
Journal of X-Ray Science and Technology 25 (2017) 887–905
DOI 10.3233/XST-17264
IOS Press

887

A quantitative evaluation of pleural
effusion on computed tomography
scans using B-spline and local
clustering level set

Lei Songa, Jungang Gaob, Sheng Wanga, Huasi Hua,∗ and Youmin Guob,∗
aSchool of Nuclear Science and Technology, Xi’an Jiaotong University, China
bDepartment of PET-CT, The First Affiliated Hospital, Medical College, Xi’an Jiaotong
University, China

Received 13 February 2017
Revised 10 April 2017
Accepted 30 April 2017

Abstract. Estimation of the pleural effusion’s volume is an important clinical issue. The existing methods cannot assess it
accurately when there is large volume of liquid in the pleural cavity and/or the patient has some other disease (e.g. pneumonia).
In order to help solve this issue, the objective of this study is to develop and test a novel algorithm using B-spline and local
clustering level set method jointly, namely BLL. The BLL algorithm was applied to a dataset involving 27 pleural effusions
detected on chest CT examination of 18 adult patients with the presence of free pleural effusion. Study results showed
that average volumes of pleural effusion computed using the BLL algorithm and assessed manually by the physicians were
586 ml ± 339 ml and 604 ± 352 ml, respectively. For the same patient, the volume of the pleural effusion, segmented semi-
automatically, was 101.8% ± 4.6% of that was segmented manually. Dice similarity was found to be 0.917 ± 0.031. The
study demonstrated feasibility of applying the new BLL algorithm to accurately measure the volume of pleural effusion.
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1. Introduction

Pleural fluid is physiologically present in the human’s pleural cavity [1, 2]. In normal conditions, the
unilateral volume is 8.4 ± 4.3 ml [3]. As the fluid amount increasing, the lung compliance reduces due
to the increased lung capillary pressure. It may lead to patient dyspnea [4]. However, pleurocentesis
provides a relief from dyspnea. The estimation of the pleural effusion’s volume may directly affect
the therapeutic evolution of the disease and supports the decision whether to perform pleurocentesis
or not [5]. Meanwhile, the medical treatment will be adjusted based on the change of pleural effusion
volume. Therefore, accurate calculation of pleural effusion volume plays an important role in patient
management.
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There are several approaches to detect and evaluate the volume of pleural effusion. A typical
method is posteroanterior chest radiograph. Pleural effusion is visible on the posteroanterior pro-
jection as a meniscus at about 200 ml. The hemidiaphragm will obliterate at approximately 500 ml.
Effusion which is lower than 200 ml can be detected only when a lateral chest radiograph is taken.
Pleural effusion becomes visible as a meniscus in the posterior costophrenic sulcus at approximately
50 ml [5].

Sonography is a good choice for detecting pleural effusions in supine patients, especially for the
patient in intensive care unit. The volume of pleural effusion can be quantified by the equation
y = 47.6 × x-837, where y is the predicted pleural effusion volume in milliliters and x is the maximal
thickness of the pleural effusion lamella in millimetres [6].

Computed tomography (CT) is the most suitable method for detection and evaluation of pleural
effusion [7–10]. On CT scans, the effusion dimensions can be obtained easily and the volume of
pleural effusion can be evaluated using a variety of methods. Mergo. PJ, Helmberger. T et al. assessed
the volume of pleural effusion by the equation V = d2 × l, where d is the greatest depth of the effusion
on a single CT scan, l is the greatest length of the effusion [8]. Hazlinger. M, Ctvrtlk. F, et al. devised
a method with single measurement, the greatest depth of effusion, to evaluate the volume of effusion.
The volume can be quantified by their recommended tabular [10].

However, all of the methods may be not accurate enough when the fluid amount is over 300 ml.
Large deviation may be occurred under this condition. For example, in M. Hazlinger’s research [10],
though the volume of pleural effusion is approximately 900 ml in a patient, the predicted volume is only
about 600 ml using the recommended equation. This evaluation may lead the inappropriate treatment.
The major limitations of these methods are: firstly, there is an implicit supposition on regression
equations. The shape of pleural effusion has geometric similarity. For example, the shape of pleural
effusion was often described as meniscus while the volume of pleural effusion can be evaluated by
several measurements. However, this supposition may be inappropriate in some situations. The shape
of pleural effusion may deform irregularly and cannot be described as meniscus. Thus, the dispersion
of the dataset will be increased. The unavoidable errors may be occurred. This deviation would be
significant while the measurement of the equations is limited. Secondly, the deviation will be induced
when the physician(s) get the equation measurement(s). The shape of pleural effusion may be irregular
in some conditions. It is difficult to obtain the measurements precisely. As the result, the deviation will
occur. It will be enlarged while there are more measurements required.

