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Abstract 

Artificial intelligence (AI) can potentially improve the reliability of transformer protection by fusing multiple features. 
However, owing to the data scarcity of inrush current and internal fault, the existing methods face the problem of 
poor generalizability. In this paper, a denoising-classification neural network (DCNN) is proposed, one which inte-
grates a convolutional auto-encoder (CAE) and a convolutional neural network (CNN), and is used to develop a reli-
able transformer protection scheme by identifying the exciting voltage-differential current curve (VICur). In the DCNN, 
CAE shares its encoder part with the CNN, where the CNN combines the encoder and a classifier. Based on the inter-
action of the CAE reconstruction process and the CNN classification process, the CAE regards the saturated features 
of the VICur as noise and removes them accurately. Consequently, it guides CNN to focus on the unsaturated features 
of the VICur. The unsaturated part of the VICur approximates an ellipse, and this significantly differentiates between 
a healthy and faulty transformer. Therefore, the unsaturated features extracted by the CNN help to decrease the data 
ergodicity requirement of AI and improve the generalizability. Finally, a CNN which is trained well by the DCNN is used 
to develop a protection scheme. PSCAD simulations and dynamic model experiments verify its superior performance.

Keywords:  Transformer protection, Exciting voltage-differential current curve, Convolutional auto-encoder, 
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1  Introduction
A power transformer is a critical element in a power 
system. The core issue of transformer protection is the 
discrimination between inrush current and an internal 
fault. Because of the advantages of simplicity and rapid 
response, differential protection configured with the sec-
ond harmonic restraint [1] has been widely used in power 
systems. However, it can no longer meet the reliability 
requirement of the increasingly complex power system 
because the second harmonic is inconsistent with inrush 
current and an internal fault [1]. With the rapid develop-
ment of artificial intelligence (AI) [2, 3], many AI-based 
protection schemes have emerged which fuse multiple 
features. Recent work is summarized below.

(1)	 The first category directly uses differential current 
as input to a machine learning (ML) algorithm to 
identify the operating state. The adopted ML algo-
rithms include artificial neural (ANN) [4–7], radial 
basis function neural networks [8, 9], evolving 
neural nets [10], probabilistic neural network [11, 
12], hidden Markov model (HMM) [13], decision 
tree (DT) [14, 15], random forest (RF) [16], etc. In 
recent years, deep neural networks have gained a 
lot of attention for developing transformer protec-
tion. Examples are such as the accelerated convo-
lutional neural network (CNN) presented in [17], 
and the new structure CLGNN in [18] combining a 
CNN and a light-gated recurrent unit.

(2)	 The second category extracts the data features from 
differential current first, and then uses them as 
input to an ML algorithm to identify the operating 
state. In [19–24], various wavelet features of differ-
ential current are extracted by wavelet analysis and 
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used as input to the ML algorithms to build trans-
former protection, such as support vector machine 
(SVM) [19, 20], ANN [21], DT [22], Gaussian mixed 
model [23], k-nearest neighbors algorithm [24]. 
Similarly, reference [25] uses the amplitude features 
of the primary and secondary currents as input to a 
finite impulse response artificial neural network to 
build transformer protection.

Generally, AI demands the training samples to cover 
almost all the scenarios in a power system. However, the 
inrush current and internal fault of the on-site trans-
formers are small probability events whose recorded 
samples are scarce. Therefore, the on-site transformers in 
a real power system cannot meet the ergodicity require-
ment of the training samples. As a result, it is difficult for 
AI-based protection schemes to perform satisfactorily 
in a real power system. In AI application, to improve the 
classifier’s performance, many first use a convolutional 
auto-encoder (CAE) [26] to extract the main features of 
input data before training the classifier. However, in fact, 
the features extracted by the CAE are not always help-
ful because they also face the problem of generalizability 
when the training samples are scarce.

In summary, to improve the generalizability of AI-
based protection schemes, it is critical to decrease the 
data ergodicity requirement of AI. In this paper, a novel 
deep neural network called a denoising-classification 
neural network (DCNN) is proposed and used to develop 
an AI-based transformer protection scheme by iden-
tifying the exciting voltage- differential current curve 
(VICur) [27–29]. Typical VICurs are shown in Fig.  1, 
including normal operation, healthy transformer ener-
gization (inrush current), internal fault, and faulty trans-
former energization (superposition of inrush and fault 
currents).

From Fig.  1, the VICurs of internal fault and normal 
operation approximate ellipses with different features. 
When the transformer is energized, iron core saturation 
causes the ellipse to distort irregularly. Thus, the VICurs 
of both healthy and faulty transformer energization have 
both an unsaturated and a saturated part, where the 
unsaturated parts exhibit the same features as normal 
operation and internal fault. Clearly, the unsaturated fea-
tures of a VICur differ significantly between a healthy and 
a faulty transformer. If the adopted ML algorithm can 
focus on the unsaturated part of the VICur and avoid the 
influence of the saturated part, the extracted features can 
be used as the basis for identifying the operating states of 
the transformer reliably, and are useful for decreasing the 
ergodicity requirement of the training samples.

