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A B S T R A C T   

Faulty feeder detection is crucial to maintaining the safety and stable operation of power grids after single line- 
to-ground (SLG) faults occur in distribution networks. Existing detection methods have achieved good perfor-
mance based on multi-feature fusion, but the extracted features commonly lack completeness and the detection 
process is poor in interpretability. This paper proposes a detection method based on fully convolutional network 
and fault trust degree estimation, which seeks to enhance its completeness and interpretability by mining the 
clear physical meaning from raw fault signals. Firstly, the zero-sequence current waveforms of all feeders were 
superimposed in the same plot to acquire the overall evaluation of fault conditions. Subsequently, a fully con-
volutional network was established to segment the waveforms of faulty feeder, suspected faulty feeder, and 
healthy feeders from the superimposed waveforms. Secondly, the segmented waveform of faulty feeder was 
compared with raw current waveforms, and an estimation method was introduced to quantitatively describe the 
fault trust degree of each feeder on the waveform scale, which is clear, complete, and intuitive. Finally, the faulty 
feeder can be detected after fault trust degree estimation. Various tests using PSCAD simulation, RTDS, field test, 
and practical fault data validate the efficiency of the proposed method.   

1. Introduction 

Since distribution systems with non-effective grounding are allowed 
to operate 1–2 h after occurrence of SLG faults, the non-effective 
grounding modes, such as ungrounded and resonant grounding, are 
extensively used in medium-voltage distribution networks [1]. Despite 
the reliability improvement in uninterrupted power supply, serious 
faults, such as interphase short, equipment damage, and casualties, may 
occur if the faulty feeders cannot be accurately identified and isolated. 
However, the SLG fault currents are weak, and fault transients are 
complex, especially for the resonant grounding networks, thereby 
posing great challenges for faulty feeder detection. Therefore, it is 
necessary to propose SLG faulty-feeder detection methods with high 
accuracy and reliability to enhance the safety and stable operation of 
distribution networks. 

The existing faulty-feeder detection methods can be mainly divided 
into two categories: steady-state methods [2–7] and transient methods 
[8–16]. Fault characteristics of steady-state zero-sequence electrical 
parameters, such as amplitude, polarity, power, and admittance [2–4], 
are utilized to identify the faulty feeder. However, the steady-state 

methods have inherent limitations [5], especially for the resonant 
grounding networks and high impedance faults. Furthermore, in addi-
tion to the existing steady-state parameters, signal-injection methods 
[6–7] can realize faulty-feeder detection by tracking the certain injected 
signals, and they commonly require the assistance of additional devices, 
which would increase the construction costs and risks of devices 
damage. 

Considering that transient components are several times larger than 
steady-state components after SLG faults, the transient methods usually 
extract rich transient fault features by using modern signal processing 
(MSP) algorithms, thus improving the detection accuracy. In [8], 
wavelet packet transform (WPT) is used to extract the decaying DC 
component, correlation component, and energy entropy component of 
zero-sequence currents, and the faulty feeder can be detected based on 
multi-feature fusion. In [9], Hilbert-Huang transform (HHT) is applied 
to decompose zero-sequence currents into several intrinsic mode func-
tions (IMF), and the energy of the high-frequency IMFs is calculated to 
identify the faulty feeder. In [10], S-transform is adopted to get the 
spectral energy and differential energy, and microgrid protection is 
realized. Furthermore, wavelet transform (WT) [11–12], mathematical 
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morphology (MM) [13–14], and variational mode decomposition (VMD) 
[15–16], are also utilized in this field. Despite certain improvement on 
detection accuracy, the limiting factors that adversely affect the detec-
tion performance can be summarized as: 1) most MSP algorithms adopt 
fixed basis functions, which would result in low feature representation 
ability [17]; 2) the extracted features lack adequate completeness, and 
they cannot adapt to all fault scenarios; 3) the detection strategies based 
on multi-feature fusion or human experience are not optimal, and mis-
judgments may occur due to the failure of certain features. 

To remedy the deficiency of the transient methods, machine learning 
(ML) algorithms has been introduced to further improve the detection 
accuracy. Since ML algorithms can adaptively learn and combine high- 
level features based on large amounts of fault data, the detection 
methods expect to have good performance by using ML algorithms. For 
instance, the fault features both in time domain and frequency domain 
are extracted by WT, and they are combined by convolutional neural 
network (CNN) [18]. IMFs of zero-sequence currents obtained by VMD 
are utilized as the input of long short-term memory neural network 
(LSTM), and the faulty feeder can be identified according to the output 
of LSTM [19]. In addition, neural network [20–21], clustering methods 
[22–23], and ensemble learning algorithm [24–25], are also employed 
as classifiers for detecting the faulty feeder. However, these ML-based 
methods have not been applied in practical distribution systems, and 
this is mainly because: 1) the extracted high-level features lack clear 
physical meaning; 2) the detection process has poor interpretability; 3) 
the generalization capability needs to be further verified when the 
detection methods encounter new fault scenarios. 

To address the shortcomings of the existing methods, this paper 
proposes a novel detection method based on fully convolutional network 
(FCN) and fault trust degree estimation (FTDE), which has better per-
formance in completeness of extracted features and interpretability of 
detection strategy. The main contributions are as the flowing: 

1) Physical Meaning and Completeness of Extracted Features Can Be 
Enhanced: Raw zero-sequence current waveforms of all feeders are first 
superimposed in the same plot, and then an FCN is established to 
segment the waveform corresponding to the faulty feeder from the 
superimposed waveforms. Therefore, instead of extracting detailed 
features from raw fault currents, raw current waveforms are directly 
utilized to measure the fault degrees on the waveform scale. Since the 
raw waveforms have clear physical meaning and completeness, the 
proposed method has superior feature representation ability. 