Above problems can be avoided using the image segmentation technology [11–15]. There are several
prior efforts to segment and measure the volume of pleural effusion in CT scans [16–21]. In most of
these segmentation methods, the region in inner chest wall and diaphragm was countered in the first
step and some of the organs and tissue contained in this region (e.g. lung, heart, etc.) was excluded
based on the gray-level of the CT image. After that, the remaining section was the area of the pleural
effusion. These methods can be named as “excluding segmentation methods”. However, these methods
may be not accurate enough under the following conditions:

First, there is large volume (e.g. over 900 ml) of pleural effusion in the pleural cavity. The shape of
the lung will deformed obviously. In some of the CT scans which near the diaphragm, all the air in
the lung will be compressed out by the pleural effusion. The gray-level of the lung will be changed
significantly. As a result, the boundary of lung and diaphragm will be delineated improperly. The
volume of the pleural effusion will be calculated imprecisely, especially when the boundary of lung is
an important input parameter for the method.

Second, the patient may have some other disease (e.g. pneumonia) at the same time. The gray-
level of the pneumonia is much higher than lung and approximate to the effusion. The region of
the pneumonia may be separated as a part of the effusion. Then the errors will be occurred in the
calculations.
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This study aims to develop and test a novel semi-automatic segmentation algorithm based on B-
spline and local clustering level set (LCLS) method, namely BLL, to evaluate the volume of pleural
effusion. Comparing with the “excluding segmentation methods”, BLL will focus on the area of pleural
effusion and delineate the boundary directly. The above limitations are removed in the present study.
The procedure of BLL is as follows:

First, the B-spline method generates the inner chest wall boundary by the interior points of the
thoracic cage image. Then images in the boundary were extracted. Based on these images, the LCLS
method segments the pleural effusion region into four phases [22]. The region of pleural effusion
is assembled by the novel criterions that include analyzing the intensity, location and the shape of
the image within each phase. Finally, the pleural effusion volume is calculated using the CT scans
parameters.

2. Materials and methods

2.1. Patient population and device

A dataset involving 27 free pleural effusions detected by physicians from 18 adult patients on chest
CT images during the period January 2015 to December 2015 was used in this study. There were 11
men and 7 women (mean age: 51 years, age range: 18–75 years). 9 patients were with unilateral pleural
effusions (4 right-sided, 5 left-sided) and another 9 patients were with bilateral. Philips Brilliance CT
Big Bore Systems (Philips Medical System, Cleveland, OH) performed the CT examinations with 64
detector rows. The tube voltage and tube current were fixed as 120 keV and 200mAs, respectively. The
thickness of scans was 5 mm. Meanwhile, the resolution was 512 × 512 pixel, almost 1mm × 1 mm
for each pixel, roughly.

2.2. Extraction of the image within the inner chest wall

Thoracic cage consists of ribs, sternum, and thoracic vertebrae. Suppose that the inner chest wall
boundary can be delineated by the interior points of the thoracic cage. Then the images within the
boundary can be obtained. There are three major steps for this purpose:

1) Extract the interior points of thoracic cage from the CT scans.
2) Delineate the inner chest wall boundary based on the thoracic cage images.
3) Extract the images within the inner chest wall boundary.

2.2.1. Extraction of interior points of thoracic cage
In a patient’s CT scan, the effective area of patient can be countered by a cubic, with the help of

three parameters, height (H), width (W) and length (L). We can get the scans and represent the image
within the cubic as I = {Is|s = 1, 2, ..., N} (N is the last scan number). Figure 1 shows the patient CT
scans.

Because the gray-level of the bones is much higher than the others, almost 1400 HU in average,
the images of bones I*

B can be easily extracted from the original CT scans. However, there are some
unexpected bones (e.g. humeri, shoulder blade, etc.) images IuB = {IuB,s|s = 1, 2, ..., N} presented in
the images and should be deleted. On the other hand, during the chest CT examination, more often
practiced poster of patient, with his/her hands settled behind his/her head, is used. Therefore, humeri
and shoulder blade are only in the top slices and backside of the scans. Then, the regional growth (RG)
method is employed to remove these bones’ image.
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a b

c d

Fig. 1. The patient CT scans.

a b

Fig. 2. The green areas in (a) and (b) are Imask1 and Imask1 for the RG method, respectively. (a) h is the distance between the
top of the clavicle and the top line of the scan.