The proposed DCNN is a new deep structure integrat-
ing a CAE and a CNN. The CAE extracts the unsaturated 

features of the VICur by reconstructing it as the unsatu-
rated part while regarding the saturated part as noise for 
removal. It shares its encoder with the CNN, and thus 
the CNN combines the shared encoder and a classifier 
and realizes the data classification. During the training 
process, the DCNN achieves the interaction of the CAE 
reconstruction and the CNN classification through the 
shared encoder. Therefore, the CAE effectively guides 
the CNN to focus on the unsaturated part of the VICur. 
Finally, by paying attention to the unsaturated part of 
the VICur, the CNN develops a strong generalizability 
and is used to build an AI-based transformer protec-
tion scheme. To certain extent, the developed protec-
tion scheme in this paper can avoid the influences of the 
saturated features of inrush current and decrease the 
ergodicity requirement of the training samples. PSCAD 
simulations and dynamic model experiments verify the 
superior performance of the proposed transformer pro-
tection scheme through comparisons with existing work.

2 � Proposed denoising‑classification neural 
network

The comprehensive features of the VICur can be exhib-
ited by its image. A CNN has a great ability to mine and 
classify the depth features of the VICur image, and the 
CAE can guide its encoder part to extract the unsatu-
rated features and remove the saturated features through 
the reconstruction process of the input. We propose a 
DCNN structure to realize the interaction of the CNN 
and CAE. Through the guidance of the CAE, the CNN 
develops the ability to focus on the unsaturated features 

a. normal operation       b. healthy transformer energization

c. internal fault         d. faulty transformer energization
Fig. 1  VICurs under various operating states (experiments)
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of the VICur image. The extracted comprehensive fea-
tures complement each other to reliably identify the 
operating states. Finally, the CNN trained by the DCNN 
is used to build the protection scheme.

2.1 � Input of DCNN
The input to the DCNN is a VICur image. Its acquisition 
process involves calculating and normalizing the exciting 
voltage and differential current, and converting the dis-
crete data to a grayscale image. First, the exciting voltage 
and differential current are calculated. The exciting volt-
age U is approximately equal to the primary voltage and 
the differential current I is the sum of the primary and 
secondary currents, as:

where uk and ik are the kth instantaneous values, and n is 
the sample number.

The exciting voltage and differential current are then 
normalized. This aims to limit the VICur into a fixed 
range without changing the graphic features. Specifically, 
the exciting voltage and differential current are normal-
ized by using the same maximum and minimum values, 
as:

where u′k and i′k are the normalized values, qmin and qmax 
are the minimum and maximum values of the vector Q 
shown as:

Finally, the normalized VICur in (2) is converted into a 
grayscale image, which covers the classification informa-
tion and its size is m × m.

(1)
U = [u1, . . . ,uk , . . . ,un]

T

I = [i1, . . . , ik , . . . , in]
T

(2)
u′k = 2× (uk − qmin)/(qmax − qmin)

i′k = 2× (ik − qmin)/(qmax − qmin)

(3)Q = [i1, . . . , ik , . . . , in,u1, . . . ,uk , . . . ,un]
T

2.2 � Overview of the proposed DCNN
The proposed DCNN integrates a CAE block and 
a CNN block which share the encoder, as shown in 
Fig.  2. During the training process of the DCNN, the 
CAE block is trained with the objective of minimizing 
the reconstruction loss, while the CNN block is trained 
with the objective of minimizing the classification loss. 
They are then used to build the transformer protection 
scheme. The details are provided below.

2.2.1 � CAE block of DCNN
During the feature extraction of the VICur image, the 
CAE block regards the saturated features as noise for 
removal and extracts the unsaturated features. Its 
structure is shown in Fig. 3.

The CAE block consists of an encoder and a decoder. 
X ′
U - I and X̃ ′

U - I are its input and target output, respec-
tively. The target output is the unsaturated part of the 
input image. Unit k of the encoder involves calculations 
of convolution, batch normalization, and activation, 
and the result is written as oek.

The output of the encoder can be represented by (4), 
where the symbol “*” indicates the convolution calcula-
tion, and r is the encoder’s unit number.

Fig. 2  DCNN structure illustrations

Fig. 3  CAE block illustrations



Page 4 of 14Li et al. Protection and Control of Modern Power Systems            (2022) 7:52 

Likewise, unit k of the decoder involves calculations of 
deconvolution [30, 31], batch normalization, and activa-
tion, and the result is represented as odk . The output of 
the decoder can be represented by (5), where the symbol 
“**” indicates the deconvolution calculation, and s is the 
decoder’s unit number.

Based on (4) and (5), the reconstruction loss of the 
CAE block is defined by the mean square error between 
the actual output and the target output, as:

where d indicates the dth training sample, and D is the 
number of training samples. x̃′duv and x′′duv refer to the 
pixel values of the target output and actual output in the 
uth row and vth column, respectively. By minimizing the 
reconstruction loss in (6), the CAE block reconstructs the 
VICur image as the unsaturated part, and consequently, 
the encoder extracts the unsaturated features. Mean-
while, the CNN block of the DCNN is guided by this 
reconstruction process to develop the ability of focusing 
on the unsaturated part.