2) Interpretability of Detection Strategy Can Be Further Improved: From 
FCN aspect, the segmented results can be determined as detailed un-
derstanding on the superimposed waveforms, which corresponds to the 
raw current of each feeder. Besides, the segmented results are compared 
with raw current waveforms based on FTDE, and the detection strategy 
can be constructed, which is clear and intuitive. Therefore, FCN can 
directly exhibit the segmented results from raw superimposed wave-
forms, and FTDE can measure the fault degree of each feeder by 
comparing raw waveforms with the segmented results, which has strong 
interpretability. 

The rest of the paper is organized as follows. Section 2 analyzes the 
existing detection methods in detail and points out their limitations and 
further improvement. Section 3 presents the detailed implementation 
process of the proposed method. The conducted case verifications are 
discussed in Section 4. Further, the PSCAD simulation, RTDS simulation, 
field test, and practical fault data are introduced along with some 
necessary analysis and comparisons. Finally, the study is concluded in 
Section 5. 

2. Related works 

Existing faulty-feeder detection methods can be classified into two 
groups, which can be called as “Method 1” and “Method 2” in this paper. 
The two methods are analyzed in this section, and their limitations and 
further improvement are detailed discussed. 

2.1. Method 1 

For Method 1, several fault features are extracted from raw fault 
signals using MSP algorithms, and the extracted features are employed 
to construct the detection schemes based on different strategies, as 
shown in Fig. 1. Since the fault transients are complex and fault sce-
narios are varied, Method 1 can improve the detection accuracy by 
extracting efficient fault features and constructing suitable strategies. 

For instance, transient energy, kurtosis, and cross-correlation dis-
tance are extracted from zero-sequence currents, and they are combined 
based on multiple evidence fusion method [26], where the feeder cor-
responding to the maximum fusion result is determined as the faulty 
feeder. Similarly, the steady-state components of zero-sequence currents 
are calculated to construct the criterion 1, the transient components are 
obtained to serve as the criterion 2, and the two criterions are selected 
by the threshold judgment [27]. Therefore, Method 1 expects to extract 
and combine several fault features with certain physical meaning, which 
can reflect the fault degrees of raw signals. 

However, there are two main drawbacks: 1) the extracted fault fea-
tures can only reflect characteristics of raw signals in some aspects, 
which lacks adequate completeness. Besides, the MSP algorithms may 
obtain the fault features without physical meaning in the extraction 
process [17]; 2) the performance of the constructed schemes relies 
heavily on fusion theory or human experience, which would not always 
achieve the optimal detection results. Therefore, the completeness and 
detection strategies of Method 1 can be further improved. 

2.2. Method 2 

For Method 2, ML algorithms are commonly utilized as tools for 
constructing the detection strategies, as shown in Fig. 2. The core of 
Method 2 is the selection of input features and ML algorithms. For the 
input features, they can be either extracted by MSP algorithms or 
adaptively learned by ML algorithms. For the ML algorithms, different 
models, such as neural network, support vector machine (SVM), and 
ensemble learning, can be utilized to combine the input features and 
output the detection results. 

For instance, current waveform energy and normalized joint time- 
frequency moments are extracted as fault features, and SVM is used as 
a classifier for detection [28]. In [29], the sampled data of zero-sequence 
currents are directly employed as the input of the 1-D CNN, which can 
adaptively learn the fault features from raw currents, and the CNN is 
utilized as a tool both for feature extraction and feature fusion. These 
methods require large amounts of data for training and achieve good 
detection performance in simulations. 

Despite certain improvement in detection accuracy compared with 
Method 1, the factors hindering the application prospects of Method 2 
are as follows: 1) the extracted features are high-level features in the 
aspects of ML algorithms, which lacks clear physical meaning; 2) the 
process of feature fusion is data-driven, which is poor in interpretability. 
Therefore, the physical meaning and interpretability of Method 2 are the 
limiting factors for future practical applications. 

In summary, a desirable faulty-feeder detection method should have 
good performance in the following aspects: clear physical meaning, 
completeness, interpretability, and suitable detection strategy. 

3. Proposed method 

3.1. Proposed detection framework 

In this paper, an FCN-FTDE based faulty-feeder detection scheme is 
proposed. The proposed scheme comprises four modules: 1) current 
waveform procession and superimposition; 2) image creation; 3) 
waveform segmentation; 4) fault trust degree estimation. The simplified 
diagram of the detection scheme is exhibited in Fig. 3. 

Firstly, raw zero-sequence currents are superimposed in the same 

J. Yuan and Z. Jiao                                                                                                                                                                                                                            



International Journal of Electrical Power and Energy Systems 141 (2022) 108264

3

plot, and the overall perspective of the SLG fault can be reflected. Sec-
ondly, the binary image composed of currents of all feeders is generated. 
Subsequently, the generated image is input to the FCN, which can 

segment different current waveforms with different meanings. Finally, 
FTDE can be conducted between the segmented waveform correspond-
ing to the faulty feeder and raw current waveform of each feeder, and 

Fig. 1. Diagram of Method 1. If the raw signal is corresponding to the faulty feeder, the detection result is the faulty feeder, otherwise, the detection result is 
healthy feeder. 