The RG method is used twice from two directions and with different mask, Imask1 and Imask2,
respectively. In the top to bottom processing, Imask1 is with two triangle areas in the sides of the image,
as shown in Fig. 2(a). The humeri and shoulder blade image in the first scan I+

uB,1 is found by this
mask. Setting I+

uB,1 as origin seed image, repeat the two steps:
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Fig. 3. The thoracic image.

1) Use the ith seed image and the RG method to find the intersection image I+
uB,i+1 in the i + 1th

slice.
2) Set I+

uB,i+1 as new seed image.

The humeri and shoulder blade images I+
uB are selected. However, some of the ribs image are also in

I+
uB. Then the RG method uses again to save the ribs image. This time, a rectangle area is set in the top

of Imask2, as shown in Fig. 2 (b). The humeri and shoulder blade image I -
uB is extracted in following

processing. The union of last chest CT scan IN and Imask2 set as origin seed image. Repeating the
following steps:

1) Use the ith seed image and the RG method to find the intersection image I -
B,i−1 and set I -

B,i−1 as
new seed image.

2) I -
uB,i−1 = Ii−1 − I -

B,i−1.

It is worth nothing that the shoulder blades are contacted with the ribs in the middle of shoulder
blades only in few of the CT scan. As a result, no more than three slices in I+

uB and I -
uB are the same.

Comparing with I+
uB and I -

uB, the contacted slices IBS = {IBS,s|s = k1, ..., k2} (k1 is the first same
scan number, k2 is the last same scan number) are obtained. Then thoracic cage image IB is obtained
following equations (1) and (2), as shown in Fig. 3.

I∗
B,i = I∗

B,i − I+
B,i k = 1, ..., k1 − 1 (1)

IB,i = I∗
B,i − I−

B,i k = k2, ..., N (2)
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Fig. 4. Schematic representation of extracting interior points of thoracic cage. (a) shows the established coordinate system.
(b) shows the detail of selecting process. Qq

n,m is closest to the centroid PCL,n in angle section dθ.

Fig. 5. The extracted bone boundary points.

If the thorax is divided into two parts, namely the left one and the right one, the centroids can be
set as PCL = {PCL,s|s = 1, 2, ..., N} for the left, and PCR = {PCR,s|s = 1, 2, ..., N} for the right. It is
assumed that the left centroid in the nth CT scan is PCL,n, and there are M bones images in one CT scan.
Setting PCL,n as the origin point, the coordinate system can be established, as shown in Fig. 4. The
boundary point of the mth bone is written as zn,m(d, θ), where d is the distance between the boundary
point, θ is angle of the point. Suppose that, the boundary points in the qth angle section

[
θq, θq + dθ

]
are Zq

n,m. Then the boundary point Qq
n,m, which is closest to the centroid PCL,n, is selected. Repeat it

for all the angle sections, the inner chest wall boundary points in the nth CT scan QB,n are obtained,
as shown in Fig. 5.

2.2.2. Delineation of the inner chest wall boundary
After QB is obtained, the thorax boundary CTh can be approximated by the B-spline surface [23,

24]. It is widely used in medical field [25–27]. The B-spline surface S(u,v) can be expressed as:

S(u, v) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pi,j (3)

Where Pi,j is control point. m and n are the number of the control points in u and v directions,
respectively. Ni,p and Nj,q are basic functions of order p and q, which with the knot vectors U and V.
Ni,p can be expressed as:
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Ni,0 =
{

1, ui ≤ u < ui+1

0, others

Ni,p = u − ui

ui+p − ui

Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u)

(4)

The knot vector U and V can be expressed as:

U = {0, ..., 0,
p+1

up+1, ..., ur−p−1, 1, ..., 1
p+1

} (5)

V = {0, ..., 0,
q+1

uq+1, ..., us−q−1, 1, ..., 1
q+1

} (6)

where the number of the knots in U and V are r = n + p + 1 and s = m + q + 1, respectively.
The surface approximation process can be implemented in two steps:

i) The inner chest wall boundary in each CT scan is approximated by the control point P* = {P∗
s,i|s =

1, 2, ..., N, i = 1, 2, ..., n + 1}.
ii) P* is set as data point, P, the control point of S(u,v), is obtained. Substituting P into (1), S(u,v) is

obtained.