2.2.2 � CNN block of DCNN
The CNN block realizes the data classification to iden-
tify the operating states of the power transformer. Spe-
cifically, it deals with a task of binary classification of the 
healthy transformer including normal operation/external 
fault and healthy transformer energization, and faulty 
transformer including internal fault and faulty trans-
former energization. Its structure is shown in Fig. 4.

The CNN block consists of the encoder of the CAE 
block and a classifier. Unit k of the classifier also involves 
the calculations of convolution, batch normalization, and 
activation. The result is designated as ock , and therefore 
the classifier’s output can be written as:

where the function S(x) is the softmax function, and the 
output is a 2-dimension vector, whose elements indi-
cate the probability that the dth input image belongs to 
healthy transformer or faulty transformer, respectively. r 
is the classifier’s unit number.

Based on (7), the classification loss of the CNN block is 
defined by the cross-entropy loss, as:

(4)hen
(

X ′
U - I

)

= oe1 ∗ · · · ∗ oek ∗ · · · ∗ oer

(5)
X̃ ′
U - Ihde

(

hen
(

X ′
U - I

))

= od1 ∗ ∗ · · · ∗ ∗odk ∗ ∗ · · · ∗ ∗ods

(6)LCAE =
1

Dm2

D
∑

d=1

m
∑

u=1

m
∑

v=1

(

x′′duv − x̃′duv
)2

(7)
S
(

G
(

hen
(

X ′
U - I

)))

= S(oc1 ∗ · · · ∗ ock ∗ · · · ∗ ocr)

= [Pd0;Pd1]

where Mh and Mf refer to the training samples of healthy 
and faulty transformer, respectively. With the guidance of 
the CAE block and the objective of minimizing the classi-
fication loss in (8), the CNN block develops the ability to 
focus on the VICur image’s unsaturated part.

2.2.3 � Loss function of the proposed DCNN
The loss function of the DCNN is the weighted sum of 
the reconstruction loss and the classification loss, given 
as:

where α and β are the weights of the reconstruction loss 
and the classification loss, respectively.

Based on the loss function (9), the CAE block and the 
CNN block interact through the shared encoder. From 
the reconstruction process of DCNN, the CAE block 
guides the CNN block to focus on the unsaturated 
part of the VICur image. Conversely, according to the 
classification results, the CNN block tests the unsatu-
rated features extracted by the CAE block. Thus, the 
encoder parameters are determined by the CAE block 
and the CNN block together. The features extracted by 
the encoder are suitable for both the ideal reconstruc-
tion process and a satisfactory classification process. 
Therefore they are the optimal features for identifying 
the operating states of the power transformer. Finally, 
the CNN block trained by the DCNN has an improved 
generalization ability and is used to build a reliable pro-
tection scheme.

(8)LCNN = −
∑

d∈Mh

log(Pd0)−
∑

d∈Mf

log(Pd1)

(9)

LDCNN =
α

Dm2

D
�

d=1

m
�

u=1

m
�

v=1

�

x′′duv − x̃′duv
�2

− β





�

d∈Mh

log(Pd0)+
�

d∈Mf

log(Pd1)





Fig. 4  CNN block illustrations
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3 � Proposed power transformer protection scheme
Figure  5 shows the procedure of the transformer pro-
tection scheme, including the following steps.

(1)	 Calculate the differential current and the exciting 
voltage according to (1).

(2)	 Identify whether a disturbance occurs through the 
start-up criterion. The fault components of the 
exciting voltage and differential current are used to 
construct the start-up criterion, as:

	 where k is the kth sampling data, h is the sample 
number in one cycle, KU and KI are thresholds.

(3)	 Obtain the VICur image. Suppose the start-up 
criterion (10) is met at the sth sampling data, the 
obtained VICur can be represented as (11), where n 
is the sample number in the adopted data window. 
Then, the VICur in (11) is normalized through the 
method in (2), and is then converted into a gray-
scale image.

(10)

�uk =
∣

∣|uk − uk−h| − |uk−h − uk−2h|
∣

∣ > KU

or�ik =
∣

∣|ik − ik−h| − |ik−h − ik−2h|
∣

∣ > KI

(4)	 Identify the operating states of the power trans-
former. The VICur image of each phase is used as 
input to the CNN block to determine the operat-
ing states of each phase. When at least one phase 
is identified as “faulty transformer,” the differential 
relay sends a tripping signal.

4 � Case study
The training samples are collected from PSCAD simula-
tion systems. To improve and verify the generalizability 
of the proposed protection scheme, the validation sam-
ples are obtained in the simulation system whose param-
eters are different from that of the training samples. Test 
samples are collected in the dynamic model experiments. 
Figure  6 illustrates the equivalent model of the PSCAD 
simulations and dynamic model experiments.

