
Abstract— Faulty feeder detection helps ensure the stability and 

safety of power grids after single-phase-to-ground (SPG) faults 

occur in distribution networks. The existing detection techniques 

identify the faulty feeder by extracting representative fault features, 

while they fail to show reliable detection performance due to 

variable fault conditions and complex fault transients. To address 

these drawbacks, this paper proposes a method based on waveform 

encoding and waveform segmentation. Since the waveforms have 

complete fault features in fault signals, it is suitable to recognize the 

signals on the waveform scale, rather than extracting and fusing 

several fault features. Firstly, raw sampled zero-sequence voltage 

(ZSV) and zero-sequence current (ZSC) are processed by using the 

proposed encoding method, and the ZSV-ZSC image can be 

generated quickly. Secondly, to learn and understand the 

waveforms of ZSV and ZSC, a two-path fully convolutional 

network (FCN) is established to make pixel-wise prediction on the 

ZSV-ZSC image. Finally, the fault degree of each feeder can be 

estimated based on the segmented waveform in the ZSV-ZSC image.  

The performance evaluation is implemented in the NVIDIA Jetson 

Xavier embedded platform, and the experimental results 

demonstrate that the proposed method can identify the faulty 

feeder with high accuracy within 28 ms. 

 
Index Terms—Faulty-feeder detection, NVIDIA Jetson Xavier, 

waveform encoding, waveform segmentation, waveform 

understanding.  

I. INTRODUCTION 

ON-EFFECTIVELY grounded networks are widely used in 

medium-voltage (MV) distribution networks due to the 

advantages of uninterrupted power supply [1-2]. During routine 

operation, the reliability of distribution networks is challenged 

by various faults, where the single-phase-to-ground (SPG) faults 

account for 80% of all faults [3].  After the occurrence of SPG 

faults, the fault currents are weak and the fault transients are 

complex, thus causing great difficulties for determining the 

specific faulty feeder. Serious faults and wide impacts, such as 

interphase short, fire hazards, and casualties, would occur if the 

faulty feeder cannot be accurately detected and timely isolated 

[4]. Therefore, to ensure the stability and safety of distribution 

networks, it is significant to propose an SPG faulty-feeder 

detection method with high detection accuracy and efficiency.  

A. Previous and Related Work 

 In recent years, many detection techniques have been  
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proposed, ranging from analysis-based methods [5-16] and 

learning-based methods [17-28]. For the analysis-based 

methods, it can be divided into steady-state methods [5-6] and 

transient methods [7-16]. The fault characteristics in the 

steady-state, such as amplitude, direction, power, and 

admittance, are utilized to construct the detection schemes, 

while the detection performance is easily affected by operating 

conditions, especially under the resonant grounding networks. 

Since the fault characteristics in the transient zero-sequence 

currents (TZSCs) are much larger than that in the stead-state 

currents (SSCs), the transient methods expect to extract rich 

fault features from TZSCs and identify the faulty feeder 

accordingly. The detection performance can be significantly 

improved if the transient features are effectively extracted. In 

[7], a fundamental component (FC) shift method is proposed to 

remove FC in the TZSCs, and transient features, such as 

transient energy, kurtosis, and cross-correlation distance, are 

extracted and fused by using multiple evidence estimation. In 

[8], the FC in the TZSCs can be removed by using fast Fourier 

transform (FFT) backstepping method, and both correlation 

characteristics in TZSCs and SSCs are combined to detect the 

faulty feeder. Furthermore, other popular signal processing 

algorithms are also applied in this field, such as wavelet 

transform (WT) [9]-[10], S-transform [11]-[12], empirical 

mode decomposition (EMD) [13]-[14], and variational mode 

decomposition (VMD) [15]-[16].  

 Inspired by the successful applications of artificial 

intelligence (AI) techniques, the learning-based methods are 

becoming increasing attractive for detection issues. The 

learning-based methods can further be classified into 

multi-feature fusion methods [17-24] and deep-learning 

methods [25-28]. For the multi-feature fusion methods, they 

usually extract several typical fault features to describe raw 

signals, and then the AI algorithms are used as tools for feature 

fusion. In [17], the frequency-spectrum energy and polarity 

characteristics are extracted by using WT, and they are fused 

for detection by using the ensemble learning algorithm. In [18], 

three intrinsic mode functions (IMFs), corresponding to the 

decaying direct current (DC) component, FC, and 

high-frequency component, are obtained through VMD, and 

they are learned by using long short-term memory neural 

network (LSTM). Furthermore, support vector machine 

[19]-[20], Bayesian techniques [21]-[22], and neural networks 

[23]-[24] are also used to combine the extracted fault features. 

Regarding the deep-learning methods, they can adaptively learn 

fault features from raw signals, instead of selecting several 

features based on experience, and then, classify the feeders 

based on the learned features, where the convolutional neural 
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network (CNN) is usually applied. In [25], the CNN is used to 

learn and recognize the TZSC of each feeder, and its outputs 

directly correspond to the final identification results. In [26], 

the sampled data of TZSCs are added with each other to achieve 

the fused waveforms, and the CNN is applied to find the fused 

waveforms that do not contain the faulty feeder. In addition, 

CNNs with attention strategy [27] and transfer learning method 

[28] are also utilized to improve the discriminative capability.  

B. Problems of Existing Detection Methods 

1) The extracted features are insufficient. The existing 

analysis-based methods only extract several fault features from 

raw signals, where the selection of fault features is reliant on 

too many subjective factors, and they cannot ensure to cover all 

fault scenarios. Besides, the applied signal processing 

algorithms have inherent drawbacks: the existing FFT, WT, 

and S-transform utilize the fixed basis functions, resulting in 

poor feature representation ability [16]; EMD algorithm is 

prone to mode mixing and end effects [29]; the suitable number 

of decomposition layer by using VMD is difficult to determine, 

and the selection of IMFs heavily depends on experience. For 

the multi-feature fusion methods, they also have similar 

problems in the feature extraction process. Thus, the 

misjudgments of faulty feeder would inevitably occur when the 

extracted features fail. 

2) The detection results lack credibility evaluation. Although 

the analysis-based methods can extract fault features with clear 

physical meaning, the constructed detection schemes usually 

adopt the voting method or different weights to combine the 

features, which is not always reliable. Moreover, the detailed 

detection process of learning-based methods is blind [30], 

especially for the deep-learning methods. That is, the learned 

high-level features lack clear physical meaning, which is 

difficult to verify its effectiveness, and the credibility of output 

results cannot be evaluated, resulting in unconvincing 

identification results of faulty feeder.  

C. Contributions of the Proposed Method 

This paper proposes a faulty feeder detection method based 

on the waveform encoding and waveform segmentation. 

Because the waveforms of raw signals have complete fault 

features, the signals are learned and understood from the 

perspective of waveform, thus avoiding information loss. The 

main contributions can be summarized as follows: 

1) Instead of converting the numerical signals into images 

using the conventional plot method, this paper proposes a novel 

waveform encoding method, which can directly obtain the 

matrixes corresponding to the waveform images. Each element 

in the matrixes denotes a pixel in the images, and its value can 

be determined according to the amplitudes of sampling points 

over time. By using the proposed encoding method, the 

waveform images composed of zero-sequence voltage (ZSV) 

and zero-sequence current (ZSC) can be generated quickly, 

thus significantly improving the detection efficiency. 