In the first step, the weighted least squares curve approximate QB,i in ith scan. The data points are
separated into two parts: constraint data Qc

B,i and unconstraint data Qu
B,i. The constraint data will be

exactly approximated. The unconstraint data may not. The weight of each unconstraint point is ωk

(define as ωk = 1). Then the approximating problem is solved as a constraint minimum processing.
The Lagrange multiplier method is employed to solve it. Lagrange multipliers, A = [λk], are used in
the method, The unconstraint data is described as

NPi = S (7)

where N is the basic function of the unconstraint data point, Pi is control point, S is unconstraint data
Qu

B,i.
The constraint data is described as

MPi = T (8)

where M is the basic function of the constraint data point, T is constraint data Qc
B,i.

The error vector of the unconstraint data is S–NPi. The error under the condition of MPi = T will be
minimized. According to the Lagrange multiplier method, the following function should be minimized.

(ST − PT
i NT )W(S − NPi) + AT (MPi − T) (9)

where W is a diagonal matrix with the element {ωk}.
If take the derivative of (9), and define it equal to zero, Pi is shown as

Pi = (NT WN)−1NT WS − ((NT WN)−1)MT A (10)

Premultiplying (10) with M, A is solved.

A = (M(NT WN)−1MT )−1(M(NT WN)−1NT WS − T) (11)

Substituting A to (10), Pi is obtained.
In this study, we used 13 control points to approximate the inner chest wall boundary in each scan,

as shown in Fig. 6.
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Fig. 6. The distribution of the control points in a CT scan. The last control is the same as the first one.

The second step of approximation the surface is similar with the first one. The rth points in all scans
Pr = {Pi,r|i = 1, 2, ..., N} are set as the new data point Qr. Qr is approximated by m + 1 control
points Pj. All of the data points are defined as unconstraint data Qu. The origin weight of these points
is ω

(1)
k = 1 . The process of approximation is as follows:

(1) According to (9, 10), the control point P(t)
j is obtained under the condition of ω

(t)
k . Then the data

point Q(t) is solved.
(2) Calculate the distance d

(t)
k between Q(t) and Q, d(t)

k = ||Q(t)
k − Qk||. Find the maximum distance

d(t)
max = max(d(t)

k ).
(3) Determine whether d(t)

max meet convergence condition. Output P(t)
j if it is satisfied. Otherwise,

generate ω
(t+1)
k and repeat step (1-2).

The convergence condition is set as d(t)
max ≤ d, where d is the dimension of 4 pixels. ω(t+1)

k is generated
as follow.

ω
(t+1)
k =

⎧⎨
⎩

1, d/d
(t)
k ≥ 1

d/d
(t)
k , others

(12)

After all, the control points P of surface S(u, v) are obtained. Then the inner chest wall boundary
in each scan CTh is calculated. Image ITh, which contained within the boundary, can be extracted.
Figure 7 shows the thorax boundaries in different scans.

2.3. Segmentation of the pleural effusion

As described above, the image within inner chest wall boundary ITh is obtained (as shown in Fig. 8).
However, many tissues and organs, heart, lung, liver, artery vessels, etc., are still in ITh. Furthermore,
the distribution, component and volume of pleural effusion are quite different from one patient to the
other. Thus, the LCLS method is employed to segment the pleural effusion image. Two assumptions
about the CT scans are introduced as follows:

(1) The CT scans has suitable signal to noise ratio. It is not necessary to reduce the image noise.
(2) The gray-scale of pleural effusion is approximate for same patient.

In this paper, we consider the CT image is intensity inhomogeneous. ITh is divided into multiphase.
Each phase has intensity constant and contains several image regions. All the regions are assessed by
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Fig. 7. The inner wall chest boundaries in different CT scans.

their intensity, location, and the geometric information. Hence, the effusion region is assembled by the
part of the selected region. The procedures of the algorithm are as follows:

Step 1 Segment ITh by the image intensity, preliminarily. Then the region of interest (ROI) is
obtained.

Step 2 Divide ROI into four phases using the LCLS method [22].
Step 3 Select and assemble the regions in all phases. Then, extract the region of effusion.

2.3.1. Extraction of the ROI
The ROI is obtained in two steps:

Step 1 ITh is segmented by their intensity preliminarily. The region will be removed if their intensity
is quite different from the effusion.

