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Flow behaviors of blood strongly depend on dynamics of red blood cells (RBCs) under flow. Due to
the simplicity, vesicles have been extensively used as a model system to investigate RBC dynam-
ics. Despite its significance in microfluidics, the effect of confinement (i.e., ratio of vesicle size to
microchannel size) on vesicle dynamics has not been reported in three-dimensional (3D) modeling.
In this study, we developed a 3D mathematical model and investigated the effect of confinement on
the dynamics of oblate-shaped vesicles in microscale shear flows. Our results indicated that con-
finement has significant effect on the dynamics of vesicles, including tank-treading, swinging and
tumbling. An increase of confinement can induce the transition of vesicle dynamics from tumbling
to swinging. This study could be helpful to future studies on the flow of vesicle suspensions at
microscale, e.g., in vivo capillaries and in vitro microfluidics.

Keywords: Vesicle, Dynamics, 3D Simulation, Membranes, Microscale Shear Flow,
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1. INTRODUCTION
Blood is primarily composed of red blood cells (RBCs)
with a hematocrit (the volume fraction of RBCs) about
45% in normal human body.1 Flow behaviors and func-
tions of blood, e.g., mass transport, effective viscosity and
flow resistance, strongly depend on the deformation and
dynamics of RBCs under shear flow.2�3 It therefore is of
great importance to understand RBC dynamics and its con-
tribution to blood rheology properties. Due to the simplic-
ity, vesicles (a viscous fluid surrounded by a phospholipid
bilayer membrane) have been extensively used as a model
system to investigate RBC dynamics.2 Besides, vesicles
can also mimic the functions of biological cells in flows,
holding great potential for biomedical applications, e.g.,
transport and delivery of drugs and containers for bioreac-
tions. The applications of vesicles are also affected by the
deformation and dynamics of vesicles.2�4 Therefore, it is
of great importance to study the dynamics of vesicles in
flows.
In the last two decades, intensive analytical,5–7

numerical8–11 and experimental12�13 investigations have

∗Author to whom correspondence should be addressed.

revealed the high complexity of vesicle dynamics in flows.
Even in a simple shear flow, vesicles present a variety of
dynamics, e.g., tank-treading (TT), swinging (SW), tum-
bling (TB). In TT motion, the vesicle maintains a con-
stant inclination angle to the flow, while vesicle membrane
presents a tank-tread rotation. In SW motion, the vesicle
presents TT motion except for an oscillation of the incli-
nation angle. In TB motion, the vesicle presents a rotation
like a rigid body. The dynamic states of vesicles can tran-
sit between TT, SW and TB. These transitions have been
found to be affected by several factors, such as the vis-
cosity contrast of inner and outer fluids, the initial shape
of vesicles, the mechanical properties of vesicle mem-
brane and the shear rate of surrounding shear flow. Due
to the inherent complexity of vesicle dynamics, simplifi-
cation and assumption have been employed in theoretical
modeling, and the mechanisms of vesicle dynamics are not
well known yet.
One of the main assumptions in previous studies is

assuming no wall effect so that the unbound shear flow
can be employed to study vesicle dynamics.5–11 However,
this assumption may not be valid especially when the
flow is confined to scales comparable to vesicle sizes,
for example, vesicle suspensions in microfluidics and
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blood flow in capillaries. In previous studies on vesicle
deformation, the confinement (ratio of the vesicle radius
to the distance between walls) was set to less than 0.1
to exclude the wall effect,10�11�14 while it may be much
higher to approach 0.5 in microfluidics or human micro-
circulatory system.1�15 In this case, the confinement may
significantly affect tank-treading and tumbling of vesicles
and can induce a transition of tumbling to tank-treading,
which was demonstrated in two-dimensional (2D) numeri-
cal studies.16�17 However, a three-dimensional (3D) model
is still in unmet need to better understand the wall effect
on vesicle dynamics, as vesicles may present much differ-
ent dynamic behaviors in 3D.
Here, we developed a 3D model and investigated the

dynamics of vesicles in microscale shear flows. The effect
of walls on vesicle dynamics was presented by varying
the confinement from 0.125–0.333. Our results showed
that with increasing confinement the vesicle dynamic state
can transit from tumbling to swinging and the oscillation
amplitude of vesicle deformation and orientation signifi-
cantly decreased.

