into W sections, as shown in F

tly, image creation can be simplified by determining the sections through which the current waveform passes. 

, the encoding value is 1 if the current waveform passes through the section, which can be easily determined base

de; otherwise, the encoding value is 0. Finally, each section (e1,1–eH,W) is encoded as 0 or 1, and an image of size

generated. In this study, both H and W are set as 128. 

e1,1 e1,W

eH,1

ei,j ei+1,j

ei,j+1 ei+1,j+1

eH,W

1

2

H

.
.
.

W
H

1 2 ... W
 

Fig. 6. Encoding for a zero-sequence current. 

in the superimposed image generated by different zero-sequence currents, the final encoding value in each sectio

d by taking the union of each current value in the same section. Furthermore, the 0th, 1st, and -1st axes are added t

ich implies that the values of sections (e1,1–e1,W), (eH/2,1–eH/2,W), and (eH,1–eH,W) are each equal to one. Compared

 generated using ‘plot’ function in Python, the proposed image creation method can be processed quickly. In add

ed method does not require additional image cropping or binary operations, thus significantly improving the effic

reation. 

sed Image-recognition-based Framework 

he image creation as explained above, the generated N + 1 images are recognized using a CNN to determine wh

feeder current is superimposed on the images. The CF image is used to determine the fault type (bus or feeder)

 images are employed for faulty feeder detection. The entire procedure of the proposed image-recognition-b

scheme is summarized in Algorithm 1. 

 1 Single-line-to-ground (SLG) fault detection scheme 

llect the sampled values of the first half-cycle zero-sequence current of each feeder. 

nerate one completed feeder (CF) image, input the image to the convolutional neural network (CNN), then infer the following: 

     If the output of CNN is zero, return results (the fault type is bus fault) and terminate; otherwise go to Step 3 

nerate N OFM images, input N images to CNN in sequence, and then infer the following: 

     For sequence in [1, N]: 

If the output of CNN is 0, return the sequence number. 

     end for 

oposed detection scheme is performed in two steps: fault type identification and faulty feeder detection. First, th

nput to the CNN, and the fault type is determined according to the recognition result. For a feeder fault, the fa

rent is superimposed on the image. Consequently, the fault type is the line fault. Subsequently, the N OFM image

e same CNN in sequence, and the outputs of the CNN are determined. Finally, the OFM image whose CNN out

nd, and the feeder that is not superimposed on the image is selected as the faulty feeder. 

ing the bus fault, the faulty-feeder current is not superimposed on the CF image according to the recognition r

NN. Consequently, the fault type is directly judged as a bus fault. 
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3.3 Attention-based CNN Design 
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d backgrounds [22]. In particular, the discriminative features of the zero-sequence currents may concentrate o

rocess in the initial fault time and decay rapidly in a short time, which implies that CNNs need to focus o

tive features and suppress the unnecessary features of the currents. Typical first half-cycle zero-sequence currents

ence of SLG faults are shown in Fig. 7. 

0 ms 10 ms

Meaningless parts

ta

Meaningful parts  

Fig.7. Image recognition for the superimposed waveforms. 

tly, the zero-sequence currents decayed sharply over time. In addition, it is rather difficult for CNNs to cond

 comparison after the currents decay close to 0th axis. As shown in Fig. 7, it is difficult to conduct image recogn

e range of [ta, 10], which implies that CNNs would fail if they focus on the characteristics in this area. Therefo

age recognition effectively, CNNs must pay more attention to the meaningful parts [0, ta] in the image. 

onal CNNs cannot effectively focus on the meaningful features of images owing to the training dataset having

d low quality. Furthermore, it may focus on unnecessary features that can easily result in overfitting and unsatisfa

ce in practical applications. Thus, it is the key to improving the recognition accuracy by inserting a parti

re called ‘attention’ into the CNNs. 

rove the representation of interests on the meaningful features of images, a particular architecture design c

 [24, 25] has been proven to enable CNNs to focus on meaningful features and suppress unnecessary fea

l CNNs equipped with attention modules, called convolutional block attention modules (CBAM) [25], have ach

e-art performance in many image recognition tasks. The CBAM comprises two modules: channel attention mo

l attention module, which can adaptively learn ‘what’ and ‘where’ to focus in the channel and spatial aspects. G

diate feature map F ∈ℝC×H×W as input, the channel attention module performs pooling operations, including av

d max-pooling, on the spatial area of the feature map. Subsequently, they are passed to a shared network and me

ent-wise summation, as shown in (7).  