4.1 � Sample collection
All training samples are obtained from the step-down 
transformer in the simulation system. The simulation 
conditions have been given full consideration, provided 
by Table  5 in the “Appendix”.  In Table  5,  NO, EF, HTE, 
IF, and FTE  refer to  normal operation, external fault, 
healthy transformer energization, internal fault, and 
faulty transformer energization, respectively.   For exam-
ple, the energization time is one of the decisive factors for 
the saturation occurrence and duration time; the faulty 
turn is an essential factor that determines the differen-
tial current, the transformer loss, and the terminal volt-
age. In addition, the magnetization curves, another factor 
deciding the saturation features, are provided by Table 6 
in the “Appendix”. The sample numbers are 564, 478, 
760, and 760 for normal operation/external fault, healthy 
transformer energization, internal fault, and faulty trans-
former energization, respectively.

The validation samples are obtained from a three-wind-
ing transformer whose operational conditions are also 
shown in Table 5, and its magnetization curve is provided 
in Table 6. The sample numbers are 225, 80, 160, and 160 

(11)
Xs =

[

(is+1,us+1), . . . ,
(

is+k ,us+k

)

, . . . , (is+n,us+n)
]T

Fig. 5  Logic diagram of transformer protection scheme Fig. 6  Model of simulations and experiments
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for normal operation/external fault, healthy transformer 
energization, internal fault, and faulty transformer ener-
gization, respectively.

The test samples are obtained from an experimen-
tal transformer consisting of three single transform-
ers. Table  7 in the “Appendix” provides the transformer 
parameters and the experimental scenarios, e.g., the 

internal faults are conducted on the primary or secondary 
side by connecting the contact terminals; the occurrence 
times of external fault, internal fault, and transformer 
energization are set randomly; the minimum turn ratio 
of internal fault is 2.3%, etc. In Table 7, NO, EF, HTE, IF, 
and FTE refer to normal operation, external fault, healthy 
transformer energization, internal fault, and faulty trans-
former energization,  respectively. The sample numbers 
are 48, 58, 63, and 54 for normal operation/external fault, 
healthy transformer energization, internal fault, and 
faulty transformer energization, respectively.

Before training the DCNN and building the protection 
scheme, the raw samples collected in the simulations and 
the experiments are processed according to the methods 
in Sect. 2.1. Because the saturation duration of the iron 
core is no larger than 10  ms when the residual flux is 
not considered, a data window of 12–15 ms can contain 
sufficient unsaturated features. Herein, a data window 
of 13 ms is adopted, and the size of the VICur image is 
50 × 50. The target output of the CAE block is the image 
of the unsaturated part, and the saturated parts of the 
input images are deleted manually.

4.2 � Selection of the optimal DCNN
Considering the reconstruction and classification losses, 
and the classification accuracy of VICur images compre-
hensively, we select a relatively optimal structure shown 
in Fig. 7. The meanings of the characters, w, c, s, and p, 
have also been given in Fig.  7. “Conv2d”, “ConvTrans-
pose2d”, “ReLU,” and “BatchNorm” refer to 2-dimensional 

Fig. 7  Structure of a relatively optimal DCNN

Table 1  Effects of weights on the performance of the DCNN

Weight Training Validation Test

ACC (%) RecLoss ClaLoss ACC (%) RecLoss ClaLoss ACC (%)

0.2/1.0 99.84 0.4279 0.7798 99.52 0.2655 9.7790 93.27

0.4/1.0 99.88 0.3967 1.7331 99.84 0.2299 2.8638 96.41

0.6/1.0 99.61 9.7129 2.5993 99.20 4.4010 6.6541 93.27

0.8/1.0 96.45 9.7129 11.0904 97.60 4.4010 5.4481 92.83

1.0/1.0 99.45 9.7129 3.6392 99.36 4.4010 7.4553 95.96

1.1/1.0 99.84 0.3074 1.7329 99.68 0.1914 1.7233 95.07

1.2/1.0 99.84 9.7129 1.4730 99.36 4.4010 3.8111 93.27

1.3/1.0 100.00 0.3236 0.6932 99.68 0.2155 13.9073 92.83

1.4/1.0 99.80 9.7129 1.9064 99.52 4.4010 0.6932 95.07

1.5/1.0 99.96 0.2226 0.2600 99.68 0.1702 5.0990 96.86

1.6/1.0 99.41 0.2357 2.7451 99.36 0.1744 23.6253 93.27

1.7/1.0 99.92 0.9992 0.9991 99.84 0.1803 0.6478 96.41

1.8/1.0 99.80 9.7129 2.8593 99.20 4.4010 12.0977 93.72

1.9/1.0 99.92 9.7129 1.0397 99.52 4.4010 6.9627 95.07

2.0/1.0 99.61 9.7129 1.2131 99.84 4.4010 4.5306 93.27
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convolution, 2-dimensional deconvolution, ReLU func-
tion, and batch normalization, respectively.