Fig. 2. Diagram of Method 2. If the raw signal is corresponding to the faulty feeder, the output label is ‘1′, otherwise, the output label is ‘0′.  

Fig. 3. The diagram of the proposed detection scheme. (Take the zero-sequence currents in a distribution network composed of four feeders as an example).  
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the faulty feeder can be detected based on the estimation result. 
Compared with Method 1 and Method 2, the proposed method has 

superior performance in the following aspects:  

1. From the aspect of physical meaning: The superimposed current 
waveforms of all feeders are segmented into waveforms with 
different meanings based on FCN, including the waveform of the 
faulty feeder, suspected feeder, and healthy feeders. That is to say, 
the output of FCN has clear physical meaning, which can be easily 
associated with raw zero-sequence currents.  

2. From the aspect of completeness: the target of feature extraction is 
the whole waveform, rather than specific fault features. Since the 
whole waveform has the complete fault features, the proposed 
method can satisfy the requirement for completeness, which is no 
longer limited to certain features.  

3. From the aspect of interpretability: compared with the output label 
of Method 2, which is directly corresponding to the final detection 
result, FCN is first utilized to segment the superimposed waveforms 
into waveforms with different meanings, rather than a mere data- 
driven fusion tool. Among them, FCN attempts to realize detailed 
understanding based on classifying each pixel in the image generated 
by superimposed waveforms. Subsequently, the final faulty-feeder 
detection result depends on the FTDE between the segmented re-
sults and raw current waveforms, and the detection process is clear 
and intuitive.  

4. From the aspect of detection strategy: the proposed FTDE with clear 
physical meaning and interpretability can better measure the fault 
degree on the waveform scale. Therefore, the detection strategy 
based on FTDE is simple, practical, and effective. 

The detailed implementation is further illustrated in the following 
section. 

3.2. Waveform processing and image creation 

The first half-cycle zero-sequence current of each feeder is sampled 
after SLG faults, and the maximum absolute values of currents are 
calculated using (1). 

iM(n) = Max(|in(t)|) , n ∈ [1,N], t ∈ [0,
T
2
] (1)  

where T is the cycle of zero-sequence current, N is the number of feeders, 
in(t) is the raw zero-sequence current of n-th feeder, and iM(n) is the 
maximum absolute values of n-th feeder. 

Subsequently, raw sampled current of n-th feeder is normalized using 
(2). 

i
′

n(t) = in(t) ×
iM(n)

(Max(iM(n)))2 , n ∈ [1,N], t ∈ [0,
T
2
] (2)  

where i’n(t) is the normalized current of n-th feeder. 
Considering the loss of fault characteristics caused by normalization, 

it is necessary to enlarge the amplitude of the zero-sequence current 
using η, shown in (3), whose amplitude (i’M(n)) is the second largest. 

η =
Max(i′M(n))

Second Max(i′M(n))
, n ∈ [1,N] (3)  

where Max(i’M(n)) is the maximum amplitude of the currents, and Sec-
ond_Max(i’M(n)) is the second largest amplitude. 

If η is greater than two, the current amplitude of the feeder with 
second largest amplitude will be enlarged by η/2; otherwise, it will 
remain at the raw amplitude. 

Subsequently, the processed current waveforms of all feeders are 
superimposed in the same image. The generated image contains the 
completed features of raw fault currents, laying the foundation for 

further faulty-feeder detection. Finally, the binary processing of the 
image is conducted, and the image is resized to 256 × 256. 

3.3. Waveform segmentation 

Semantic segmentation lays important foundation for detailed image 
understanding, which is extensively used in autonomous driving, med-
icine, and geography [30]. As the sate-of-the-art method in the field of 
semantic segmentation, FCN [31] has achieved successful applications. 
Compared with traditional CNN, FCN converts the last fully connected 
(FC) layers into convolutional layers, and the feature map is finally 
returned to an image with the same size as the raw image based on 
upsampling operations. Besides, skip structures are added into the 
network to fuse outputs of different layers, which leads to high quality 
segmentation results. 

FCN mainly contains convolutional layer, max-pooling layer, 
upsampling layer, and fusion layer. Wherein, the convolution layer and 
max-pooling layer are alternately stacked for feature extraction in the 
encoding stage, and the upsampling layer and fusion layer are alter-
nately stacked for semantic segmentation in the decoding stage. The 
convolution process can be described as follows: 

xl
j = f (

∑

t
kl

t,j ∗ xl− 1
t + bl

j) (4)  

where xl
j denotes the output of jth filter in the lth convolutional layer, and 

xl− 1
t denotes the output of tth feature map in the (l − 1)th convolutional 

layer. kl
t,j denotes the learned weights of jth filter in the lth convolutional 

layer, and bl
j is the bias term. f (.) denotes the non-linear activation 

function. 
Subsequently, the max-pooling layer is utilized to reduce the 

learning parameters and avoid over-fitting, and it can be expressed as 
follows: 

pl
j = max

r∈Mj

(
xl

j(r)
)

(5)  

where pl
j denotes the output of jth filter in the lth max-pooling layer, and 

Mj is the area of pooling operation. 
Since the size of feature maps is reduced after max-pooling opera-

tion, the upsampling operation is utilized in the decoding stage as fol-
lows: 

uk
j = g

(
pl

j

)
(6)  

where uk
j denotes the output of jth filter in the kth upsampling layer, and g 

(.) denotes the upsampling function. 
To fuse outputs of different layers, fusion layer is conducted: 

yk
j = pl− 1

j + uk
j (7)  

where yk
j denotes the output of jth filter in the kth fusion layer, pl− 1

j de-
notes the output of jth filter in the (l − 1)th max-pooling layer, where pl− 1

j 

has the same size as uk
j . 