2) By making pixel-wise prediction using waveform 

segmentation method, all the pixels in the ZSV-ZSC images 

can be interpreted with clear meanings, and the complete 

waveforms can be identified, which are not limited to several 

fault features. To conduct waveform segmentation, a two-path 

fully convolutional network (FCN) is established, including the  
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Fig. 1. Image creation by using ‘plot’ function. 

segmentation path and classification path. By the cooperation 

of two paths, the established FCN can have both detailed and 

overall understanding on the images, thereby greatly enhancing 

the segmentation accuracy. 

3) Since the FCN can output the prediction on each pixel in 

the ZSV-ZSC images, the pixels with the same label can 

generate the segmented waveforms with specific meanings. 

Besides, the segmented waveforms can correspond to raw 

waveforms, and the credibility of recognition results can be 

easily evaluated by comparing the similarity between the 

segmented faulty-feeder ZSC and raw ZSC. Therefore, the 

interpretability in the detection process can be enhanced, and 

the credibility evaluation can guarantee the reliability of 

detection results.  

4) The feasibility of the proposed method is implemented 

and verified in the embedded platform NVIDIA Jetson AGX 

Xavier. After the off-line training of the established two-path 

FCN, the detection performance is evaluated based on the 

online processor-in-the-loop (PIL) test. Moreover, large 

amounts of fault data are obtained from simulations, field test, 

and practical distribution networks. The experimental results 

show that the proposed method can achieve both good detection 

accuracy and high detection efficiency, demonstrating its 

considerable potential for future applications. 

II. WAVEFORM ENCODING FOR IMAGE CREATION 

For the fault signals identified by using deep convolutional 

neural networks (DCNN), it is necessary to convert the initial 

numerical data into images before recognition [31-32]. 

However, the image creation is quite time-consuming, while 

the protection schemes have high requirements for detection 

efficiency due to the reliability purpose. That is to say, the 

detection efficiency is one of the limiting factors for practical 

applications, especially for the learning-based methods. In fact, 

the electrical signals commonly satisfy sine functions owing to 

the rotation of the synchronous generator in power grids, which 

implies that the generated images have substantial sparsity. 

For a sinusoidal signal, the protection devices obtain the 

sampled data by using the A/D conversion. Subsequently, the 

sampled data in numerical form can be converted into an image 

by using ‘plot’ function, which corresponds to connecting two 

adjacent sampling points with a straight line. The generated 

image would require further cropping and binary operations. 

Finally, the image for recognition can be obtained. The whole 

procedure for image creation is shown in Fig. 1.  

Evidently, the sinusoidal waveform only accounts for a small 

part of the generated image, while most regions are colored in 

black. However, the image creation by using ‘plot’ function 

does not take the sparsity characteristic into consideration, thus 

resulting in huge computation cost. Especially, the 

image-recognition-based methods use the trained model for  

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3243026

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 08,2023 at 07:52:01 UTC from IEEE Xplore.  Restrictions apply. 



M1,1 M1,W

MH,1

Mi,j'

Mi,j''

MH,W

1

2

H

.
.
.

W

H

1 2 ... W...i  
Fig. 2. Waveform encoding. 

detection, and most of the detection time is consumed by the 

image creation. Therefore, it is necessary to utilize the sparsity 

characteristic of signals to encode waveforms into images, thus 

significantly improving the detection efficiency.  

To improve the efficiency of image creation, a waveform 

encoding method is proposed.  For a waveform signal displayed 

on a graph, its horizontal axis denotes the sampling time, and 

the vertical axis denotes the amplitude, which means that the 

sampling points are arranged in the graph according to the time 

sequence and amplitude. Suppose the signal X = {x1, x2, …, xp} 

is normalized into [-1, 1], the generated binary image can be 

deemed as a matrix M, which has H rows and W columns, as 

shown in Fig. 2. Evidently, the horizontal axis corresponding to 

the sampling time is divided into W sections, and the vertical 

axis corresponding to the amplitude is divided into H sections.  

For the i-th sampling section, the corresponding sampling 

points xi' can be obtained as (1). 
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where P is total sampling points, and W is total sampling 

sections. floor(.) denotes round-down function, and ceil(.) 

denotes round-up function.  

Subsequently, the extreme values of x in the i-th sampling 

section can be calculated as (2). 
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where max(.) is used to determine the maximum value of x, and 

min(.) is utilized to obtain the minimum value of x. 

For the j-th amplitude section, the width of each section can 

be obtained by using (3). 
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H
=  (3) 

The waveform in the i-th sampling section would pass 

through several amplitude sections. Wherein, the amplitude 

sections can be encoded as 1 if the value xi' is within the  
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Fig. 3. Image creation (a) raw sampled data; (b) binary image generated by 
using ‘plot’ method; (c) binary image generated by using the proposed method; 

(b) colored image generated by using ‘plot’ method; (e) colored image 

generated by using the proposed method. 

corresponding sections, otherwise the encoding value is 0, as 

shown in (4). 
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where H is the total amplitude section, and round(.) denotes the 

round function. 

After the above waveform encoding, each section can be 

encoded as 0 or 1, which implies that the value of Mi,j can be 

obtained accordingly. Finally, the time-series signal X can be 

converted into a binary image with the size of H × W.  Similarly, 

the signal can also be converted into a colored image with three 

channels, where the encoding value 0 and 1 can be replaced by 

the vectors of length three.   

To test the performance of the proposed waveform encoding 

method, an ideal ZSC signal is introduced [7] as follows: 
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Suppose the sampling frequency is 10 kHz, raw ZSC, the 

generated binary images, and the generated colored images are 

shown in Fig. 3. Among them, the packaged function ‘pyplot’ 
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of ‘matplotlib’ base (version 3.5) in Python (version 3.7) is 

applied as the ‘plot’ method, and the images are generated on a 

computer with an Inter
○R  CoreTM processor i7-6700 (CPU), 3.40 

GHz, 16.00 GB RAM.  

Evidently, the images generated by using the encoding 

method are close to those obtained by using ‘plot’ method, 

where both images can effectively reflect the changing trends 

of raw signal. Besides, the encoding method only requires 2.49 

ms for generating a binary image and 3.13 ms for generating a 

colored image, while the ‘plot’ method needs 23.68 ms and 

23.11 ms, respectively. Therefore, the proposed encoding 

method can not only obtain the recognizable images, but also 

has high efficiency on generating images. 

III. FAULTY-FEEDER DETECTION METHOD 

According to analysis in Section II, the images can be 

generated quickly by using the proposed encoding method. 

Whereas, the reliability of detection results is another limiting 

factor for actual applications. To enhance the reliability, the 

fault signals are learned and recognized on the waveform scale, 

and the credibility of recognition results is further evaluated by 

using fault degree estimation. Furthermore, considering the 

future trend of protection devices towards to localization, it is 

necessary to enable faulty-feeder detection by using the local 

current transformer (CT) [27]. Compared with the existing 

detection methods based on the entire CTs, the detection 

methods based on the local CT can be directly applied to the 

existing feeder terminal units (FTU) or line protection devices 

without requirements for additional selection devices, which 

can significantly reduce the investment cost of substations. The 

detailed implementations are provided as follows.  

A. Data Processing 

The first half-cycle sampled data of ZSV on bus and local 

ZSC are collected and processed by using the amplitude 

normalization, as shown in (6).  
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where u0 is the sampled ZSV, and i0n is the sampled ZSC of n-th 

feeder. u
* 

0  is the processed ZSV, and i
* 

0n is the processed ZSC of 

n-th feeder. tf is the fault time, and T is the cycle of fault signals. 

After data processing, the ZSV and local ZSC are normalized 

into [-1, 1], and they can be superimposed in the same graph to 

generate the ZSV-ZSC image by using the proposed encoding 

method.  