2 1 2 1
( ) ( ( ( )) ( ( )))

c c

avg max
W W W W   

c
M F F F ,  

F
c 

avg and F
c 

max denote the features in the channel axes after average pooling and max-pooling operations, respect

d W2 are the learned weights of the FC layers. δ denotes the rectifier linear unit (ReLU) function, σ denotes the sig

nd Mc(F) ∈ℝC×1×1 is the final channel attention map. 

 spatial attention module, pooling operations are performed on the channel area of the feature map, and subsequ

ncatenated and convolved using a convolution layer, as shown in (8). 

( ) ( )[ ]s s

avg max
f sM F F F ,  

F
s 

avg and F
s 

max denotes the features in the spatial axes after average pooling and max-pooling operations, respect

concatenation operator, f denotes the convolution operation, σ denotes the sigmoid function, and Ms(F) ∈ℝ1×H

patial attention map. 

lly, a channel attention module and spatial attention module are sequentially stacked to form the final CBAM, as sh

( ( ) ( ( ))    
c s c

F F M F ) M F M F , 

 denotes element-wise multiplication and F′ is the output of the CBAM. 

, a five-layer CNN composed of convolutional layers, CBAMs, a global average pooling (GAP) layer, and two

ication layer is established, as shown in Fig. 8.  
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Fig. 8. Structure of attention-based CNN. 

mary, the attention-based CNN can focus on meaningful fault features in the images generated by wave

ion, and the proposed detection criterion based on image recognition can reliably detect the faulty feeder.  

Training 

 dataset should be used to train the attention-based CNN to ensure that the proposed method performs as expe

ng that it is difficult to obtain sufficient practical fault data, simulation data were utilized to train the established m

y. Three training models with different grounding modes and feeder types were established using PSCAD to sim

aults that occur in feeders and buses. The structures of the simulation models are shown in Fig. 1. The param

g the overhead lines are as follows: R1 = 0.17 Ω/km, L1 = 1.21 mH/km, C1 = 0.0097 μF/km, R0 = 0.23 Ω/km, L0 =

nd C0 = 0.006 μF/km. Similarly, the parameters of the cable lines include R1 = 0.098 Ω/km, L1 = 0.274 mH/km,

km, R0 = 0.246 Ω/km, L0 = 0.955 mH/km, and C0 = 0.166 μF/km. Furthermore, the sampling frequency is 20 kH

t transformer ratio is 50:1. In addition, fault locations, fault time, and fault impedance are considered in the 

 processes, and the detailed fault scenarios are summarized in Table 1. 

nd fault scenarios in training set.  

ld be noted that the arcing effect is not considered in the training dataset, whereas arc fault data from practical

TDS test system are used in the test process. This is mainly because of the following reasons: (1) there are 

s between the arcs obtained by PSCAD simulations and practical real faults, and (2) it is impossible for the tra

include all possible fault scenarios. Therefore, the generalization capability and robustness of the proposed me

PSCAD Simulation Training Samples 

ters 

Model Training model 1 Training model 2 Training model 3 

Grounding mode Compensation system Compensation system Ungrounded system 

Compensation degree 8% 8% / 

Feeder type Overhead Cable / Overhead Overhead 

Length (km) 10 / 20 / 30 / 40 Cable:10 / 20, Overhead: 30 / 40 10 / 20 / 30 / 40 

ors 

Fault location 10% / 50% / 90% / Bus 

Fault inception angle 0°~345.6° per 21.6°(Line fault) / 0°~351° per 0.702°(Bus fault) 