Table  1 summarizes the reconstruction and classifi-
cation performance of the DCNN with different loss 
weights. In Table 1, ACC, RecLoss, ClaLoss refer to accu-
racy, reconstruction loss,  and  classification loss, respec-
tively. The weight β of the classification loss is set to 1.0, 
and the weight α of the reconstruction loss ranges from 0 
to 2.0. As can be seen from Table 1, the DCNNs with the 
weights below perform the best (the following results are 
given in order of the reconstruction loss, classification 
loss, and classification accuracy):

(1)	 α = 0.4, β = 1.0. The results of training samples 
are 0.3967, 1.7331, and 99.88%, respectively. The 
results of validation samples are 0.2299, 2.8638, and 
99.84%, respectively.

(2)	 α = 1.5, β = 1.0. The results of training samples 
are 0.2226, 0.2600, and 99.96%, respectively. The 
results of validation samples are 0.1702, 5.0990, and 
99.68%, respectively.

(3)	 α = 1.7, β = 1.0. The results of training samples 
are 0.9992, 0.9991, and 99.92%, respectively. The 
results of validation samples are 0.1803, 0.6478, and 
99.84%, respectively.

The CNN blocks of the DCNNs above are then used as 
the alternatives to classify the test samples. As expected, 
they show strong generalization ability, with accuracies of 
96.38%, 96.84%, and 96.59%, respectively. Therefore, any 
one of them is promising for building a reliable protec-
tion scheme. In the following section, the DCNN with 
loss weights of 1.5 and 1.0 is taken as an example to detail 
the training process and the advantages of the proposed 
protection scheme.

4.3 � Training and test process of the selected DCNN
Figure  8 details the training process of the selected 
DCNN with weights of 1.5 and 1.0. According to Fig. 8a, 
the reconstruction and classification losses decrease 
gradually as the iteration time increases. As shown in 
Fig. 8b, when the iteration progresses to the 100th time, 
the total losses of the training and validation samples 
drop to below 0.1 and 20, respectively.

Figure  9 shows the reconstruction results of several 
VICur images in the validation samples, indicating that 
the CAE block of the DCNN extracts the unsaturated 
features effectively. The classification accuracies of the 
training and validation samples increase to 99.96% and 
99.68%, respectively. It indicates that the CNN block of 
the DCNN has the desired classification performance. 
The test samples are used to test the generalizability of 
the CNN.

Since they are affected by the complicated transient 
environment of the experiments, the test samples have 
different features from the training samples. Because 
of these different features, the CAE block of the DCNN 
fails to completely remove the saturated parts of the test 
samples, as can be seen from the reconstruction results 
of the partial VICur images in Fig.  10. However, the 
reconstructed images still contain sufficient unsaturated 
features because the DCNN has the ability to focus on 
the unsaturated part of the VICur image. In particular, 
for normal operation/external fault, healthy transformer 
energization, and internal fault, the CAE block of the 
DCNN has satisfactory reconstruction performance. 
However, since the differential current of faulty trans-
former energization is the superposition of fault current 
and inrush current, which have certain similarities, there 
are no distinct dividing points between the unsaturated 
and saturated parts. As a result, it is inevitable that the 

Fig. 8  Training and validation results
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CAE block performs worse to the faulty transformer 
energization. However, the faulty and saturated features 
are still significantly different from the unsaturated fea-
tures of the healthy transformer. Therefore, the recon-
struction results of the faulty transformer energization 
do not affect the correct identification of the CNN block.

Equation  (12) details the classification results, where 
ACC is the classification accuracy of the test samples, 
TP and TN are the respective scenario numbers that the 

healthy and faulty transformers are identified correctly. 
FP and FN are the scenario numbers of faulty and healthy 
transformers that are wrongly identified, respectively.

In (12), all the scenarios identified wrongly are related 
to the healthy transformer energization due to longer 
saturation duration resulting from remanence. With no 
consideration of remanence, the data window of 13  ms 
adopted in the proposed protection scheme contains 
sufficient unsaturated features for the operating state 
identification. However, it is difficult for the dynamic 
model experiments to fully eliminate the effects of rema-
nence when collecting the test samples. Affected by the 

(12)
ACC =

TP+ TN

TP+ TN+ FP+ FN

=
99+ 117

99+ 117+ 0+ 7
× 100% = 96.86%

Fig. 9  Reconstruction results of validation samples

Fig. 10  Reconstruction results of test samples

Fig. 11  An example of healthy transformer identified wrongly
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remanence, the unsaturated features may be insufficient 
for some test samples, as in an example shown in Fig. 11.

In Fig. 11a, after the transformer is energized, the iron 
core is saturated between 0.6786 and 0.6908 s in the first 
cycle. Therefore, the duration time of differential current 
saturation is 12.2  ms. Consequently, the VICur image 
in Fig. 11b only contains unsaturated features of 0.8 ms. 
Inevitably, it is wrongly identified as a “faulty trans-
former” by the CNN block.