B. Image Creation 

After data processing, the encoding matrix for the ZSV and 

ZSC can be obtained by waveform encoding, as shown in (7). 
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where e(.) denotes the proposed encoding method, Mu is the 

encoding matrix of the ZSV on bus, and Min is the encoding 

matrix of the local ZSC.   

 After waveform encoding, the binary image of local ZSC can 

be obtained. Subsequently, the encoding matrixes are utilized 

to generate the ZSV-ZSC image. Notably, because it is 

necessary to distinguish between the ZSV and ZSC in the 

ZSV-ZSC image, the required ZSV-ZSC image is saved in 

RGB form with three channels, which implies that the encoding 

value 0 and 1 in the matrixes need to be replaced by the vectors 

of length three. Wherein, the vector [0, 0, 0] denotes the black 

color, the vector [128, 0, 255] denotes the purple color, and the 

vector [255, 255, 0] denotes the yellow color. Finally, the 

matrix for the ZSV-ZSC image can be obtained by using (8).  
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 Therefore, both the binary ZSC image and the colored 

ZSV-ZSC image can be generated, where the ZSV-ZSC image 

is recognized by using the waveform segmentation method. 

C. Waveform Segmentation 

To recognize the ZSV and ZSC on the waveform scale, it is 

necessary to conduct waveform segmentation on the generated 

ZSV-ZSC image. By making pixel-wise prediction on the 

image, both the complete waveform of ZSV and ZSC can be 

identified. Besides, each pixel in raw ZSC can be interpreted 

with different meanings, including ‘faulty-feeder ZSC’ and 

‘healthy-feeder ZSC’. Ideally, all the pixels in raw ZSC, which 

corresponds to the faulty feeder, are classified as ‘faulty-feeder 

ZSC’, and they are classified as ‘healthy-feeder ZSC’ in the 

ZSV-ZSC image corresponding to the healthy feeder. 

In fact, the called waveform segmentation corresponds to 

semantic segmentation in computer vision tasks, where FCNs 

are widely applied in this field [33-34]. Commonly, FCNs 

utilize a set of convolutional layers, pooling layers, and 

upsampling layers to output a predicted map for the input image, 

where each pixel in the input image is classified. The 

segmentation process can be defined as (9). 

 
, ,( )nu i
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where M
u-in 

i,j  denotes the pixel in the i-th sampling section and 

j-th amplitude section, and Vi,j is the corresponding predicted 

label. F(.) is the FCN model used for segmentation. 

The combination of all the pixels with the same predicted 

label can consist of the segmented waveform with clear 

meaning. Among them, all the pixels classified as ‘ZSV’ 

correspond to the segmented ZSV, all the pixels classified as 

‘faulty-feeder ZSC’ correspond to the segmented faulty-feeder 

ZSC, and all the pixels classified as ‘healthy-feeder ZSC’ 

correspond to the segmented healthy-feeder ZSC. In this paper, 

an efficient FCN is established for waveform segmentation, and 

the detailed implementation will be introduced in Section IV. 

D. Fault Degree Estimation 

Because there exist misclassifications of pixels in the output 

ZSV-ZSC images in practical applications, the segmented ZSC 

would be comprised of the segmented faulty-feeder ZSC and 

segmented healthy-feeder ZSC after waveform segmentation. 

To evaluate the credibility on the output results, the fault degree 

estimation is utilized by comparing the similarity between raw 
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ZSC and the segmented faulty-feeder ZSC. In this paper, the 

fault degree of each feeder is calculated by using (10), which 

corresponds to the dice coefficient [35] in semantic 

segmentation tasks.   
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where Vin is the set of pixels of the binary image of n-th ZSC 

generated by the Min, and Vs is the set of pixels of the segmented 

faulty-feeder ZSC. ∩ denotes the intersection set between Vin 

and Vs, and FDn is the calculated fault degree of the n-th feeder. 

Because the segmented faulty-feeder ZSC and 

healthy-feeder ZSC can consist of the complete ZSC, the feeder 

can be identified as the faulty feeder if the segmented 

faulty-feeder ZSC accounts for the majority, where more than 

half of pixels in raw ZSC are classified as ‘faulty-feeder ZSC’. 

According to (10), the threshold of fault degree can be set as 2/3 

in theory. If the calculated fault degree is larger than 2/3, then 

more than half of the pixels are predicted as ‘faulty-feeder 

ZSC’, and the segmented ZSC is more likely to correspond to 

the ZSC of the faulty-feeder. Otherwise, the segmented ZSC 

can be identified as the healthy-feeder ZSC. 

Notably, the fault degree of each feeder can be estimated on 

the waveform scale, which is not limited to certain fault 

features. Besides, the interpretability of the proposed 

learning-based method can be further enhanced by evaluating 

the recognition result based on the raw ZSC.   

Finally, the fault degree of each feeder can be calculated, and 

the detection scheme can be constructed accordingly. For the 

line fault, the feeder whose fault degree is larger than 2/3 can be 

reliably determined as the faulty feeder, otherwise, it is judged 

as the healthy feeder.  Regarding the bus fault, it can be deemed 

as a correct detection if each feeder is judged as healthy feeder.  

E. Identification Steps  

When an SPG fault occurs, it is necessary to sensitively 

capture the fault occurrence time while avoid disturbances. The 

triggering method is constructed based on the cooperation of 

differential criterion and RMS criterion [27], as shown in (11). 
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where uth is the threshold for the differential ZSV, U0 is the 

calculated RMS value of ZSV, and Uth is the corresponding 

RMS threshold. ith is the threshold for the differential ZSC, I0n 

is the calculated RMS value of n-th ZSC, and Ith is the RMS 

threshold. tf is the determined fault occurrence time, and td is 

the opening time of the triggering method. 

 The fault time can be sensitively captured by the differential 

criterion of the ZSV, and the other criterions are used for 

confirmation. Further identification schemes are triggered only 

if all the criterions meet the requirements. Besides, the RMS 

criterion of ZSV needs to be continuously satisfied before final 

isolation of faulty feeder, and it can avoid device misoperation 

caused by normal disturbances, such as capacitor switching, 

load switching, and inrush currents [4], where the ZSVs are 

small and decay rapidly under disturbances.  
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Fig. 4. Identification process of the FCN-based method. 

 After the SPG faults are confirmed, the specific steps of the 

proposed FCN-based method are shown in Fig. 4. 

Step 1: Data processing: Collect the first half-cycle sampled 

data of ZSV on bus and local ZSC, and then, process the 

sampled data by using the amplitude normalization.  

Step 2: Waveform encoding: Encode the waveform of ZSV 

and ZSC, and obtain the ZSV-ZSC image. 

Step 3: Waveform segmentation: Recognize the ZSV-ZSC 

image by using the established FCN, and obtain the segmented 

waveform corresponding to the faulty-feeder ZSC. 

Step 4: Results evaluation: Calculate the fault degree FDn of 

feeder n by comparing the similarity between the segmented 

faulty-feeder ZSC and raw ZSC. 

Step 5: Detection criterion: If the calculated FDn is larger 

than 2/3, the feeder n is selected as the faulty feeder. Otherwise, 

the feeder n is identified as the healthy feeder. 

IV. THEORY OF TWO-PATH FCN  

A. Model of Two-Path FCN  

In this paper, an FCN network with two paths, called 

two-path FCN, is established, as shown in Fig. 5. The first path 

is an FCN with multi-scale fusion structures, which is used for 

global segmentation prediction. The second one is a 

classification path that produces an overall prediction on the 

input image. The shared network of the two paths is a base 

recognition model by using ResNet [36] in the encoder stage.  