Grounding resistances 20 Ω / 100 Ω / 500 Ω / 1000 Ω 

Noise 50 dB 

umber 

Simulation data 
816 (Line fault) /  
2,004 (Bus fault) 

816 (Line fault) /  
2,004 (Bus fault) 

816 (Line fault) /  
2,004 (Bus fault) 

Image 8,460 (Label 0) 9,792 (Label 1) 

Image  
(Data augmentation) 

16,920 (Label 0) 19,584 (Label 1) 
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the OFM images depend on whether the faulty feeder current waveform is superimposed. If the faulty feeder wave

posed, the label is 1; otherwise, it is 0. Consequently, five images are obtained in this fault scenario, in which the l

r images are 1 and the label for the remaining image is 0. 

an SLG fault occurs in a bus in a distribution network, only one CF image is generated and its label is 0. 

ining dataset comprises 2,448 sets of fault data with line faults and 6,012 sets of fault data with bus faults, am

labels for 9,792 (2,448 × 4) images are 1, and the labels for 8,460 (6,012 + 2,448) images are 0. To expand the tra

d avoid overfitting of CNN, the aforementioned images are flipped vertically. Thus, 36,504 (9,792 × 2 + 8,46

 obtained, where 90% of the images are randomly selected for training data and the rest are used for validation d

rning environment is implemented on a personal computer with an Intel
○R CoreTM processor i7-6700 (CPU), 3.40 

 RAM, and NVIDIA GeForce GTX 1050. Furthermore, Python (version 3.7) and Pytorch (version 1.11) in a Ju

are applied as the software implementation. The Adam optimizer is used in the training process, and the batch s

The learning rate is initialized to 0.001 and drops by 80% after every 20 epochs. During 100 epochs of training

h minimum loss in the validation data is selected as the final model. Finally, the trained CNN model achieved 1

accuracy for both the training and validation data. 

lts and discussion 

fy the generalization of the proposed method, 14,637 sets of data and 69 sets of recorded data, generated from diff

n networks in the PSCAD simulations and RTDS hardware-in-the-loop (HIL) test system, respectively, are empl

D simulation considers common fault conditions, and RTDS test system includes the simulated arc grounding f

 measurement errors. The topologies, parameters, feeder types, and fault conditions in these distribution network

y different from those in the training dataset. Moreover, to verify practical applications, 12 sets of practical fault

ribution systems are collected during the test process, and the collected zero-sequence currents have huge intermit

ss, and asymmetry due to the real arc grounding events.  

l, 14,718 sets of fault data are used as the test dataset. The test dataset considers more complex fault scen

y for the fault data collected from the RTDS test system and real distribution systems. It should be noted that th

used only for verifying the detection performance of the trained model, and is unavailable during the training pro

ation-based Test 

st models were designed for the PSCAD simulations, as summarized in Table 2. The feeder parameters of the over

s follows: R1 = 0.33 Ω/km, L1 = 1.31 mH/km, C1 = 0.007 μF/km, R0 = 1.041 Ω/km, L0 = 3.96 mH/km, and C0 = 0

e parameters of the cable lines are as follows: R1 = 0.0791 Ω/km, L1 = 0.264 mH/km, C1 = 0.373 μF/km, R0 = 0

= 0.926 mH/km, and C0 = 0.166 μF/km. 

nd fault scenarios in test set.  