In this paper, the established FCN with detailed parameters is shown 
in Fig. 4, and the filters in the encoding stage are 64, 64, 64, 128, and 
128, respectively. 

To realize detailed understanding of superimposed current wave-
forms, it is necessary to classify waveforms into different types, 
including the waveforms of the faulty feeder, suspected faulty feeder, 
and healthy feeders. In fact, images are composed of pixels, and the 
binary images of current waveforms consists of element 1 and element 0, 
where the white color in the images corresponds to the element 1 and 
the black denotes the element 0. Since the images input to the estab-
lished FCN have the same size as the output images, the detection results 
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of FCN can be deemed as pixelwise prediction, which implies that each 
pixel of the input images would be labeled with the corresponding class. 
That is to say, the FCN would make a class prediction at every pixel, and 
totally four classes are determined in this paper. Among them, the class 
‘faulty feeder’ in the output images is depicted as red, the class ‘sus-
pected faulty feeder’ is exhibited as blue, and the class ‘healthy feeders’ 
and ‘background’ is green and grey, respectively, as shown in Fig. 4. 
Finally, all red pixels can be considered as the waveform of the faulty 
feeder, and all blue pixels and green pixels correspond to the waveform 
of the suspected faulty feeder and healthy feeders, respectively. 
Compared with other ML-based methods, the outstanding advantage of 
the FCN-based method lies that its output has clear physical meaning, 
and the final detection results would depend on further fault trust degree 
estimation, not just the single output label of ML algorithms. 

3.4. Fault trust degree estimation 

Since FCN can segment the current waveform of the faulty feeder, it 
is necessary to measure the fault degree of each feeder on the waveform 
scale. That is to say, the segmented waveform of the faulty feeder needs 
to be compared with raw waveform of each feeder, which can further 
improve the interpretability. Considering that dice coefficient can 
measure the similarity between two sets, FTDE is conducted as follows: 

Dicei(Xi, Y) =
2|Xi∩Y|
|Xi| + |Y|

(8)  

where Xi denotes the set of the binary image generated by the i-th feeder 
current, and Y denotes the set of segmented waveform corresponding to 
the faulty feeder. ∩ denotes the intersection set between Xi and Y, and 

Dicei is the calculated dice coefficient of the i-th feeder. 
Finally, the detection strategy can be constructed: the feeder whose 

dice coefficient is larger than 0.5 is determined as faulty feeder, and the 
feeder whose dice coefficient is smaller than 0.5 is the healthy feeder. 
Further, if the dice coefficients of all feeders are smaller than 0.5, the 
fault type can be identified as bus fault. Evidently, the proposed detec-
tion strategy is based on the fault degree estimation from the aspect of 
raw waveforms, which has clear physical meaning and interpretability. 

3.5. FCN training 

Considering the difficulty for collecting the actual fault data, three 
training models are established using PSCAD to simulate SLG faults that 
occur in feeders and buses. The structure of simulation models is shown 
in Fig. 5. The parameters concerning the overhead lines are as follows: 
R1 = 0.17 Ω/km, L1 = 1.21 mH/km, C1 = 0.0097 μF/km, R0 = 0.23 
Ω/km, L0 = 5.48 mH/km, and C0 = 0.006 μF/km. Likewise, the pa-
rameters concerning the cable lines include R1 = 0.098 Ω/km, L1 =

0.274 mH/km, C1 = 0.351 μF/km, R0 = 0.246 Ω/km, L0 = 0.955 mH/ 
km, and C0 = 0.166 μF/km. The sampling frequency is 20 kHz. 
Furthermore, different fault locations, fault time, and fault impedances 
are considered in the data-production processes, and the detailed fault 
scenarios are summarized in Table 1. 

For SLG faults occurred in feeders, the ground truths corresponding 
to the generated binary images can be determined as: the red color 
corresponds to the waveform of the faulty feeder, the blue color corre-
sponds to the waveform of the healthy feeder with maximum amplitude 
(called as suspected faulty feeder), the green color corresponds to the 
waveform of the remaining healthy feeders, and the grey color 

Fig. 4. Structure of FCN.  

Fig. 5. PSCAD model of the established distribution system in training dataset.  
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corresponds to the background. Regarding the bus fault, there is no 
waveform corresponding to the faulty feeder, and two waveforms of the 
healthy feeders are labeled as blue color. 

It is noteworthy that the training dataset is easy to obtain by using 
PSCAD simulation. Besides, to verify the strong generalization capability 
of the proposed method, complex fault scenarios, such as arc grounding 
faults, nonlinear high impedance faults, and single-phase line-broken 
faults, are not considered in the training dataset, while they are directly 
used to test its detection performance in the test process. 