In the encoder stage, the lower layers have finer spatial 

information and poor semantic consistency, while the higher 

layers have strong semantic consistency and coarse spatial 

information. For the segmentation path, it is necessary to 

combine their advantages by using the skip structures in the 

decoder stage. That is to say, the output feature maps in the 

higher layers are upsampled and added with those in the 

corresponding lower layers. Besides, the feature maps in the 

decoder stage are upsampled by using different scales and are 

fused by using (12), where the refinement residual block (RRB) 

[34] is utilized to decrease the channel number of feature maps 

in the upsampling process. 

 
8 2 4 3 2 4

( ) ( ) ( )
s x nd x rd x th

P up f up f up f
− − −

= + +  (12) 

where f2-nd, f3-rd, and f4-th are the output feature maps of the 

second RRB layer, the third RRB layer, and the fourth RRB 

layer, respectively. up2x(.), up4x (.), and up8x (.) denote the 

upsampling function with 2 scale factor, 4 scale factor, and 8 

scale factor, respectively. Ps is the predicted map in the 

segmentation path.  

The loss function of the first path can be calculated as:  

 
1
( , ) ( log (1 ) log(1 ))

s s s

i i i i
i

L P G g p g p= − + − −  (13) 
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Fig. 5. Structure of two-path FCN. 

where p
s 

i  is the probability of a pixel i in the predicted map Ps, 

and gi is the true value in the corresponding ground truth map G. 

L1 is the calculated loss function of the first path.    

 For the classification path, the last layer in the encoder stage 

is stacked with a global average pooling (GAP) layer and a 

two-way fully-connected (TWFC) classification layer. Since 

the classification path can make a prediction on the whole 

image scale, it can cooperate the segmentation path for the 

optimal prediction. The loss function of the second path is 

expressed as: 

 
2

1
( , ) ( log (1 ) log(1 ))

c c c

i i i i

i

L P Y y p y p
N

= − + − −  (14) 

where p
c 

i  is the probability classified as ‘faulty feeder’ of the 

i-th image, and yi the true label of the i-th image.  

Finally, the output results of the two paths are merged, and 

the final loss function can be obtained by using (15). 

 
1 2( , ) ( , )

s c
L L P G L P Y= +  (15) 

where the hyper parameter λ is used to balance the loss of two 

paths, and it can be changed accordingly in the iteration epochs.  

 To sum up, the first path of the FCN, which corresponds to 

the path of semantic segmentation, can have detailed 

understanding on the waveforms by making pixel-wise 

prediction on the ZSV-ZSC images; the second path used for 

classification on the whole image can obtain an overall 

prediction on the input image, where the label is 1 if the image 

contains the faulty-feeder current, otherwise, the label is 0. 

Notably, for the faulty-feeder detection, only the output of the 

first path is utilized in the test process. 

B. Training of Two-Path FCN  

To obtain the adequate fault data for training the established 

two-path FCN, SPG faults are simulated by using PSCAD 

software. Three distribution network models are established, 

and they contain four feeders, where the feeder length is 10 km, 

20 km, 30 km, and 40 km, respectively. Among them, the 

parameters of the overhead lines are: R1 = 0.17 Ω/km, L1 = 1.21 

mH/km, C1 = 0.0097 μF/km, R0 = 0.23 Ω/km, L0 = 5.48 mH/km, 

and C0 = 0.006 μF/km, and the parameters of the cable lines are: 

R1 = 0.098 Ω/km, L1 = 0.274 mH/km, C1 = 0.351 μF/km, R0 = 

0.246 Ω/km, L0 = 0.955 mH/km, and C0 = 0.166 μF/km. Both 

neutral point ungrounded mode (model 1) and resonant 

grounded mode (model 2 and model 3) are considered.  

TABLE I 
FAULT CONDITIONS IN TRAINING DATASET 

Fault location D θf  / ° Rf  / Ω Sample number 

l1–l4 

(Three models) 

10%, 50%, 

90% 

0~360  

per 22.5 

20, 100, 

500, 1000 
2,448 

Bus 

(Three models) 
/ 

0~360 

per 7.2 

20, 100, 

500, 1000 
612 

Furthermore, the training model 1 and model 2 comprises of 

overhead lines, while the training model 3 consists of cable 

lines (10 km and 20 km) and overhead lines (30 km and 40 km). 

Various fault conditions are considered in the production of 

training dataset, including different fault location, fault 

distances D, initial phases θf, and grounding resistances Rf, as 

summarized in Table I. The sampling frequency is 20 kHz. 

Notably, the training dataset is easy to obtain by using 

PSCAD software. Besides, the training dataset only considers 

common fault conditions, while the complex fault conditions, 

such as intermittent arc grounding faults and nonlinear high 

impedance faults (HIFs), are directly utilized to verify the 

detection performance in the test process. 

For the training dataset, totally 12,240 (2448 × 4 + 612 × 4) 

sets of ZSV-ZSC images are obtained, and they are flipped 

vertically in the training process. The two-path FCN model is 

trained on a computer with an Inter
○R  CoreTM processor i7-6700 

(CPU), 3.40 GHz, 16.00 GB RAM, and NVIDIA GeForce 

GTX 1050. After the established model is trained, only the 

output of the first path is utilized in the following test process. 

V. SIMULATION AND VERIFICATION 

To verify the detection performance, both simulation data 

and practical data are utilized as the test dataset in this study, 

including fault data obtained from PSCAD simulation, RTDS 

hardware-in-the-loop (HIL) test system, field test, and practical 

distribution networks. Notably, the distribution networks in the 

test dataset are completely different from those in the training 

dataset, and the fault scenarios are more complex in the test 

process. Moreover, to evaluate the real-time performance of the 

proposed FCN-based method, a basis hardware platform, called 

NVIDIA Jetson AGX Xavier equipped with graphics 

processing units (GPUs), is used in the following test, and all 

the detection process was implemented in the established PIL 

experimental system.   
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TABLE II 
SPECIFICATIONS OF JETSON AGX XAVIER 

Hardware Specifications 

GPU 512-core Volta GPU with Tensor Cores 

CPU 8-core ARM v8.2 64-bit CPU, 8 MB L2 + 4 MB L3 

Video memory 32 GB 256-Bit LPDDR4x | 137 GB/s 

Storage 32 GB eMMC 5.1 

DL accelerator (2x) NVDLA Engines 

Vision accelerator 7-way VLIW Vision Processor 

Encoder/Decoder (2x) 4Kp60 | HEVC/(2x) 4Kp60 | 12-Bit Support 

Mechanical 105 mm x 105 mm x 65 mm 

NVIDIA Jetson 

AGX Xavier

 

Fig. 6. PIL experimental system. 

A. PIL Experimental System 

As the AI-powered autonomous machines, the NVIDIA 

Jetson AGX Xavier modules have the potential to be equipped 

in the future applications due to the superior AI performance 

[37].  The NVIDIA Jetson boards have a comprehensive set of 

tools for AI computing purposes, including a power-efficient 

dedicated deep learning (DL) accelerator, CPU, and GPU. In 

this study, the proposed method based on the trained FCN 

model was deployed in a NVIDIA Jetson AGX Xavier module, 

and the detailed specifications are listed in Table II. 

The experimental environment of the Jetson module is 

Ubuntu 20.04, Python 3.8, and Pytorch 1.12. The embedded 

Jetson device is connected to a DELL monitor and is controlled 

by a mouse and keybord. The physical connection of the 

established PIL experimental system is shown in Fig. 6. 

B. Fault Data Obtained from PSCAD Simulation 

The established radial distribution network comprises of six 

feeders in PSCAD simulation, and three DGs are connected to 

the grid through switches S1, S2, and S3, as shown in Fig. 7. 