D Simulation Test Samples 

s 

Model Test model 1 Test model 2 Test model 3 Test model 4 Test model 5

Grounding 
mode 

Ungrounded 
system 

Compensation 
system 

Ungrounded system Compensation system Compensation sys

Compensated 
degree 

/ 6% / 10% 10% 

Feeder numbers 6 3 5 

Length (km) 5/ 15 / 25 / 35 / 45 / 50 5 / 20 / 80 10 / 15 / 25 / 35 /

Feeder type Overhead Overhead Overhead Overhead 
Cable / hybrid

Overhead 

Cable ratio / / / / 
100% / 20% / 60

0% / 0% 

 

Fault location 5% / 80% / Bus 5% / 40% / Bus 5% / 60% / Bu

Initial phases 
(θf) 

0°~360° per 9° 

Resistances (Rg) 10 Ω / 80 Ω / 350 Ω / 780 Ω / 1350 Ω / 1700 Ω / 2000 Ω 

Noise 30 dB 

mple number 
3,444 (Line fault)/ 

287 (Bus fault) 
3,444 (Line fault) / 

287 (Bus fault) 
1,722 (Line fault) / 

287 (Bus fault) 
1,722 (Line fault) / 

287 (Bus fault) 
2,870 (Line faul

287 (Bus fault

red with the training dataset, the electromagnetic environment is more complex, and Gaussian white noise w

oise-ratio of 30 dB was added to the zero-sequence current. The feeder lengths varied considerably, especially i

nd 4; feeder types were more diverse, and hybrid lines (overhead lines + cable lines) were considered in test mod

re, the fault conditions were different, where fault impedance increased and the fault time varied. These various

are helpful for comprehensively verifying the generalization capabilities of the proposed method. 

l zero-sequence currents and the corresponding class activation maps (CAM) are shown in Fig. 9, where the red 

s represents a greater weight of interest and the blue color indicates a smaller weight. Evidently, there are varied
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characteristics of zero-sequence currents under different fault scenarios, thus leading to changing oscillation and attenuation 

characteristics. Notably, the zero-sequence currents would decay rapidly, particularly under test models 2, 4, and 5 (compensation 

system). I odels 
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n addition, the healthy-feeder current would have large zero-sequence currents when SLG faults occur in test m

th extreme topologies, which makes it difficult to identify the faulty feeder. Despite these changing characteristic

attention-based CNN can always focus on the discriminative parts of superimposed currents, which correspond t

s between the faulty and healthy-feeder currents. Therefore, the superposition form of zero-sequence currents he

h the faulty feeder from the healthy feeder, and the proposed CNN has a strong discriminative capability, thereby fu

 the detection accuracy. 
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sequence currents and the corresponding CAMs in PSCAD simulation: (a) Rg = 10 Ω, θf = 225°, fault in feeder 1, test model 1; (b) Rg = 200

 feeder 1, test model 2; (c) Rg = 10 Ω, θf = 225°, fault in feeder 1, test model 3; (d) Rg = 2000 Ω, θf = 0°, fault in feeder 1, test model 4; (e) R

, fault in feeder 1, test model 5; and (f) Rg = 1700 Ω, θf = 171°, fault in bus, test model 5. 

more, three other detection methods are used for comparison. Among them, [26] extracted the detailed character

fic physical meanings and constructed a detection criterion based on multi-feature fusion by using a multiple evid

 method. Similarly, [27] extracted intrinsic mode functions (IMF) from zero-sequence currents using VMD, w

ded to the decaying DC, power-frequency, and high-frequency components, and the extracted components at diff

e used as the input of LSTM. Furthermore, [28] utilized a CNN to recognize the time-frequency images gene

ntinuous wavelet transform (CWT), and did not consider the correlation between different feeders. The de

performance of the four methods is summarized in Table 3, and the symbol ‘×’ means that the method is not appli

corresponding conditions. 

rformance in PSCAD simulations.  

tection Model Fault type Paper [26] Paper [27] Paper [28] Proposed me

Test model 1 Line fault 0.028 s 0.75 s 0.096 s 0.033 s 
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etection time 