4. Case study 

To verify the generalization capability and application prospects of 
the proposed method, large amounts of fault data were collected from 
different distribution networks. Among them, 13,120 sets of SLG fault 
data acquired from PSCAD simulation, 69 sets of recorded data gener-
ated from RTDS hardware-in-the-loop (HIL) test system, 36 sets of field 
data generated from field test, and 12 sets of practical fault data in real 
distribution systems were collected in the following test. Among them, 
the topologies, parameters, feeder types, and fault conditions in these 
distribution networks were completely different from those in the 
training dataset. Notably, both fault data in RTDS HIL test, field test, and 
practical data test was collected from practical fault recorders, consid-
ering real measurement errors and noise interference. 

4.1. PSCAD simulation 

To obtain sufficient fault data utilized for performance evaluation, a 
10-kV distribution network is established by using PSCAD simulation, as 
shown in Fig. 6, considering different neutral grounding modes, varied 
parameters, and extreme fault conditions. Wherein, the neutral 
grounding modes can be changed through switch Sg, and the network 

are composed of overhead lines, cable lines, and hybrid lines, leading to 
more complex fault transients. Besides, the sampling frequency in 
PSCAD simulation is just 5 kHz, which is significantly lower than that in 
the training dataset, and the low sampling frequency can be easily 
realized in practical applications. Furthermore, Gaussian white noise 
with the signal-to-noise-ratio (SNR) of 30 dB was added to each sampled 
zero-sequence current. The detailed parameters and fault conditions are 
summarized in Table 2 and Table 3, respectively. 

Typical binary images and the corresponding segmentation results 
under different fault conditions are shown in Fig. 7. Among them, the x- 
axis in images represents the sampling time (first half-cycle of currents), 
and the y-axis represents the normalized amplitude ([-1, 1]). 

It can be seen that there are changing fault characteristics of zero- 
sequence currents under different fault conditions. Among them, since 
the faulty-feeder current has larger amplitudes and different polarities 
compared to the healthy-feeder currents along the whole time axis, it is 
relatively easy to distinguish the faulty feeder from healthy feeders in 
the non-grounding network. Whereas, the faulty-feeder current would 
be affected by the inductance current flowing through the extinction coil 
in the resonant grounding network, and the transient zero-sequence 
currents would decay rapidly especially under high resistance 
grounding faults, which makes it rather difficult for identifying the 
faulty feeder. However, the established FCN can still find the waveform 

Table 1 
Parameters and fault scenarios in training set.  

PSCAD Simulation Training Samples 

Parameters Model Training model 1 Training model 2 Training model 3 
Grounding mode Compensation system Compensation system Ungrounded system 
Compensation degree 8% 8% / 
Feeder type Overhead Cable / Overhead Overhead 
Length (km) 10 / 20 / 30 / 40 Cable:10 / 20, Overhead: 30 / 40 10 / 20 / 30 / 40 

Scenariors Fault location 10% / 50% / 90% / Bus 
Initial phases 0◦~360◦ per 22.5◦(Line fault) / 0◦~360◦ per 1.8◦(Bus fault) 
Grounding resistances 20 Ω / 100 Ω / 500 Ω / 1000 Ω 

Sample Number Simulation data 816 (Line fault) / 804 (Bus fault) 816 (Line fault) / 804 (Bus fault) 816 (Line fault) / 804 (Bus fault) 
Image 2448 (Line fault) 2412 (Bus fault)  

Fig. 6. PSCAD model of 10-kV distribution network in test set.  

Table 2 
Parameters of feeders in test set.  

Type Phase-sequence R (Ω/km) L (mH/km) C (μF/km) 

Overhead line Positive-sequence  0.33  1.31  0.007 
Zero-sequence  1.04  3.96  0.004 

Cable line Positive-sequence  0.079  0.26  0.373 
Zero-sequence  0.23  0.93  0.166  
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of the faulty feeder with high reliability under different fault scenarios, 
and the corresponding dice coefficients under line faults are 0.89, 0.90, 
0.80, 0.78, 0.79, and 0.80, respectively, and the dice coefficient of each 
feeder in Fig. 7 (d) and Fig. 7 (h) is smaller than 0.5. Obviously, the 
proposed method can not only detect the faulty feeder, but also has good 
interpretability and robustness. 

Furthermore, the detection performance of the proposed method is 
compared with the method [26] and method [33]. The detailed detec-
tion results are shown in Table 4, and the symbol ‘×’ means that the 
method is not applicable under the corresponding conditions. Among 

them, the method [26] constructed the detection scheme based on the 
multiple feature fusion of transient energy, kurtosis, and cross- 
correlation distance (CCD), and the method [33] selected the faulty 
feeder based on the change of current share (CCS) and the difference 
between CCS (DCCS). 

As shown in Table 4, the method [26] has 100% detection accuracy 
for line faults in the non-grounding network, while it has poor detection 
performance in the resonant grounding network. This is mainly because 
the extracted fault features are susceptible to the transient processes due 
to the compensation of extinction coil. For example, the zero-sequence 
currents have rich high-frequency components, as shown in Fig. 7 (e), 
and the faulty-feeder current has significantly larger transient energy 

Table 3 
Fault scenarios in test set.  