Among them, the parameters of the overhead lines are as 

follows: R1 = 0.33 Ω/km, L1 = 1.31 mH/km, C1 = 7.0 nF/km, R0 

= 1.041 Ω/km, L0 = 3.96 mH/km, and C0 = 4.0 nF/km, and the 

parameters of cable lines are as follows: R1 = 0.0791 Ω/km, L1 = 

0.264 mH/km, C1 = 373.0 nF/km, R0 = 0.227 Ω/km, L0 = 0.926 

mH/km, and C0=166.0 nF/km. The power consumed by each 

load is 0.959+j0.313 MVA, and the DGs are PV farms, where 

the total power generated by each DG is 2.272+j0.860 MVA 

and the detailed converter structure and control strategy can be 

found in [38]. Furthermore, the sampling frequency in PSCAD 

simulation is just 10 kHz, which is only half of that in the 

training dataset, and the ratio of CTs is 50A/1A.  
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Fig.7. Distribution network with DGs connection. 

TABLE III 
FAULT SCENARIOS IN PSCAD SIMULATION 

Fault conditions Parameters 

Fault location l1 ~ l6, Bus 

D / km 5 (l1), 4 (l2), 12 (l3), 10 (l4), 20 (l5), 9 (l6), Bus 

θf  / ° 0~360 per 18 

Rf  / Ω 1 / 10 / 50 / 200 / 800 / 1300 / 2000 

Sample number 1,029 

To verify the generalization capability, the SPG fault 

conditions are changed, including different fault locations, fault 

distances D, initial phases θf, and grounding resistances Rf. 

Totally 1,029 sets of fault data are obtained in PSCAD 

simulation, where 882 (6 × 21 × 7) sets of data are line faults 

and 147 (21 × 7) sets of fault data are bus faults. The detailed 

fault scenarios are summarized in Table III. 

The obtained fault data is processed by using the Jetson 

module, including waveform encoding, image creation, and 

waveform segmentation. Several generated ZSV-ZSC images 

and the corresponding segmentation results are shown in Fig. 8, 

where Gaussian white noise with the signal-to-noise-ratio 

(SNR) of 10 dB was added to the sampled ZSCs in Fig. 8 (d), 

Fig. 8 (e), and Fig. 8 (f) and each DG is connected to the 

network, and the complete waveforms of ZSV and ZSCs are 

shown in Fig. 9. The horizontal axis in the obtained ZSV-ZSC 

images denotes the sampling time (the first half-cycle), and the 

vertical axis denotes the normalized amplitude ([-1, 1]). For the 

segmentation results, each pixel in the ZSV-ZSC images is 

classified, where the label of ‘faulty feeder’ is marked in red 

and the label of ‘healthy feeder’ is marked in green.  

Evidently, the ZSVs and ZSCs have changing fault features 

under different fault conditions. Compared with the ZSVs, the 

ZSCs have more complex fault transients especially under 

noise interferences, leading to varied characteristics of 

oscillations and attenuation. Besides, there are large differences 

of resonant frequencies between ZSCs of different feeders even 

under the same fault conditions. Consequently, the varied fault 

characteristics would make it rather difficult to detect the 

specific faulty feeder. However, the trained FCN model can 

always identify the faulty feeder with high reliability. For the 

line faults, the estimated fault degree of the faulty feeder is 0.97, 
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0.99, 0.96, 0.95, 0.96, and 0.93, respectively, and the fault 

degree of the healthy feeder are 0.00, 0.00, 0.00, 0.00, 0.00, and 

0.00, respectively. Regarding the bus faults, the calculated fault 

degrees in Fig.8 (g) and Fig.8 (h) are 0.00, 0.00, 0.00, and 0.00, 

respectively. Therefore, the FCN-based method can not only 

distinguish between line faults and bus faults, but also can 

reliably identify the faulty feeder and the healthy feeder. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)  
Fig.8. ZSV-ZSC images and the corresponding segmentation results in PSCAD 

simulation (a) fault in feeder 1, 36°, 1 Ω, the images correspond to faulty feeder 

1 and healthy feeder 5, respectively; (b) fault in feeder 2, 162°, 10 Ω, faulty 
feeder 2, healthy feeder 3; (c) fault in feeder 3, 342°, 50 Ω, faulty feeder 3, 

healthy feeder 4; (d) fault in feeder 4, 18°, 1300 Ω, faulty feeder 4, healthy 

feeder 3; (e) fault in feeder 5, 90°, 800 Ω, faulty feeder 5, healthy feeder 1; (f) 
fault in feeder 6, 252°, 2000 Ω, faulty feeder 6, healthy feeder 4; (g) fault in Bus, 

234°, 1 Ω, healthy feeder 3, healthy feeder 5; (h) fault in Bus, 144°, 200 Ω, 

healthy feeder 2, healthy feeder 4. 
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Fig.9. Complete waveforms of ZSV and ZSCs corresponding to Fig. 8. 

 (1) Adaptability Analysis on Compensation Degrees: 

Because the ZSCs may vary under different compensation 

degrees, this study considers 3%, 6%, 10%, and 15% 

overcompensation degrees, respectively, and each DG is 

connected to the distribution networks in the test process. The 

detailed fault conditions are shown in Table III, and totally 

4,116 (1,029 × 4) sets of fault data are obtained. The detection 

results under different compensation degrees (ρ) are shown in 

Table IV. Evidently, the proposed method can still have 100% 

detection accuracy when the degree of compensation changes. 

This is mainly because the arc suppression coil is designed to 

compensate the steady-state ZSC of the faulty feeder in the 

fundamental frequency, and the faulty-feeder ZSC in the first 

half-cycle and the healthy-feeder ZSCs are hardly affected [26]. 

Therefore, the proposed method has good adaptability to 

varying parameters of the arc suppression coil. 
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TABLE IV 
DETECTION ACCURACY UNDER DIFFERENT COMPENSATION 

DEGREES 

Fault type ρ = 3% ρ = 6% ρ = 10% ρ = 15% 

Line fault (882) 100% 100% 100% 100% 

Bus fault (147) 100% 100% 100% 100% 

TABLE V 
DETECTION ACCURACY UNDER DIFFERENT CONNECTION AND 

CAPACITIES OF DGS 

Switches Capacity / MVA Line fault (882) Bus fault (147) 

Open / 100% 100% 

Closed 

0.61 100% 100% 

1.21 100% 100% 

1.82 100% 100% 

2.43 100% 100% 

TABLE VI 
DETECTION ACCURACY UNDER DIFFERENT THRESHOLDS 

Fault type α = 0.2 α = 0.4 α = 0.6 α = 2/3 α = 0.8 

Line fault (882) 100% 100% 100% 100% 100% 

Bus fault (147) 100% 100% 100% 100% 100% 

(2) Adaptability Analysis on DGs Connection: Although the 

DGs are connected to the network via isolation transformers 

with Yg/△ winding configuration, which implies that the ZSCs 

can only form circulation in △ but cannot flow out of the 

transformers, the harmonics generated by DGs in the 

positive-sequence network may affect the zero-sequence 

components as the three-sequence networks are connected in 

series at the fault point [15]. Consequently, it is necessary to 

verify the detection performance under distribution networks 

with and without DGs connection. Furthermore, there may be 

larger harmonics when the capacity of DGs increases.  

To evaluate the detection performance under different 

connections and capacities of DGs, the switches are open and 

closed, respectively, and varied capacities of each DG, such as 

0.61 MVA, 1.21 MVA, 1.82 MVA, and 2.43 MVA, are 

considered. Totally 5,145 (1,029 × 5) sets of fault data are 

obtained, and the detection results are shown in Table V.  As 

shown in Table V, the proposed method is immune from the 

different connections and capacities of DGs, and it can always 

distinguish between bus faults and line faults and identify the 

faulty feeder under line faults accurately. Therefore, the 

proposed method can be applied to the faulty-feeder detection 

under distribution networks with and without DGs connection. 