SLG fault 

Test model 2 
Bus fault × 0.82 s 0.095 s 0.013 s 

Test model 3 
Line fault 0.014 s 0.60 s 0.047 s 0.018 s 

Bus fault × 0.60 s 0.047 s 0.008 s 

Test model 4 
Line fault 0.014 s 0.61 s 0.050 s 0.019 s 

Bus fault × 0.62 s 0.047 s 0.008 s 

Test model 5 
Line fault 0.023 s 0.64 s 0.080 s 0.028 s 

Bus fault × 0.70 s 0.078 s 0.011 s 

n accuracy 

Test model 1 
Line fault 100% 77.58% 97.97% 100% 

Bus fault × 42.51% 83.62% 100% 

Test model 2 
Line fault 100% 98.61% 99.91% 100% 

Bus fault × 72.47% 84.32% 100% 

Test model 3 
Line fault 100% 71.49% 64.81% 100% 

Bus fault × 8.71% 76.31% 98.26% 

Test model 4 
Line fault 80.43% 94.25% 77.87% 99.89% 

Bus fault × 40.77% 77.00% 98.61% 

Test model 5 
Line fault 87.87% 98.99% 90.84% 100% 

Bus fault × 95.82% 69.04% 98.61% 

ethod in [26] needs 22.71 ms + 20 ms on average to detect an SLG fault, where 20 ms is the time window o

ata. For the method in [27], because the feature extraction using VMD is quite time-consuming, it requires 689.1

 perform faulty feeder detection. Furthermore, the method in [28] requires 79.53 ms + 10 ms, where 95.87% o

time is consumed for CWT and image creation. However, the proposed method takes just 26.43 ms (18.11 m

ation and 8.32 ms for image analysis) + 10 ms to identify the faulty feeder owing to the proposed image cre

oreover, the detection accuracy in [26] decreases sharply under test models 4 and 5, and it cannot detect bus f

 the small number of decaying DC components in ungrounded networks, the method in [27] has poor dete

ce, especially under test models 1 and 3. Because the method in [28] does not consider the correlation between diff

e extreme topologies of the distribution network (test models 3 and 4) would significantly affect the dete

ce. In contrast, the proposed method outperforms the other three methods under different fault scenarios, and 

eralization capability and higher faulty-feeder detection accuracy. 

more, two RTDS models with different grounding modes were established in a HIL test system, as shown in Fig

led data for the zero-sequence currents were collected using a fault recorder. The different fault scenarios are list
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Fig. 10. RTDS model of a 10 kV distribution system. 

ios in RTDS simulations.  

 RTDS Simulation Test Samples 
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Scen

Model RTDS model 1 RTDS model 2 
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arios 

Faulted location L1 / L5 / L7 / L9 /Bus L1 / L5 / L7 / L9 / L10 / Bus 

Initial phases (θf) 30° / 90°/ 120°/ 123°/ 150°/ 180°/ 210°/ 270°/ 330° 30°/ 60°/ 90°/ 123°/ 150°/ 210°/ 243°/ 270°/ 

Grounding 
resistances (Rg) 

1.1 Ω / 5.82 Ω / 10 Ω / 1000 Ω 1.1 Ω / 10 Ω / 240 Ω / 1000 Ω 

Unbalance voltage 0 V / 2.68 V / 5.67 V 0 V / 2.68 V / 5.67 V 

Arc grounding Yes / No Yes / No 

Sample number 31 38 

ering practical fault conditions, such as unbalanced voltages and arc grounding events, as summarized in Table 4

ce of faulty-feeder detection methods in the RTDS HIL test system is more convincing. The zero-sequence cur

LG fault with arc grounding occurs are shown in Fig. 11, and the waveform distortions are noticeable. 

0.03 0.07t / s
-2
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i 0
 /

 A
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Fault in feeder 9, Rg = 243°, θf = 10 Ω, Arc, RTDS model 2 

Reignition

Extinction Reignition Extinction

Reignition

0.035  

Fig. 11. Zero-sequence current when an SLG fault with arc grounding occurs in the RTDS HIL test system. 