The training samples fully consider various simulation 
conditions but the simulated scenarios are far from cov-
ering all possible scenarios. In particular, the validation 
and test samples have different operational conditions 
from the training samples. However, from the reconstruc-
tion and classification results, the proposed DCNN can 
effectively extract the unsaturated features and reliably 
identify the operating states of the power transformers. 
It effectively proves that the DCNN helps the CNN block 
decrease the ergodicity requirements. Therefore, the CNN 
block is promising for building an AI-based transformer 
protection scheme with a strong generalizability.

4.4 � Comparisons with common neural network
Comparisons with common neural networks are made 
to verify the improved generalizability of the proposed 
DCNN, including:

(1)	 CNN. The VICur images are directly used as input 
of a CNN to identify the operating states of the 
power transformer.

(2)	 CAE and classifier. The CAE extracts the features by 
reconstructing the VICur image as the unsaturated 
part. They are then used as input of a classifier to 
identify the operating states of the power transformer.

These two neural networks adopt the same structure, same 
initial values, and same samples as the DCNN in Sect. 4.3.

4.4.1 � Comparison with CNN
Figure 12 shows the training process of the CNN. As can 
be seen, the classification accuracies of the training and 
validation samples increase gradually as the classification 
loss decreases. When iterating to the 70th step, the clas-
sification loss and accuracy become stable. Finally, the 
classification accuracies of the training and validation sam-
ples reach 99.84% and 99.52%, respectively. It seems that 
the CNN is trained well and has good performance on 
the simulation samples. The test samples are also used to 
test the generalizability of the CNN. From the test results, 
the classification accuracy of the samples is only 92.83%, 
which indicates the CNN’s poor generalizability. The CNN 

block of the DCNN develops the ability of focusing on the 
unsaturated part by the guidance of the CAE block. There-
fore it has better generalizability, and can classify the train-
ing, validation, and test samples reliably with classification 
accuracies of 99.96%, 99.68%, and 96.86%, respectively.

4.4.2 � Comparison with CAE and classifier
Figure 13 shows the training processes of the CAE and 
the classifier. The final reconstruction loss shown in 
Fig. 13a is lower than 0.2, so it seems that the CAE has 
extracted sufficient main features of the VICur images. 
The output of the CAE encoder is then used as input to 
train the classifier. During the training process shown 
in Fig. 13b, its parameters are updated, and the encoder 
parameters are fine-tuned to decrease the classification 
loss. With the decrease of classification loss, the classifi-
cation accuracies of the training and validation samples 
increase gradually and finally reach 100% and 99.68%, 
respectively. Hence, the classifier based on the features 
extraction of the CAE has good classification perfor-
mance on both the training and validation samples.

Further, the generalizability of the CAE and the classifier 
is tested on the test samples. Compared with the CNN in 
Sect.  4.4.1, the classifier has better generalizability with a 
classification accuracy of 95.07% due to the feature extrac-
tion process of the CAE. However, because the training pro-
cesses of the encoder and the classifier are independent, the 
training process of the encoder doesn’t consider the effects 
of the updated parameters on the classification performance 
of the classifier. Therefore, the features extracted by the 
encoder are not the optimal ones for the sample classifica-
tion of the classifier. Comparatively, the proposed DCNN 
realizes the interaction of the CAE block’s reconstruction 
process and the CNN block’s classification process during 
the process of the DCNN. Therefore, the features extracted 

Fig. 12  Training and validation results of CNN
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by the encoder of the DCNN are optimal for the sample 
classification of the CNN block. From the results, the CNN 
block of the DCNN has the best generalization ability with a 
classification accuracy of 96.86% for the test samples.

4.4.3 � Comparisons with different data size
The size of the training samples is adjusted further to 
compare the classification performance of the three neu-
ral networks. The new training samples are randomly 
selected from the original training samples in the propor-
tions of 15%, 30%, 45%, 60%, 75%, and 90%. The valida-
tion and test samples, the neural networks, and the initial 
parameters are unchanged. Table 2 compares the results, 
after the training and test processes, of the classification 
accuracies and the determined weights of the DCNN. 
From Table 2, it can be seen that as the size of the train-
ing samples increases, the classification performance of 
the three neural networks improves noticeably. They per-
form similarly and have good generalizability to the vali-
dation samples, but perform quite differently to the test 
samples. Comparatively, the CNN block of the DCNN 
with the suitable weights has the best generalizability 
under any size of training samples. For instance, when 
the size of the training samples is 75%, the CNN block 
of the DCNN with the weights of 1.6 and 1.0 performs 
the best with a classification accuracy of 95.07% for the 
test samples, whereas the classification accuracies of the 
other two neural networks are only 91.93% and 93.72%. 
The results in Table  2 demonstrate that the CNN block 
determined by the proposed DCNN has significantly 
improved generalizability.

4.5 � Comparisons with other methods
This section compares this proposed protection scheme 
with other schemes as briefly described below. We high-
light its advantages.

(1)	 Traditional second harmonic restraint (Scheme 1). 
The threshold of this harmonic restraint method is 
15%.