 (3) Sensitivity Analysis on Thresholds: To validate the 

sensitivity of the proposed method on different thresholds, the 

threshold (α) of fault degree is set to 0.2, 0.4, 0.6, 2/3, and 0.8, 

respectively. Among them, the overcompensation degree of the 

network is 6%, the capacity of DGs is 2.43 MVA, and all the 

switches are closed. The detection results under different 

thresholds are shown in Table VI.  

As shown in Table VI, the proposed method still has 100% 

detection accuracy under different thresholds. This is mainly 

because the proposed two-path FCN has high segmentation 

accuracy, and most of pixels in raw ZSC waveform can be  

TABLE VII 
DETECTION ACCURACY IN PSCAD SIMULATION 

Fault type Paper [7] Paper [39] Proposed method 

Line fault (882) 82.20% 85.03% 99.77% 

Bus fault (147) × 87.76% 100% 

classified as ‘faulty-feeder ZSC’ for the faulty-feeder 

ZSV-ZSC image, while most of pixels in raw ZSC waveform 

can be classified as ‘healthy-feeder ZSC’ for the healthy-feeder 

ZSV-ZSC image. That is, the calculated fault degree of the 

faulty feeder is close to 1, while the calculated fault degree of 

the healthy feeder is close to 0, and consequently, the faulty 

feeder and healthy feeder can still be distinguished with high 

accuracy under different thresholds. In this study, considering 

the misclassification of pixels in practical applications, the 

threshold should be designed in a scientific way, and it needs to 

be set to 2/3 in theory according to (10).   

 (4) Comparison with Existing Methods: To verify the 

superiority of the proposed method, the detection performance 

is compared with the existing methods [7] [39]. Wherein, paper 

[7] identified the faulty feeder based on the multi-feature fusion, 

including transient energy, kurtosis, and cross-correlation 

distance (CCD), which belongs to analysis-based methods, and 

paper [39] utilized continuous wavelet transform to obtain the 

time-frequency images and constructed the detection scheme 

based on the image recognition by using CNN, which 

corresponds to learning-based methods. In this section, each 

DG with 2.43 MVA is connected to the network, which implies 

that all the switches are closed, and the overcompensation 

degree is set to 6%. Furthermore, Gaussian white noise with 

SNR of 10 dB was added to the sampled ZSCs when SPG faults 

with 800 Ω, 1300 Ω, and 2000 Ω occurred. The obtained 1,029 

sets of fault data are utilized for performance evaluation, and 

the detection accuracy is shown in Table VII. 

Evidently, paper [7] has unsatisfactory detection accuracy 

for identifying the faulty feeder. This is mainly because the 

inherent limitations of multi-feature fusion hinder the detection 

performance: the miscalculations in the three extracted features 

may result in failure for faulty-feeder detection. Misjudgments 

would occur if there are miscalculations of two features, or 

even one feature is greatly miscalculated. For instance, the 

healthy feeder 1 has the largest values of calculated kurtosis 

and CCD in Fig. 9 (d), and it is misjudged as the faulty feeder. 

Especially, the calculated kurtosis of the healthy feeder 1 is 

0.23 in Fig. 9 (e), which is greatly larger than that of the faulty 

feeder 5 (0.14), thus leading to the misjudgment. Furthermore, 

paper [7] directly selects the feeder with the maximum fusion 

results as the faulty feeder, which implies that it cannot identify 

the bus faults. Compared with the paper [7], paper [39] has 

higher faulty-feeder detection accuracy, and it can also identify 

the bus faults. However, since paper [39] recognizes the 

time-frequency image of each feeder, which implies that it fails 

to consider the correlation between different feeders, the 

changing fault features of ZSCs result in poor robustness under 

different fault scenarios, especially for strong noise interference. 

In contrast, the proposed method identifies fault signals on the 

waveform scale and has detailed understanding on waveforms, 

and it has high detection accuracy both for line faults and bus 

faults, thus demonstrating its strong generalization capability.  
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TABLE VIII 
DETECTION TIME IN PSCAD SIMULATION 

Average Time Paper [7] Paper [39] Proposed method 

Time window (ms) 20  10  10  

Image creation (ms) / 259.36 10.68 

Image recognition / 
Detection (ms) 

8.66 7.84  5.91 

Total (ms) 28.66 277.20 26.59 

Moreover, the detection time of each method is shown in 

Table VIII. For the paper [7], the time consumed to detect an 

SPG fault in the embedded device is 28.66 ms, and it has good 

detection efficiency. Regarding the paper [39], it even requires 

a total of 277.20 ms on average to conduct an SPG detection, 

where generating the time-frequency images is quite 

time-consuming.  In contrast, an SPG fault detection can be 

completed within 26.59 ms by using the proposed method, 

including 10.68 ms for image creation and 5.91 ms for image 

recognition. Notably, the proposed method utilizes the local 

ZSC for detecting the faulty feeder, which implies that each 

feeder is identified in parallel. Therefore, owing to the proposed 

waveform encoding method and detection scheme based on the 

local ZSC, the proposed method has superior detection 

efficiency and has the potential for real-time applications.  

C. Fault Data Obtained from RTDS HIL Test System  

Because the PSCAD software is a digital simulation 

environment without real hardware sections of detection 

devices, this study establishes the RTDS HIL test system, as 

shown in Fig. 10. The test system contains four sections: 

distribution system modeling, power amplifier, protection 

device, and fault recorder. Among them, the digital signals 

generated by the established model are converted into analog 

signals by real power amplifier, and they are sampled at 12 kHz 

by using practical fault recorder with 100A/1A measurement 

ratio of CTs, considering system noise interference and actual 

measurement errors.  

 The established distribution network in RTDS test system 

consists of two Buses and 15 feeders, as shown in Fig. 11, and 

its grounding modes can be changed through the grounding 

transformer. The detailed feeder parameters and fault scenarios 

are shown in Table IX and Table X, respectively, and totally 69 

sets of fault data are obtained, where 31 sets of SPG faults 

occurred in the ungrounded network and the remaining faults 

occurred in the resonant grounding network. 

It is noteworthy that the SPG faults simulated in the RTDS 

test system contains the arc grounding events, while they are 

not considered in the training dataset. Furthermore, HIFs with 1 

kΩ are also considered in the test process. Typical generated 

ZSV-ZSC images and the corresponding segmentation results 

are shown in Fig. 12, and the complete waveforms can be found 

in Fig. 13. 

As shown in Fig. 12 and Fig. 13, the ZSCs become zero 

when the arcs are extinguished, and then they would go into 

new oscillation states when the arcs reburn. Compared with the 

oscillations and attenuation characteristics under traditional 

fault scenarios, ZSCs may have additional distortions in 
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Fig. 10. RTDS HIL test system. 
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Fig. 11. Distribution network established in RTDS simulation. 