PSCAD Simulation Parameters 

Scenariors Sg Open Closed 
Fault location 5% / 35% / 85%, Bus 
Initial phases 0◦–360◦, per 9◦

Grounding 
resistances 

1 Ω / 40 Ω / 120 Ω / 470 Ω / 620 Ω /1.3 kΩ / 2 
kΩ / 5 kΩ / 8 kΩ / 10 kΩ 

Sample number 6150 (line fault)/410 
(bus fault) 

6150 (line fault)/410 
(bus fault)  

Fig. 7. Raw binary images and the corresponding segmentation results in PSCAD simulations (a) fault in feeder 1, 0.25 km, 27◦, 1 Ω, Sg is open; (b) fault in feeder 2, 
12.75 km, 261◦, 120 Ω, Sg is open; (c) fault in feeder 4, 29.75 km, 0◦, 10 kΩ, Sg is open; (d) fault in Bus, 72◦, 5 kΩ, Sg is open; (e) fault in feeder 1, 0.25 km, 27◦, 1 Ω, 
Sg is closed; (f) fault in feeder 2, 12.75 km, 261◦, 120 Ω, Sg is closed; (g) fault in feeder 4, 29.75 km, 0◦, 10 kΩ, Sg is closed; (h) fault in Bus, 72◦, 5 kΩ, Sg is closed. 

Table 4 
Detection accuracy in PSCAD simulation.  

Sg Fault type Paper [26] Paper [33] Proposed method 

Open Line fault 100% × 100% 
Bus fault × × 98.54% 

Closed Line fault 75.11% 94.21% 99.37% 
Bus fault × 14.63% 99.76%  
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and CCD than healthy-feeder currents, thus making it easy for identi-
fying the faulty feeder. However, the high-frequency components decay 
sharply in Fig. 7 (f), and the judgment of the initial extremum value for 
calculating CCD is easily affected by the oscillations, which results in 
lower transient energy and CCD in the faulty feeder. Finally, the failure 
of two of the three extracted features inevitably causes misjudgment for 
faulty-feeder detection. Furthermore, the feeder corresponding to the 
maximum fusion results is selected as the faulty feeder directly, which 
makes it unsuitable for identification of bus fault. 

For the method [33], it has relatively high detection accuracy in the 
resonant grounding network, while it cannot adapt to faulty-feeder 
detection in the non-grounding network as it detects the faulty feeder 
based on the compensation characteristic of extinction coil. Further-
more, the threshold of DCCS for distinguishing line fault and bus fault is 
determined according to experience, which leads to poor performance in 
identification of bus fault in the established network. 

In contrast, the proposed method not only has 100% faulty-feeder 
detection accuracy in the non-grounding network, but also has a high 
detection accuracy in the resonant grounding network. Besides, bus fault 
can also be identified with high reliability. Therefore, the proposed 
method has superior adaptability and strong generalization capability. 

4.2. RTDS HIL test 

The RTDS-based HIL test system is commonly utilized to test the 
performance of relay protection devices before they are put into prac-
tice. To verify the adaptability of the proposed method, the RTDS model 
is designed, as shown in Fig. 8. 

The established network contains two grounding modes, including 
neutral point ungrounded and neutral point resonant grounding, and 15 
feeders are connected to two Buses. Furthermore, the feeder parameters 
and fault scenarios used in RTDS simulation are summarized in Table 5, 
and the sampling frequency is 12 kHz. 

As shown in Table 5, different feeders have varied parameters, and 

SLG faults with changing initial phases and grounding resistances are 
considered. Besides, since SLG faults are usually accompanied with arc 
grounding events, arc grounding faults are simulated by using Mayr arc 
model [32]. Typical binary images and the corresponding segmentation 
results are shown in Fig. 9, where the meanings of x-axis and y-axis are 
same as that in Fig. 7. 

Evidently, the zero-sequence currents differ significantly under 
different fault conditions, which results in varied characteristics of os-
cillations and attenuation. Besides, zero-sequence currents may have 
certain distortions when SLG faults with arc grounding events occur, as 
shown in Fig. 9 (a), Fig. 9 (f), and Fig. 9 (g). 

Despite these unfavorable conditions, the established FCN can still 
segment the waveform of the faulty feeder, and the corresponding dice 
coefficients are as follows: 0.89, 0.92, 0.83, 0.73, 0.91, 0.85, and 0.87, 
and the dice coefficient of each feeder in Fig. 9 (h) is smaller than 0.5. 
Thus, the proposed method can accurately detect the faulty feeder, and 
the detection process is clear, intuitive, complete, and effective. 

The detailed detection results of the three methods are shown in 
Table 6, and the symbol ‘×’ means that the method is not applicable 
under the corresponding conditions. 

As shown in Table 6, both methods can accurately detect the faulty 
feeder when SLG faults occur in RTDS model 2 under different fault 
conditions, which demonstrates the efficiency for faulty-feeder detec-
tion in the resonant grounding distribution networks. However, the 
method [26] cannot identify the bus fault, and the method [33] cannot 
be applied to ungrounded distribution networks. In contrast, the pro-
posed method can identify the bus fault and line fault, and it can also 
adapt to distribution networks with different grounding modes, which 
has broad adaptability. 

4.3. Field test 

Field test was conducted in the 10 kV distribution network of Luohe 
substation, Henan, China, and the network structure is shown in Fig. 10. 

Fig. 8. RTDS model of 10-kV distribution system.  
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In Fig. 10, there are six feeders, where feeders 1–3 are the practical 
feeders and feeders 4–6 are the analog feeders, and the grounding modes 
can be changed through grounding transformers. Specifically, the feeder 
1 and feeder 2 are the overhead lines, which can be connected by the 
switch S1, and feeder 3 is the cable line, which can be converted into a 
hybrid line through switch S2. Furthermore, the capacitances of feeders 
4–6 can be set to simulate distribution networks with different capaci-
tive currents, where both symmetrical and asymmetric feeders can be 

Table 5 
Parameters and fault scenarios in RTDS simulation.  