(2)	 ANN-based protection scheme (Scheme 2). The dif-
ferential current in one cycle is used as input to the 
ANN to identify the operating states of the power 
transformer. It adopts a structure of double hidden 

Fig. 13  Training and validation results

Table 2  Comparisons under different training samples size

Data 
volume (%)

CNN (%) Classifier based on CAE (%) CNN block of DCNN (%)

Training Validation Test Training Validation Test Training Validation Test Weights (α/β)

15 95.04 90.72 84.75 97.93 92.48 87.44 99.49 92.96 88.78 1.2/1.0

30 98.83 96.00 87.89 100 98.24 90.58 100 98.88 91.93 1.3/1.0

45 99.38 97.92 90.13 99.84 97.28 90.58 99.80 98.08 92.38 1.2/1.0

60 99.92 99.68 91.93 99.92 99.36 92.38 99.92 98.24 94.17 1.4/1.0

75 99.34 98.88 91.93 99.84 99.04 93.72 99.96 99.84 95.07 1.6/1.0

90 99.96 99.36 92.83 99.73 98.88 93.72 99.69 99.36 95.52 1.4/1.0

100 99.84 99.52 92.83 100 99.68 95.07 99.96 99.68 96.86 1.5/1.0
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layer, where the neuron numbers of the first and the 
second hidden layers are 550 and 10, respectively.

(3)	 RF-based protection scheme (Scheme  3). The dif-
ferential current in one cycle is used as input of RF 
to identify the operating states of each phase. The 
decision tree number of the selected RF is 50, where 
the maximum depth is 20. The node splitting of 
each decision tree is based on the Gini index.

(4)	 Wavelet transform and SVM based protection 
scheme (Scheme  4) [20]. The detailed compo-
nents (d2-d4) of the differential current, which are 
extracted through db4 mother over level d4, are 
divided into four equal sections. Then the average 
energy of the three phases in each section is com-
puted. Finally, the average energy is used as input 
to an SVM to identify the operating states of the 
power transformer.

(5)	 Geometric features of the VICur and SVM-based 
protection scheme (Scheme 5) [27]. The inclination 
angle, the major axis and the ellipticity of the VICur 
are calculated by the methods provided in [27]. The 
three features are combined as a feature vector used 
as input to the SVM to identify the operating states. 
The parameters, c and g, are 18.3792 and 0.3789, 
respectively.

The above five schemes adopt the same training samples 
as the proposed protection scheme, as shown in Table 5. 
The classification accuracy of the test scenarios in Table 7 
is used to compare the classification performance. As these 
schemes require the training and test scenarios to adopt 
the same sampling rate, the sampling rate is thus adjusted 
to 10 kHz in this comparison. Table 3 summarizes the clas-
sification results of Schemes 1–5 after the training and test 
processes, and the proposed protection scheme.

From Table  3, Scheme  1 performs better than schemes 
2–5 with an accuracy of 94.21% for the identification of 
internal faults and healthy transformer energization. How-
ever, it has the highest rejection rate of 11.11% when an 
internal fault occurs because of the harmonics which can-
not be ignored. In addition, Scheme 1 is obviously unsuit-
able for identifying faulty transformer energization and 
a normal operational/external fault. Schemes 2–4 have 

satisfactory performance for faulty transformer energiza-
tion, normal operational/ external faults, and internal 
faults. However, they perform worse with a higher mal-
function rate when a healthy transformer is energized, and 
specifically, the identification accuracies of healthy trans-
former energization are only 77.59%, 75.86%, and 81.03%. 
Except for the scenarios of normal operational/external 
fault, Scheme  5 performs the best for the identification 
of healthy transformer energization, internal faults, and 
faulty transformer energization, compared with Schemes 
1–4. Comparatively, the proposed protection scheme in 
this paper shows the best classification performance for all 
scenarios. When an internal fault occurs or a healthy trans-
former is energized, its rejection rate and malfunction rate 
are the lowest with classification accuracies of 100% and 
87.93%, respectively. It can also identify faulty transformer 
energization and normal operational/external fault reliably. 
In summary, the proposed protection scheme is superior, 
indicating that the proposed DCNN improves the perfor-
mance of the AI-based transformer scheme.

4.6 � Run time test
To test the runtime of the proposed protection scheme, 
this section uses the Python language and deploys it on 
the developer kit of NVIDIA® Jetson AGX Xavier™. The 
test platform is shown in Fig.  14 and the parameters of 
the developer kit are provided in Table 4.