TABLE IX 
PARAMETERS OF FEEDERS IN RTDS SIMULATION 

Type Phase-sequence 
R 

(Ω / km) 

L 

(mH / km) 

C 

(μF / km) 

Overhead 
line 

Positive 0.33 / 0.45 1.31 / 1.31 0.007 / 0.007 

Zero 1.04 / 1.44 3.96 / 4.05 0.004 / 0.004 

Cable 

line 

Positive 0.08 / 0.10 0.26 / 0.27 0.373 / 0.351 

Zero 0.23 / 0.25 0.93 / 0.96 0.166 / 0.166 

TABLE X 
FAULT SCENARIOS IN RTDS SIMULATION 

Fault conditions Parameters 

Fault location Feeder 1, 5, 7, 9, 10, Bus 

θf  / ° 30, 60, 90, 120, 123, 150, 180, 210, 243, 270, 330 

Rf  / Ω 1.1, 5.82, 10, 240, 1000 

Arc grounding Yes / No 

Sample number 69 

waveforms, thus causing great challenges for subsequent 

faulty-feeder detection. However, the trained FCN model can 

still recognize the ZSV-ZSC images with high segmentation 

accuracy, where the faulty-feeder ZSC and healthy-feeder ZSC 

can be clearly distinguished. Finally, for the line faults shown 

in Fig. 12 (a), Fig. 12 (b), Fig. 12 (c), Fig. 12 (e), Fig. 12 (f), and 

Fig. 12 (g), the calculated fault degree of the faulty feeder is 

0.99, 0.99, 0.98, 0.97, 0.98, and 0.99, respectively, and the 

calculated fault degree of the healthy feeder is 0.00, 0.00, 0.00, 

0.00, 0.00, and 0.00, respectively. Regarding the bus faults 

shown in Fig. 12 (d) and Fig. 12 (h), the calculated fault degrees  
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Fig.12. ZSV-ZSC images and the corresponding segmentation results in RTDS 

simulation (a) arc grounding fault in feeder 1, 270°, 10 Ω, ungrounded network, 

the two images correspond to faulty feeder 1 and healthy feeder 7, respectively; 
(b) arc grounding fault in feeder 7, 30°, 10 Ω, ungrounded network, the two 

images correspond to faulty feeder 7 and healthy feeder 3, respectively; (c) arc 

grounding fault in feeder 9, 30°, 10 Ω, ungrounded network, the two images 
correspond to faulty feeder 9 and healthy feeder 14, respectively; (d) arc 

grounding fault in Bus, 30°, 10 Ω, ungrounded network, the two images 

correspond to healthy feeder 1 and 6, respectively; (e) HIF with 1 kΩ in feeder 1, 
330°, resonant grounding network, the two images correspond to faulty feeder 1 

and healthy feeder 7, respectively; (f) HIF with 1 kΩ in feeder 5, 150°, resonant 

grounding network, the two images correspond to faulty feeder 5 and healthy 
feeder 3, respectively; (g) arc grounding fault in feeder 9, 243°, 10 Ω, resonant 

grounding network, the two images correspond to healthy feeder 9 and 12, 

respectively; (h) fault in Bus, 90°, 10 Ω, resonant grounding network, the two 

images correspond to healthy feeder 3 and 7, respectively. 
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Fig.13. Complete waveforms of ZSV and ZSCs corresponding to Fig. 12. 

are 0.00, 0.00, 0.00, and 0.00, respectively. Therefore, the 

proposed FCN-based method can always recognize the faulty 

feeder and healthy feeder with good reliability. 

The detailed detection results of different methods are shown 

in Table XI. Due to the distortions in waveforms and changes of 

sampling frequency, the time-frequency characteristics of 

ZSCs are different from those in the training dataset, and the 

detection accuracy of paper [39] is even much worse than that 

of paper [7]. Furthermore, paper [7] would misjudge the bus 

faults as line faults in the detection process. In contrast, the 

proposed method can always accurately detect the faulty feeder 

under various fault scenarios, and it can also have optimal 

computation speed. Therefore, the proposed method has 

excellent detection performance in the RTDS HIL test system. 
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TABLE XI 
DETECTION RESULTS IN RTDS HIL TEST SYSTEM 

Detection 
Grounding 

mode 
Paper [7] Paper [39] Proposed method 

Accuracy 

Ungrounded 93.55% 83.87% 100% 

Resonant 
grounding 

94.74% 68.42% 100% 

Average 

Time 

Ungrounded 34.23 ms 322.09 ms 25.71 ms 

Resonant 

grounding 
33.36 ms 295.07 ms 26.37 ms 

Bus

Grounding transformer

PT

Unloaded / load

Load of transformer area

315kVA 315kVA

Unloaded

CT

Fault Fault

Sb

Fault

Fault

Unloaded Unloaded

Fault

Fault

3km
Cable line

Transformer  

district

L1 L2 L3 L4 L5 L6

CTCT CT CT CT

1.5km
Overhead 

line

S1 S2

Sg

 
Fig.14. Structure of the field test. 

D. Fault Data Obtained from Field Test 

To verify the adaptability in practical applications, we 

conducted the field test at Luohe substation of Henan in China. 

The distribution network structure is shown in Fig. 14. In Fig. 

14, there are six feeders, named L1 - L6, including three practical 

feeders L1 - L3 and three analog feeders L4 - L6. The neutral point 

of power transformer is connected to the ground through a 

grounding transformer, and the grounding mode can be 

changed through the switch Sg. 

Compared with the fault conditions simulated in PSCAD, the 

actual SPG fault scenarios are more complex, and the recorded 

data contains real measurement errors and noise interference. 

Especially, actual SPG faults are usually accompanied by 

intermittent arc grounding events, and HIFs occasionally occur 

when a primary conductor is connected to high resistive 

mediums, such as wet grass, tree, and concrete, thus leading to 

considerable nonlinearity and randomness of fault features.  

Notably, these new fault scenarios would cause great 

challenges for the learning-based methods if they fail to learn 

the essential fault characteristics from the training dataset. 

In field test, arc grounding faults under different arc 

conditions are simulated by setting varied discharge distances. 

Besides, single-phase line-broken faults are also conducted, 

and the grounding medium is the concrete floor. Furthermore, 

CTs were installed at the beginning of feeders, and the 

corresponding measurement ratios are 100A/5A. The fault data 

was collected by using real fault recorder, where the sampled 

data of ZSV on bus and ZSCs of feeders is recorded, and the 

sampling frequency is 20 kHz.  

(a)
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(c)

(d)

(e)

(f)

(g)

(h)
 

Fig.15. ZSV-ZSC images and the corresponding segmentation results in field 
test (a) transient arc grounding fault, Sg is open, the two images correspond to 

faulty feeder 1 and healthy feeder 2, respectively; (b) steady arc grounding fault, 

Sg is open, the two images correspond to faulty feeder 4 and healthy feeder 5, 
respectively; (c) arc grounding fault occurred in cable line, Sg is open, the two 

images correspond to faulty feeder 3 and healthy feeder 6, respectively; (d) 

single-phase line-broken fault, Sg is open, the two images correspond to faulty 
feeder 2 and healthy feeder 4, respectively; (e) transient arc grounding fault, Sg 

is closed, the two images correspond to faulty feeder 1 and healthy feeder 6, 

respectively; (f) HIFs with 1 kΩ, Sg is closed, the two images correspond to 
faulty feeder 2 and healthy feeder 1, respectively; (g) HIFs with 2 kΩ, Sg is 

closed, the two images correspond to faulty feeder 2 and healthy feeder 3, 

respectively; (h) single-phase line-broken fault, Sg is closed, the two images 

correspond to faulty feeder 2 and healthy feeder 1, respectively. 
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Fig.16. Complete waveforms of ZSV and ZSCs corresponding to Fig. 15. 

Typical generated ZSV-ZSC images and the corresponding 

segmentation results are shown in Fig. 15, and the 

corresponding complete waveforms are shown in Fig. 16. 