Step 2 the intensity of image is enhanced for the following segmentation.

In the ith scan ITh,i, Physician(s) will delineate one or several sub-regions of effusion in only one
CT scans, namely �m = {�m,j|j = 1, 2, ..., n}, where n is the last number of the sub-region (shown
as Fig. 9a). The delineation can be easily finished in few second. Let �M = ⋃

i �m, i, the mean
gray-scale Ym and standard deviation Ystd will be calculated among the points in �M . Because the
component of effusion is almost same, the mean gray-scale Ym and standard deviation Ystd will change
a little when the different �M is obtained. Then extracting the points which gray-scale is in the range
of [Ym − 100, Ym + 100], the origin ROI I∗

ROI = {I∗
ROI,i|i = 1, 2, ...N} is obtained. To separate the

tissue region effectively, the ROI image was piecewise enhanced as the follow.
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Fig. 8. The images with the inner chest wall boundary in different CT scans.

a b

Fig. 9. ROI of pleural effusion. (a) shows image within the inner chest wall. The ellipses are the sub-regions delineated by
the physician(s). (b) shows the image which enhanced by (14).

Yn =
{

Y , Y ≤ Ym

Ym + C × (Y − Ym) , Y > Ym
(13)

where Y is origin gray-scale, Yn is new gray-scale after enhanced, C is a constant, C = 2.5. Then,
the ROIs in all scans IROI = {IROI,i|i = 1, 2, ...N} are obtained, shown as Fig. 9b. The new mean
gray-scale Y∗

m and standard deviation Y∗
std will be calculated among the same points in ROI.
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2.3.2. Segmentation of the ROI
We hope that each ROI can be segmented into four kinds of regions. The first one’s gray-scale is

greater than the pleural effusion’s. The second one’s gray-scale is approximated. The third one’s gray-
scale is less than the effusion. And the last one is the background, in which gray-scale should be close
to zero. As the result, the tissues and organs around the effusion (e.g. pneumonia) are distinguished by
these regions. The LCLS method is employed to achieve it.

2.3.2.1. LCLS formulation
As aforementioned, the CT image is intensity inhomogeneous. The observed image I is defined on

a continuous domain �, and modeled as

I = bJ + n (14)

where J is the true image measures an intrinsic physical property of the objects being imaged, b is
the component that accounts for the intensity inhomogeneity and assumed to be slowly varying, n is
assumed to be zero-mean Gaussian noise image noise.

We believed that, the true image J can be separated into disjoint regions � = �1, . . . , �N by
N distinct constant values c = (c1, . . . , cN), respectively. The segmentation process is achieved by
minimizing the energy function

F = E + νL + Rp (15)

where E is the data term, which forces the constant to be close to the image. νL is the length regu-
larization term, which serves to smooth the contour. Rp is signed distance regularization term, which
forces the constant to be smooth in the separated regions.

In (15), the data term is of the most important. The local intensity cluster property is introduced
in this term. The standard K-means clustering is allowed to classify these local intensities, which is
defined as

Ey =
N∑

i=1

∫
�i

K(y - x)|I(x) − b(y)ci|2dx (16)

where K (y – x) is a Gaussian function with standard deviation σ. b (y) is varying bias field. The smaller
the value of Ey, the better classification. K (u) is defined as

K(u) =
⎧⎨
⎩

1
a
e−|u|2/2σ2

, |u| ≤ ρ

0, others
(17)

where a is a normalization constant such that
∫

K(u) = 1. ρ is the radius of classification of the
intensities neighborhood. Note that, if the image is more localized intensity inhomogeneity, the bias
field b varies faster, thus the smaller ρ should be used as the radius.

Minimizing Ey for all y in �, the energy function of the data term in (16) is defined as E = ∫
Eydy.

In order to find the solution of the energy E, E = ∫
Eydy convert to a level set formulation. In level set

methods, the disjoint regions � are partitioned by the level set functions 	 = (φ1, ..., φk). The energy
E is written as a multiphase level set formulation

E(	, c, b) =
∫ N∑

i=1

ei(×)Mi(	(x)) dx (18)
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where Mi(	) is the membership functions, ei is defined by

ei(x) =
∫

K(y − x)|I(x) − b(y)ci|2dy (19)

The regularization terms in (15) is rewritten as the level set function, L(	) = ∑k
j=1 L(φj) and

Rp(	) = ∑k
j=1 Rp(φj), where L(φj) is defined by

L(φ) =
∫

|∇H(φ)| dx (20)

which computes the arc length of the zero level contour of φ and serves to smooth the contour by
penalizing its arc length [28, 29]. The energy term Rp(φj) is defined by

Rp(φ) =
∫

p|∇φ| dx (21)

where function p is defined by p(s) = (1
/

2)(s − 1)2. The energy Rp(φ) will be minimized when
|∇φ| = 1.