RTDS Simulation Test Samples 

Parameters Type Overhead line Cable line 
Phase-sequence R(Ω/km) L(mH/km) C(μF/km) R(Ω/km) L(mH/km) C(μF/km) 
Positive- sequence 0.33 / 0.45 1.305 / 1.305 0.007 / 0.0068 0.0791 / 0.098 0.264 / 0.274 0.373 / 0.351 
Zero-sequence 1.041 / 1.443 3.963 / 4.046 0.004 / 0.0039 0.2273 / 0.2462 0.926 / 0.955 0.166 / 0.166 

Scenarios Model RTDS model 1 RTDS model 2 
Grounding mode Ungrounded system Compensation system 
Faulted location L1 / L5 / L7 / L9 / Bus L1 / L5 / L7 / L9 / L10 / Bus 
Initial phases 30◦/ 90◦/ 120◦/ 123◦/ 150◦/ 180◦/ 210◦/ 270◦/ 330◦ 30◦/ 60◦/ 90◦/ 123◦/ 150◦/ 210◦/ 243◦/ 270◦/ 330◦

Grounding resistances 1.1 Ω / 5.82 Ω / 10 Ω / 1000 Ω 1.1 Ω / 10 Ω / 240 Ω / 1000 Ω 
Unbalance voltage 0 V / 2.68 V / 5.67 V 0 V / 2.68 V / 5.67 V 
Arc grounding Yes / No Yes / No 

Sample number 31 38  

Fig. 9. Raw binary images and the corre-
sponding segmentation results in RTDS sim-
ulations (a) fault in feeder 1, Bus I, 150◦, 10 
Ω, Arc, RTDS Model 1; (b) fault in feeder 1, 
Bus I, 180◦, 1000 Ω, RTDS Model 1; (c) fault 
in feeder 5, Bus I, 123◦, 10 Ω, RTDS Model 1; 
(d) fault in feeder 9, Bus II, 123◦, 10 Ω, RTDS 
Model 1; (e) fault in feeder 5, Bus I, 150◦, 
1000 Ω, RTDS Model 2; (f) fault in feeder 5, 
Bus I, 123◦, 10 Ω, Arc, RTDS Model 2; (g) 
fault in feeder 9, Bus II, 243◦, 10 Ω, Arc, 
RTDS Model 2; (h) fault in Bus I, 60◦, 10 Ω, 
RTDS Model 2.   

Table 6 
Detection accuracy in RTDS simulations.  

Model Fault type Paper [26] Paper [33] Proposed method 

RTDS model 1 Line fault 100% × 100% 
Bus fault × × 100% 

RTDS model 2 Line fault 100% 100% 100% 
Bus fault × 100% 100%  
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simulated, and feeder 5 can simulate single-phase line-broken faults. 
Since SLG fault scenarios are varied in practical distribution net-

works, SLG faults occurred under different fault grounding types during 
field test, such as metal grounding, resistance grounding, arc grounding, 
and line-broken grounding. Among them, arc conditions with different 
discharge distances can be simulated through setting the discharge gap, 
and short gap discharge can be simulated when SLG faults occur in the 
practical cable line. Several binary images generated by the recorded 
waveforms and the corresponding segmentation results are shown in 
Fig. 11, where the meanings of x-axis and y-axis are same as that in 
Fig. 7. 

As shown in Fig. 11, compared with zero-sequence currents in the 
RTDS simulation, the fault transients are more complex in field test, 
especially for arc grounding faults, where the zero-sequence currents 
have significant nonlinear distortions at the zero-crossing point. 
Furthermore, it is rather difficult to identify the faulty feeder due to 
small fault current when high impedance faults occur in the resonant 
grounding system, as shown in Fig. 11 (g) and Fig. 11 (h). These unfa-
vorable conditions may cause great challenges for faulty-feeder detec-
tion. However, the established FCN can still segment the waveform of 
the faulty feeder, and the corresponding dice coefficients are as follows: 
0.80, 0.73, 0.58, 0.88, 0.86, 0.84, 0.92, and 0.89. Thus, the proposed 
method still has good detection accuracy. 

Totally 36 sets of fault data are collected in field test under sampling 
frequency 20 kHz, where 18 sets of fault data are recorded from the 

ungrounded system and the remaining data are recorded from the 
resonant grounding system. The detection results are shown in Table 7. 

Notably, the method [26] has poor performance for faulty-feeder 
detection in the resonant grounding system. This is mainly because 
two of the three extracted features (energy, kurtosis, and cross- 
correlation distance) would fail under certain fault conditions, which 
inevitable results in misjudgments for the method [26] based on multi- 
feature fusion. For instance, the extracted energy and kurtosis of the 
faulty feeder are smaller than that of the healthy feeder under high 
impedance faults, as shown in Fig. 11 (g) and Fig. 11 (h), thus causing 
misjudgments of faulty-feeder detection. This indicates that the 
completeness of extracted features and efficiency of detection strategy 
are the inherent limitations for improving the detection accuracy. 
Furthermore, the method [33] can accurately detect the faulty feeder in 
the resonant grounding system, while it cannot realize detection in the 
ungrounded system. Compared with the two methods, the proposed 
method has 100% detection accuracy under all fault conditions in field 
test, which demonstrates its strong adaptability and generalization 
capability. 