Evidently, both ZSV and ZSC have huge distortions after the 

occurrence of SPG faults. In particular, the ZSCs are 

significantly distorted at the zero-crossing point due to arc 

extinction and reignition. Despite large distortions in fault 

signals, the established FCN model with strong learning 

capability can still conduct waveform segmentation effectively. 

The calculated fault degree of the faulty feeder is 0.89, 0.98, 

0.95, 0.96, 0.96, 0.94, 0.94, and 0.96, respectively, and the fault 

degree of the healthy feeder are 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00, 0.00, and 0.00, respectively. Therefore, the faulty feeder 

and healthy feeder can be accurately distinguished by using the 

proposed method. 

TABLE XII 
DETECTION RESULTS IN FIELD TEST 

Detection Sg Paper [7] Paper [39] Proposed method 

Accuracy 
Open 100% 44.44% 100% 

Closed 44.44% 44.44% 100% 

Average 

Time 

Open 31.11 ms 281.67 ms 26.87 ms 

Closed 31.11 ms 287.78 ms 26.93 ms 

Totally 36 sets of fault data were recorded, of which half are 

obtained from the ungrounded network and half from the 

resonant grounding network. The detection results are shown in 

Table XII. Evidently, the huge distortions under arc grounding 

faults and HIFs would significantly affect the detection 

performance of the two methods, especially for the paper [39]. 

In fact, the generalization capability of learning-based methods 

under new fault scenarios is always the limiting factor for 

practical applications, and paper [39] fails to accurately detect 

the faulty feeder when the ZSCs are highly distorted. However, 

since the proposed method can understand the raw signals on 

the waveform scale and conduct waveform segmentation 

effectively, the proposed method can always accurately identify 

the faulty feeder. Besides, the proposed method also has 

superior detection efficiency in the embedded device. 

Therefore, the proposed method exhibits considerable 

application prospects in practical distribution networks. 

E. Fault Data Obtained from Practical Distribution Networks 

To verify the detection reliability in practical distribution 

networks, practical recorded data are used to test the detection 

performance. Totally 12 sets of fault data are collected from 

real distribution networks in Chenzhou, Shaoyang, Xiangxi, 

and Xi’an substation in 2020. Notably, different distribution 

networks have varied topologies and parameters, where the 

feeder numbers range from five to eight, and the measurement 

ratios of CTs in Chenzhou, Shaoyang, Xiangxi, and Xi’an 

substation are also varied, where they are 100A/1A, 100A/5A, 

100A/1A, 150A/5A, respectively. Moreover, the actual fault 

scenarios contain distinct arcing events of extinction and 

reignition, especially for SPG faults under the distribution 

network in Xi’an substation. Typical generated ZSV-ZSC 

images and the corresponding segmentation results are shown 

in Fig. 17, and the complete waveforms are depicted in Fig. 18.  

It can be clearly seen that there are noticeable distortions in 

the ZSC waveforms caused by intermittent arc grounding faults, 

resulting in strong complexity and randomness of fault features. 

Besides, it may require a rather long time for the arc to reburn 

when it is extinguished, thereby leading to very long duration 

for the ZSCs to be zero in waveforms, as shown in Fig. 17 (e) - 

Fig. 17 (h) and Fig. 18 (e) - Fig. 18 (h). Despite these 

unfavorable conditions, the established FCN model can still 

conduct waveform segmentation with high accuracy. It is 

noteworthy that there are several misclassifications of pixels in 

Fig. 17 (b) and Fig. 17 (d), where several pixels in Fig. 17 (b) 

are misclassified as faulty-feeder ZSC and several pixels in Fig. 

17 (d) are misclassified as healthy-feeder ZSC. However, the 

proposed method can evaluate the fault degree on the whole 

waveform scale, and the estimated fault degree can avoid the 

influence of misclassifications. Finally, the calculated fault  
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Fig.17. ZSV-ZSC images and the corresponding segmentation results in 
practical distribution networks (a) fault in feeder 2, Chenzhou substation, the 

two images correspond to faulty feeder 2 and healthy feeder 3, respectively; (b) 

fault in feeder 2, Shaoyang substation, the two images correspond to faulty 
feeder 2 and healthy feeder 4, respectively; (c) fault in feeder 5, Xiangxi 

substation, the two images correspond to faulty feeder 5 and healthy feeder 2, 

respectively; (d) fault in feeder 5, Xiangxi substation, the two images 
correspond to faulty feeder 5 and healthy feeder 4, respectively; (e) fault in 

feeder 8, Bus I, Xi’an substation, the two images correspond to faulty feeder 8 

and healthy feeder 3, respectively; (f) fault in feeder 3, Bus II, Xi’an substation, 
the two images correspond to faulty feeder 3 and healthy feeder 2, respectively; 

(g) fault in feeder 3, Bus II, Xi’an substation, the two images correspond to 

faulty feeder 3 and healthy feeder 6, respectively; (h) fault in Bus I, Xi’an 

substation, the two images correspond to healthy feeder 4 and 5, respectively. 
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Fig.18. Complete waveforms of ZSV and ZSCs corresponding to Fig. 17. 

degree of the faulty feeder in Fig. 17 (a) - Fig. 17 (g) is 0.98, 

0.98, 0.99, 0.86, 0.98, 0.99, and 0.99, respectively, while the 

fault degree of the healthy feeder is 0.00, 0.27, 0.00, 0.00, 0.00, 

0.00, and 0.00, respectively, and fault degrees of healthy 

feeders in Fig. 17 (h) are 0.00 and 0.00. Thus, the proposed 

method can still work for faulty-feeder detection in practical 

distribution networks. 

The detection accuracy is shown in Table XIII. As shown in 

Table XIII, both paper [7] and paper [39] have misjudgments 

for faulty-feeder detection in practical distribution networks. 

However, the proposed method can still recognize the faulty 

feeder with 100% detection accuracy and good detection 

efficiency. Therefore, the proposed method can be 

implemented in real distribution networks. 
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TABLE XIII 
DETECTION RESULTS IN PRACTICAL DISTRIBUTION NETWORKS 

Detection Paper [7] Paper [39] Proposed method 

Accuracy 91.67% 75.00% 100% 

Average Time 32.04 ms 283.96 ms 27.16 ms 

VI. CONCLUSION 

To understand raw signals on the waveform scale, this paper 

proposes a novel faulty-feeder detection method based on the 

waveform encoding and waveform segmentation. The main 

conclusions are drawn as follows.  

1) Because the waveforms have complete fault features in 

raw signals, it is necessary to convert the time-series data of 

ZSV and ZSC into the ZSV-ZSC waveform image. To generate 

the ZSV-ZSC image quickly, a novel waveform encoding 

method is proposed, and the image can be obtained within 11 

ms in the embedded device, which can guarantee the timely 

detection of SPG faults.  

2) The FCN-based method can learn and recognize the 

waveforms of ZSV and ZSC by making pixel-wise prediction 

on the ZSV-ZSC images. After waveform segmentation using 

the two-path FCN, the segmented waveforms with different 

categories have clear meanings, and they can be compared with 

raw waveforms. The credibility of detection results can be 

evaluated based on fault degree estimation on the similarity 

between the segmented faulty-feeder ZSC and raw ZSC, thus 

enhancing the interpretability and reliability of identification.  

3) The proposed method is implemented in the NVIDIA 

Jetson Xavier embedded platform. Besides, both fault data 

obtained from PSCAD simulation, RTDS HIL test system, field 

test, and practical distribution networks is utilized to verify the 

detection performance. The results show that the proposed 

method not only has over 99.5% detection accuracy under 

varied fault scenarios, but also can identify the faulty feeder 

within 28 ms under an SPG fault, thus demonstrating its strong 

generalization capability and excellent application prospects.  
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