2.3.2.2. Energy minimization
Then the energy function F in multiphase level set formulation is defined by

F (	, c, b) = E(	, c, b) + νL(	) + Rp(	) (22)

The minimization of the energy F (	, c, b) is achieved by an iterative process: in each iteration,
the energy F (	, c, b) is minimized with respect to each of the variables 	, c and b, given the other
uploaded in previous iteration. The solution to the energy minimization as follows.

1) Energy minimization with respect to 	: For fixed c and b, the minimization of F (	, c, b) with
respect to 	 is performed solving the following gradient flow equations:

∂	

∂t
= −∂F

∂	
(23)

where ∂F/∂	 is the Gâteaux derivative [30] of energy F . By calculus of variations, ∂F/∂	 is expressed
as the following gradient flow equations:

∂φ1

∂t
= −

N∑
i=1

∂Mi(φ)

∂φ1
ei + νδ(φ1)div

( ∇φ1

|∇φ1|
)

+ μdiv(dp(|∇φ1|)∇φ1)

...

∂φk

∂t
= −

N∑
i=1

∂Mi(φ)

∂φk

ei + νδ(φk)div
( ∇φk

|∇φk|
)

+ μdiv(dp(|∇φk|)∇φk)

(24)

where ∇ is the gradient operator, div(·) is the divergence operator, and the function dp is defined as
dp = p′(s)/s. The variable 	 can be uploaded by solving (24)

2) Energy minimization with respect to c: For fixed 	 and b, the constant vector c is minimized by
the energy E(	, c, b), denoted by ĉ = (ĉi, ..., ĉN) , is given by

ĉi =
∫

(b ∗ K)Iuidy∫ (
b2 ∗ K

)
Iuidy

, i = 1, ..., N (25)

where ui is the membership function, ui(y) = Mi(	(y)).
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3) Energy minimization with respect to b: For fixed 	 and c, the bias field b is minimized by the
energy E(	, c, b), denoted by b̂, is given by

b̂ = (IJ (1)) ∗ K

J (2) ∗ K
(26)

where J (1) = ∑N
i=1 ciui, J (2) = ∑N

i=1 c2
i ui.

2.3.2.3. Numerical implementation
In this study, the ROI is separated into four disjoint regions �1, . . . , �4 with the intensity constant

c = c1, . . . c4. As described in Sec. 2.3.2, the intensity constant c is constrained as follow: c1 ≥ Y∗
m +

4 × Y∗
std, c2 = Y∗

m, c3 ≤ Y∗
m − 3 × Y∗

std . And the initial value are c1 = Y∗
m + 4 × Y∗

std, c2 = Y∗
m, c3 =

Y∗
m − 3 × Y∗

std, c4 = 0. As a result, one should use at least two level set functions φ1, φ2 to define the
membership functions Mi of the regions �1,..., �4, such that

Mi(φ1(y), ..., φk(y)) =
{

1, y ∈ �i

0, else
(27)

For the four-regions case, Mi is defined as M1(φ1, φ2) = H(φ1)H(φ2), M2(φ1, φ2) = H(φ1)(1 −
H(φ2)), M3 (φ1, φ2) = (1 − H(φ1))H(φ2), and M4(φ1, φ2) = (1 − H(φ1))(1 − H(φ2)).

The level set evolution in (24) is implemented using the finite difference scheme as for the distance
regularized level set evolution formulation provide in the previous study [31]. The Heaviside function
H is replaced by a smoothed Heaviside function Hε, which is defined by

Hε(x) = 1

2

[
1 + 1

π
arctan

(
x

ε

)]
(28)

where ε = 1. The dirac delta function δ is the derivative of Hε, which is defined by

δε(x) = H
′
ε(x) = 1

π

ε

ε2 + x2
(29)

The parameters in the level set function are chose as follow: the parameters μ and the time step �t
can be fixed as μ = 0.5 and �t = 0.1. The parameter ν is set to 0.0002 × 2552. The parameter σ is set
to 4. And the kernel K is constructed as a ω × ω mask, with ω being the smallest odd number such
ω ≥4*σ+1. When σ = 4, the mask size is 17 × 17. Fig. 10 shows the regions segmented by the level
set method.