The runtime test by the platform only involves the 
computation time t of the protection procedure, includ-
ing data window length tdw , data processing time tdp , and 
computation time tct of the CNN block. From the test 
results, the computation time of the proposed protection 
scheme is 25.92 ms, as:

Table 3  Comparison results of classification accuracy (%)

Scenarios Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Proposed 
scheme

Internal fault 88.89 94.21 98.41 88.43 96.83 86.78 98.41 90.08 98.41 93.39 100 99.17

Healthy transformer energization 100 77.59 75.86 81.03 87.93 87.93

Faulty transformer energization 42.59 90.74 90.74 96.30 96.30 100

Normal operation/external fault 18.75 100 100 100 95.83 100

All the scenarios 65.47 91.48 90.58 93.72 94.62 96.86

Fig. 14  Platform for runtime test
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Although the runtime reaches 25.92  ms, it still meets 
the requirements of relay protection. Considering the 
classification accuracy of the test samples, the proposed 
DCNN based transformer protection scheme has a cer-
tain practicability.

5 � Conclusion
The power transformer plays an essential role in a power 
system. Therefore, its protection scheme is a critical issue. 
The traditional protection scheme is differential protection 
configured with a second harmonic restraint. It has been 
widely used in power systems. However, as the power sys-
tem becomes increasingly complex, this differential pro-
tection can no longer meet requirements. On the other 
hand, previously proposed AI-based protection schemes 
are not being accepted by the power system because of the 
ergodicity requirement of the training samples.

In this paper, a new deep structure called DCNN is 
proposed to decrease the ergodicity requirement of the 
training samples, and a reliable transformer protection 
scheme is developed by using the DCNN to identify the 
VICur image. The DCNN is an integration of a CAE 
block and a CNN block, where the CAE block shares its 
encoder with the CNN block. The DCNN uses the CAE 
block to reconstruct the VICur image as the unsaturated 
part and uses the CNN block to classify the training sam-
ples. Because of the interaction process in the encoder, 
the CAE block guides the CNN block to focus on the 
unsaturated part of the VICur image. Because the unsat-
urated part of the VICur approximates an ellipse and dif-
fers distinctly between a healthy and faulty transformer, 
the ergodicity requirement of the training samples is 

(13)
t = tdw + tdw + tdw

= (13+ 4.14 + 8.78)ms

= 25.92ms

decreased significantly. Therefore, the CNN block trained 
by the DCNN is helpful for building an AI-based trans-
former protection scheme with a strong generalization 
ability. PSCAD simulations and dynamic experiments 
show that the proposed protection scheme is a promising 
prospect for power systems.

Appendix
See Tables 5, 6 and 7.

Table 4  Parameters of developer kit

Graphics processing 
unit (GPU)

512-core Volta GPU with Tensor Cores

Central processing unit 
(CPU)

8-core Advanced Reduced Instruction Set 
Computer Machine v8.2 64-bit CPU, 8 MB 
L2 + 4 MB L3

Memory 16 GB 256-Bit Low Power Double Data Rate 
Fourth Generation × 137 GB/s

Storage 32 GB embedded multimedia card  5.1

Deep learning accelera-
tor

(2×) NVDLA Engines*

Vision accelerator 7-way Very Long Instruction Word Vision 
Processor

Encoder/decoder (2×) 4Kp60 I High Efficiency Video Coding/(2x) 
4Kp60 12-Bit Support

Size 105 mm × 105 mm

Deployment Module (Jetson AGX Xavier)

Table 5  Training and validation samples in PSCAD

Training Validation

1st one 2nd one

Parameters

Connection Y/Δ-11 Δ/Y/Y-11

Ratio 230/11 kV 230/35 kV 35/220/500 kV

Leakage resistance 0.1 p.u

Copper loss 0.005 p.u

Iron loss 5%, 7%, 10% 6%

Sampling frequency 20 kHz 2, 10 kHz

Scenarios

NO Start-up time: 1.001 s, 1.002 s, …, 1.020 s

EF Occurrence time: 1.001 s, 1.002 s, …, 1.020 s; 
Type: single phase-to-ground, phase-to-
phase, two phase-to-ground faults

HTE Energization time: 1.001 s, 1.002 s, …, 1.020 s

IF Occurrence time: 1.001 s, 1.002 s, …, 1.020 s;
Fault turns: 1.5%, 2.0%, 2.5%, 3.0%, and 5.0%

FTE Energization time: 1.001 s, 1.002 s, …, 1.020 s;
Fault turns: 1.5%, 2.0%, 2.5%, 3.0%, and 5.0%

Numbers

NO/EF 564 225

HTE 478 80

IF 760 160

FTE 760 160

Table 6  Magnetization curves of training samples (p.u.)

Training: 1st one Training: 2nd one Validation

Voltage Current Voltage Current Voltage Current

0 0 0 0 0 0

0.1 9.2280e−05 1.0 0.0025 0.10 0.0000533

0.5 4.4895e−04 1.1 0.005 0.50 0.000259

1.0 1.04754e−03 1.2 0.02 1.00 0.000605

1.1 7.18316e−03 1.25 0.04 1.10 0.00415

1.2 9.95666e−02 1.28 0.1 1.20 0.0575

1.4 0.6285765 1.32 0.2 1.40 0.3629

1.6 1.352529 1.36 0.3 1.60 0.78088

1.8 2.179491 1.535 1 1.80 1.25834

1.9 2.6178888 3.7 10 1.90 1.51145
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