TDS HIL test system, the sampling frequency is 12 kHz, which is different from the sampling frequency (20 kH

g dataset. In fact, compared with fault data in numerical form, the size of the images is immune from the chan

frequency, which implies that the trained CNN can be directly applied for faulty feeder detection. Several 

urrents and their corresponding CAMs in the RTDS HIL test are shown in Fig. 12. Notably, the zero-sequence cur

e distortions under arc grounding faults, as shown in Fig. 12 (a) and 12 (f), and there are complex transients i

t time. However, the trained CNN can still focus on meaningful parts in images and conduct correlation compar

ly. 
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-sequence currents and their corresponding CAMs in RTDS HIL test: (a) Rg = 10 Ω, θf = 210°, fault in feeder 5, arc grounding, RTDS mode

 θf = 210°, fault in feeder 9, RTDS model 1; (c) Rg = 10 Ω, θf = 90°, fault in bus, RTDS model 1; (d) Rg = 10 Ω, θf = 30°, fault in feeder 1, 

 Rg = 1000 Ω, θf = 150°, fault in feeder 5, RTDS model 2; and (f) Rg = 10 Ω, θf = 123°, fault in feeder 5, arc grounding, RTDS model 2. 

tailed detection results for the four methods are summarized in Table 5. It can be seen that the other three me

e misjudgments under certain fault scenarios. For instance, [26] may misjudge bus faults as line faults, and [27

tion performance when SLG faults with arc grounding faults occur in practical distribution networks. Becaus

ency images obtained using CWT are affected by sampling frequency, [28] would inevitably have some misjudgm

S HIL test under the new sampling frequency (12 kHz). However, the proposed method can always detect the f

rectly, and it can reliably distinguish bus faults from line faults, demonstrating its strong generalization capabilit

application prospects. 

curacy in RTDS simulations.  

Model Paper [26] Paper [27] Paper [28] Proposed metho

RTDS model 1 93.55% 83.87% 83.87% 100% 

RTDS model 2 94.74% 100% 68.42% 100% 

prehensively compare the performance in different aspects, a detailed comparison of the proposed method an

e methods is shown in Table 6, including whether training is needed or not, adaptability to different fault t

efficiency, and detection accuracy. Evidently, the proposed method is a learning-based method, and it needs to be

fore application, which is its main disadvantage when compared with traditional analysis-based methods 

re, although the proposed encoding method can significantly improve the efficiency of image creation, it may

rocessing unit (GPU) computing for image analysis in practical applications, which would require hardware upd
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in devices. Despite these two limiting factors, the proposed method has high adaptability and detection accuracy under different 

fault scenarios, and has good application prospects in practical distribution networks. 
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parison of different methods.  

ethod Training Adaptability Detection efficiency (GPU) Detection efficiency (CPU) Detection accur

er [26] No Medium High High Medium 

er [27] Yes High Low Low Low 

er [28] Yes High Medium Medium Medium 

ed method Yes High High Medium High 

ical-fault-data-based Test 

ify the application prospects of the proposed method, we collected 12 sets of practical SLG fault data from

, Shaoyang, Xiangxi, and Xi'an substations in 2020. Additional fault data were recorded using real fault reco

t 12 kHz. Among them, most SLG faults occurred with obvious arc grounding events, especially for the SLG fau

ubstation, and the currents and their corresponding CAMs are shown in Fig. 13. 
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-sequence currents and their corresponding CAMs in practical distribution networks: (a) an SLG fault occurred in feeder 2, Chenzhou subs

fault occurred in feeder 2, Shaoyang substation; (c) an SLG fault occurred in feeder 5, Xiangxi substation; (d) an SLG fault occurred in fe

 substation; (e) an SLG fault occurred in feeder 3, Bus II, Xi’an substation; and (f) an SLG fault occurred in feeder 6, Bus II, Xi’an substatio

e seen that the actual zero-sequence currents are associated with distinct arc extinction and reignition processe

hen the arc is extinguished, it takes a long time for the current to become zero, which is different from the 

currents in the training dataset. However, the attention-based CNN can focus on the meaningful and discrimin

e waveforms, which ensures that the proposed method adapts to faulty feeder detection under extreme fault condi
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The test results obtained using the practical fault data are listed in Table 7. Compared with the other three methods, the 

proposed detection method has 100% detection accuracy in these 12 sets of practical fault data owing to the image recognition 
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applicatio
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erimposed currents and the attention-based mechanism. Therefore, the proposed method trained with simulation

 can be directly applied for faulty feeder detection in a practical distribution system, which confirms its exte

n prospects. 

sults in practical distribution systems.  