2.3.3. Selecting and assembling criterion
In Sec.2.3.2, the ROI is divided into four regions. Each region contains several sub-regions, as shown

in Fig. 11a. Then we select the sub-regions for assembling the pleural effusion region by the following
experiential criterion:

1) choose one sub-region �S ,0, which intensity constant c is close to the mean gray-scale of the
pleural effusion Ym, from the sub-regions adjoined the lower boundary of the inner chest wall, as
shown in Fig. 11b.

2) find all sub-regions adjacent to �S ,0, denoted by �S ,1,...,�S ,n , where n is last number of the
adjacent sub-region. The mean gray-scale of �S ,i , i = 1,...,n is calculated, denoted by Ys,1, . . . Ys,n.
The �S ,i is selected to assemble the pleural effusion area if its gray-scale is in the range of
[Ym–3·Ystd , Ym–2.5·Ystd]. Then the origin area of pleural effusion �∗

E and the boundary of the
area C∗

E are obtained, as shown in Fig. 11c.
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Fig. 10. The regions segmented by the level set method.

a b c d

Fig. 11. The result of the selecting process in each step. (a) is the image region segmented by LCLS method. (b) is the chosen
image sub-region which adjoined the lower boundary of inner chest wall. (c) shows the assembled region and the cross in (c)
are the separated points. (d) shows the final region, which will be obtained.

3) �∗
E is separated based on the distance between the boundary points. i.e. if the distance between

two points Pi and Pj is less than 5 pixel, the image will be divided into two parts by the line
between two points. The bottom area of �∗

E will be selected.
4) Two separated lines are used to divide the effusion area. We define the line with the top point of

the spinal column as base line. Two separated lines are defined upon base line 15 and 30 pixels.
Both of the lines are half wide of the image, as shown in Fig. 11c. From line 1, if the image can be
divided into two parts by it, the upper part will be eliminated and the lower part will be selected
as the new �∗

E. Otherwise, line 2 will repeat this step, and �∗
E will be uploaded.

5) If there were holes in the image domain, the mean gray-scale of the image within the holes are
evaluated. And the hole will be filled while its intensity is in the range of [Ym–3·Ystd, Ym–2.5·Ystd].

After all, the area of pleural effusion �E can be obtained, as shown in Fig. 11d.
Counting the number of pixel in �E , the volume of pleural effusion is quantified by the parameters

of the scans. Figure 12 shows the segmentation of the pleural effusion.

3. Results

An experienced radiologist manually contoured the pleural effusions on each CT scan using the
Philips EBW 4.5.3.40140 image workstation. Based on the manual boundaries, volume of pleu-
ral effusion was calculated in milliliters and the resulted range of the effusion volume was 64 ml
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a b

c d

Fig. 12. The segmentation of pleural effusion.

Table 1
Conversion of pleural effusion’s thickness to volume*

Thickness d (cm) Pleural effusion volume (ml)

1 67
1.5 142
2 216
2.5 288
3 360
3.5 431
4 501
4.5 572
5 643
5.5 714
6 786
6.5 859
7 933
7.5 1009
8 1086
8.5 1166
9 1248
9.5 1333
10 1421

*: Martin Hazlinger, Filip Ctvrtlik, et al. [10].
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Fig. 13. Assessment procedures designed by Hazlinger et al. d is the greatest depth of the effusion on a single CT scan.

to 1475 ml, whereas the effusion volume (mean ± standard) was 586 ml ± 339 ml. Meanwhile, the
regression equation used here was designed by Martin Hazlinger, Filip Ctvrtlik, et al. [10], assessed
the effusion volume, the effusion volume (mean ± standard) was about 646 ml ± 455 ml. (Table 1
showed the conversing tabular recommended by Martin Hazlinger’s method. One may quantify the
volume of pleural effusion basing on the thickness of the effusion, shown as in Fig. 13). Using BLL, the
effusion volume (mean ± standard) was 604 ml ± 352 ml. Comparing the results from the assessment,
the volume of the pleural effusion segmented by our method was 101.8% ± 4.6% of that segmented
manually. The maximum error was 11.2% and the minimum error was –6.68%. The Dice coefficient
of the segmentation between BLL and the manual one was 0.917 ± 0.031. The volume of pleural
effusion segmented by the regression equation was 118.9% ± 94.4% of that segmented manually. The
maximum error was 462.6%, and the minimum error was –35.3%. The details of the results are shown
in Table 2.