4.4. Practical data test 

To verify the application prospects of the proposed method, 12 sets 
of practical SLG fault data sampled with 12 kHz are collected from the 
Chenzhou, Shaoyang, and Xi’an substations in 2020. Among them, the 

Fig. 10. Structure of the field test.  
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distribution networks in Chenzhou and Shaoyang substations adopt the 
ungrounded mode, where 5 sets of fault data are collected, and the 
distribution network in Xi’an substation adopts the resonant grounding 
mode. Notably, different distribution networks have different feeder 
numbers, ranging from five to eight, and parameters, and the recorded 
SLG faults occurred under different fault conditions. Several binary 
images generated by the currents from practical distribution networks 
and the corresponding segmentation results are shown in Fig. 12, where 
the meanings of x-axis and y-axis are same as that in Fig. 7. 

Evidently, it is relatively easy to distinguish the faulty feeder when 
SLG faults occurred in Chenzhou and Shaoyang substations. Whereas, 
the zero-sequence currents have noticeable distortions due to arc 
extinction and reignition in Xi’an substation. Meanwhile, there is a long 
time for the current to be zero when the arc is extinguished, which is 
significantly different from the currents in the training dataset. How-
ever, the proposed FCN can still effectively segment the waveform of the 

faulty feeder, and the corresponding dice coefficients are as follows: 
0.91, 0.93, 0.92, 0.92, 0.62, 0.82, 0.86, and the dice coefficient of each 
feeder for the bus fault is smaller than 0.5. 

The detection results are shown in Table 8. It can be seen that the 
method [33] has some misjudgments for faulty-feeder detection in the 
Xi’an substation. This is mainly because the calculated current ampli-
tudes at the fundamental frequency and second-harmonic frequency are 
affected by arc grounding faults, and the threshold for distinguishing the 
bus fault and line fault may fail under these conditions. Furthermore, the 
method [26] would misjudge the bus fault as a line fault. In contrast, the 
proposed method has 100% detection accuracy in the practical distri-
bution networks, which demonstrates its considerable application 
prospects. 

5. Conclusion 

Since the detection process cannot simultaneously satisfy 
completeness and interpretability, the existing faulty-feeder detection 
methods would have unacceptable performance under complex fault 
scenarios, such as small fault phase angles, high impedance grounding 
faults, and intermittent arc grounding faults. Specifically, the insuffi-
ciency of completeness would result in poor robustness, while the 
insufficiency of interpretability may lead to low application prospects. 
In addition, the physical meaning in the feature extraction process and 

Fig. 11. Raw binary images and the corre-
sponding segmentation results in field test 
(a) transient arc grounding fault in the 
ungrounded system; (b) arc grounding fault 
occurred in the cable line in the ungrounded 
system; (c) steady arc grounding fault in the 
ungrounded system; (d) single-phase line- 
broken fault; (e) transient arc grounding 
fault in the resonant grounding system; (f) 
arc grounding fault occurred in the cable line 
in the resonant grounding system; (g) SLG 
fault with 1000 Ω in the resonant grounding 
system; (h) SLG fault with 2000 Ω in the 
resonant grounding system.   

Table 7 
Detection accuracy in field test.  

Grounding mode Paper [26] Paper [33] Proposed method 

Ungrounded 100% × 100% 
Resonant grounding 44.44% 100% 100%  
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the efficiency of detection strategies also need to be further improved. 
To solve these problems, this paper proposed an FCN-FTDE method, 

which seeks to enhance the physical meaning, completeness, interpret-
ability, and detection strategy in detection process. The main conclu-
sions are as follow: 

1) The established FCN model can obtain waveforms with different 
meanings, which are segmented from the superimposed waveforms 
composed of all zero-sequence currents. The segmented waveforms have 
clear physical meaning and sufficient completeness, which corresponds 
to raw waveforms rather than specific fault characteristics. 

2) The proposed FTDE method can evaluate the fault degree of each 
feeder on the waveform scale, which is calculated by comparing the 
segmented results to raw waveforms. The detection strategy is con-
structed based on the calculated dice coefficients, where the dice coef-
ficient of the faulty feeder is larger than 0.5, and the detection process 

has good interpretability, which is simple, clear, intuitive, and effective. 
3) Totally 13,237 sets of fault data are collected from PSCAD simu-

lation, RTDS HIL test, field test, and practical distribution networks, and 
they are utilized to verify the detection performance of the proposed 
method. Large amounts of detection results show that the proposed 
method has 99.65% detection accuracy on average, and it can adapt to 
distribution networks with different topologies, varied parameters, high 
impedance grounding faults, and intermittent arc grounding faults, 
demonstrating its strong generalization capability and considerable 
application prospects. 
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Fig. 12. Raw binary images and the corresponding segmentation results in the practical distribution networks (a) SLG faults occurred in Chenzhou substation; (b) 
SLG faults occurred in Shaoyang substation; (c) SLG faults occurred in Xi’an substation; (d) SLG faults occurred in Xi’an substation. 

Table 8 
Detection results in practical distribution networks.  

Grounding mode Paper [26] Paper [33] Proposed method 

Ungrounded 100% × 100% 
Resonant grounding 85.71% 71.34% 100%  
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the work reported in this paper. 
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