Method Paper [26] Paper [27] Paper [28] Proposed metho

Accuracy 91.67% 33.33% 75.00% 100% 

mary, the superposition form of zero-sequence currents helps the CNN to conduct correlation comparisons bet

nd the generated images obtained from superimposed currents are immune from changing topologies and sam

s. In addition, the established CNN with attention strategy can always focus on meaningful parts in images, th

 its discriminative capability for image recognition. Large amounts of fault data demonstrate that the proposed m

ly improves the faulty-feeder detection accuracy and possesses a strong generalization capability. 

tical Tests 

ove comparisons verify the superiority of the proposed method in terms of the detection performance. To fu

he statistical differences between the proposed method and the other three methods, the Friedman and Nemenyi

cted for statistical comparisons. The Friedman test [29, 30] is applied to determine if there are significant differe

 analyzed methods, where the null-hypothesis (H0) is that all methods are equivalent. If H0 is rejected, the Nem

2] can be performed as a post-hoc test to compare the pairwise differences between the performances of the sel

 

iedman statistic can be obtained by using (10). 
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, 

Q denotes the total number of datasets, P is the total number of compared methods, and Rj is the average rankin

d in each dataset.   

ing to the conducted experiments in Section 4.1 and 4.2, there are a total of 13 sets of datasets used for perform

n, where the bus faults and line faults are considered as two statistical datasets in Table 2. Furthermore, the

re ranked based on their detection accuracy in descending order. After ranking the four methods, the average ran

ethod can be calculated. The calculated average rankings of the methods in [26], [27], [28], and the proposed me

 2.923, 2.962, and 1.154, respectively. The Friedman statistic values are then calculated by solving (10): χ
2 

F  is 1

1.230. If the selected significance level α is 0.05, then the critical value F(4, 13) is 3.179. Therefore, the null-hypot

 rejected, implying that the four methods are statistically different.    

uently, the Nemenyi test is conducted to determine whether there are significant differences between the com

The critical difference (CD) in the Nemenyi test is defined as follows:   

( 1)

6

P P
CD q

Q



 , 

qα is the critical value, which is 2.569 when α is set as 0.05.  

study, the corresponding CD for the 13 datasets and four methods is 1.301. Based on the obtained average rankin

an test, the differences between the proposed method and the three compared methods are 1.808, 1.769, and 1

ly. Because the calculated differences are greater than CD, we can conclude that the proposed method has sup

ce compared to the other three methods.   

ore, the aforementioned detection performance and statistical tests demonstrate that the proposed method signific

faulty feeder detection and is more suitable for practical applications. 

clusion 

udy proposes a novel image-recognition-based method for faulty feeder detection in distribution networks. Owi

osition form of zero-sequence currents, the established CNN with the attention strategy can conduct a comprehe

n between currents, which is not limited to specific fault characteristics. In fact, the correlation comparison enab

 for varied fault scenarios, and the adaptability to changing topologies enables faulty feeder detection under diff

n networks. Additionally, the proposed image creation method can ensure fast computational speed and good dete

. Numerous experimental results confirm the robustness of the proposed method to various topologies, param

 modes, fault location, fault time, transition resistances, and arc grounding events. Notably, the proposed method

e current signals available from current transformers already existing in substations, which implies that there 
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additional cost involved in the implementation. Therefore, the proposed method exhibits substantial application prospects in real 

installations.  
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Highlights

 Waveforms are superimposed to conduct correlation comparison

 Topology adaptability can be ensured by recognizing superimposed 
waveforms

 A fast image creation method is proposed to improve the detection efficiency

 Images are recognized by an established CNN with attention strategy
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