The computer with Intel(R) Core(TM) i7-2600 was used for the calculations. The frequency of the
CPU is 3.40 GHz and the memory is 8 G. It would spend no more than 8 second for calculating one
CT scan. For one patient with 45 scans, the whole processing will be finished in almost 6 minutes.

4. Discusson

The analytical results showed that the algorithm proposed in this study is a feasible way to assess
the volume of pleural effusion. The algorithm can assess the volume of the pleural effusion effectively
and precisely. In most of the tests, the volume error between BLL and the manual one is less than 10%.

In the published papers, the regression equations may imprecise because of insufficient sample space
and the dispersion of the samples. Meanwhile, the pleural effusion images vary from patient to patient,
the shape of effusion deformed irregularly (shown in Fig. 14) which is difficult to extract precise
measurements for the equations. Therefore, additional error may occur. The existing (semi-)automatic
methods also could not segment the image accurately, especially when the fluid amount is large and/or
the patient having some other disease (e.g. pneumonia) at the same time. Thus, it is necessary to
develop the new quantification algorithm for the pleural effusion calculation.

The images of pleural effusion vary from patient to patient. It is then difficult to extract the mea-
surement precisely. However, the algorithm in this paper can delineate their boundaries to evaluate the
volume.

In this study, we developed a novel semi-automatic algorithm BLL to assess the volume of pleural
effusion. The algorithm is designed in two major steps: In the first step, the image within the inner
chest wall was obtained by the B-spline method. In the second step, the region of pleural effusion was
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Table 2
The results of the pleural effusion volume

Effusion Radiologist Regression Our algorithm Dice
number (ml) equation (ml) (ml) coefficient

1 480 459 506 0.925
2 1280 –∗ 1352 0.917
3 760 564 740 0.958
4 453 374 506 0.855
5 825 933 848 0.932
6 269 281 284 0.906
7 193 127 209 0.890
8 1475 –∗ 1379 0.882
9 492 572 506 0.939
10 64 360 68 0.921
11 456 501 442 0.935
12 591 459 586 0.951
13 337 259 324 0.943
14 1047 1117 1078 0.947
15 370 346 389 0.926
16 792 757 871 0.844
17 133 157 142 0.910
18 695 757 755 0.867
19 552 600 571 0.941
20 565 402 550 0.947
21 228 316 214 0.903
22 324 430 302 0.893
23 320 302 309 0.926
24 867 844 864 0.963
25 1077 1150 1155 0.890
26 791 700 752 0.917
27 637 845 618 0.934

∗: The greatest depth of the effusion is out of the evaluation range of recommended tabular.
The effusion volume cannot be assessed.

segmented by the LCLS method and obtained by the novel selecting and assembling criterion. Com-
pared to existing methods, the volume of pleural effusion was calculated precisely by BLL. Moreover,
the variation of the effusion volume was estimated within a period of time. So that physician(s) can
assess patient’s new condition and adjust their medical treatment.

The limitations of our study consist of quantifying pleural effusion by several factors. First, in this
study, authors believed that the CT scans were with good signal to noise ratio, because the physicians
selected and detected the scans at the very beginning. As a result, scans with serious image problems
which could not be detected had been dropped. However, in the everyday medical practice, CT scans
may have different signal to noise levels and/or some “little” image problem. Authors did not consider
these issues in this period of work. Thus, it should be completed in future. Second, this algorithm was
semi-automatic and it still needed a manual input. It may lead some manual deviations. Therefore,
it should be solved in following studies. In summary, the BLL algorithm developed and tested in
this study can be applied in different areas to evaluate the volume of pneumothorax after several
changes.
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a b

c d

Fig. 14. Images of the pleural effusion. The images of pleural effusion vary from patient to patient. It is then difficult to extract
the measurement precisely. However, the algorithm in this paper can delineate their boundaries to evaluate the volume.

5. Conclusion

This study demonstrated the feasibility and advantages of applying a new semi-automatic algorithm
namely, BLL, to segment the volume of pleural effusion on CT scans. This algorithm can also quantify
the volume of pleural effusion precisely. It is widely applicable in patients with free pleural effusion.
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