2. MODEL AND METHODS
3D numerical simulations are presented on the dynamic
behaviors of an oblate-shaped vesicle in a linear shear flow
(Fig. 1). To investigate the effect of confinement on vesicle
dynamics, the linear shear flow is bounded by two walls
with a distance of Hc. The initial velocity profile of the lin-
ear shear flow is u0 = ��z�0�0�, where � is the shear rate.
The vesicle is composed of an elastic membrane enclos-
ing a viscous fluid. Using the front tracking method, the
vesicle membrane is discretized into a set of triangular
elements, thus the finite element method can be used to
calculate stresses in the membrane. The fluid inside and
outside the vesicle is Newtonian and incompressible with
viscosities ��0 and �0, where � is the viscosity ratio. The
flow is governed by:

� ·u = 0 (1)
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Figure 1. Schematic illustration of problem statement. A vesicle com-
posed of an elastic membrane enclosing a viscous fluid was suspending
in a linear shear flow bounded by two walls with a distance of Hc . The
dynamics of the vesicle in a confined channel was simulated and the
effect of confinement was investigated.

where p is the pressure, � the density and � the viscosity
of the fluid. fm is the membrane stress due to the resis-
tance against shear, bending and area dilatation of vesicle
membrane. The membrane stresses are transferred from
Lagrangian grids onto Eulerian grids by the Dirac-Delta
function �.
The membrane stresses are determined by the defor-

mation of the membrane. The strain-energy function by
Skalak et al.18 is employed to compute the stresses due to
the resistance against shear and area dilatation:

W = Es
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where �1 and �2 are principle stretch ratios, Ea and Es

are the moduli of area-dilatation and shear. The principal
stresses are:
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The stresses in the membrane are obtained from the princi-
pal stresses and the membrane deformation. The resistance
against bending is modeled using the Helfrich’s bending
energy function:19�20

Wb =
Eb

2

∫
S

2H −C0�

2dS+Eg

∫
S
�gdS (5)

where C0 is the spontaneous curvature, Eg and Eb are the
bending moduli associated with Gaussian curvature �g and
Mean curvature H . The membrane stresses due to bending
resistance are obtained by:

fb =−Eb�
2H −C0�
2H
2−2�g +C0H�+2�sH�n (6)

where n is the unit normal vector directing outward, and
�s is the Laplace-Beltrami operator.
Dimensionless parameters used in our model include

Reynolds number Re = ��R2/� (R is the vesicle
radius), Viscosity ratio �, Capillary number Ca =
��R/Es , Confinement Cn = R/Hc, Dimensionless bend-
ing modulus E∗

B = Eb/
R
2Es� and Reduced volume � =

�V /
4�/3��/
A/4��3/2, where V and A are the volume
and surface-area. Vesicle dynamics are characterized by
two parameters: (i) deformation index D = 
L−B�/
L+
B�, where L and B are major and minor axis of the ellip-
tical vesicle in the shear plane; (ii) inclination angle �
between the major axis of the elliptical vesicle and flow
direction. To focus on the effect of confinement on vesicle
dynamics, we fixed Re= 0�1, E∗

B = 0�05 and Ca = 0�05.
We used a three-stage RKCN four-step projection

method with second-order temporal accuracy to solve the

2 J. Nanosci. Nanotechnol. 14, 1–6, 2014



Luo et al. Three-Dimensional Numerical Simulation of Vesicle Dynamics in Microscale Shear Flows

governing equations. The spatial accuracy was ensured to
be second order by using the standard central difference
scheme. The convective and pressure terms were updated
using the three-stage complete Runge-Kutta technique and
the diffusion term was updated using the Crank-Nicholson
semi-implicit technique. The solver was written in FOR-
TRAN. To validate our model, we simulated the defor-
mation of a spherical vesicle in a linear shear flow. Our
model gave a deformation index and inclination angle of a
vesicle without bending resistance identical to Ramanujan
et al.21 within 4.6% and 3.8%. For a vesicle with bending
resistance, the discrepancy of deformation index between
our prediction and Pozrikidis’22 was 1.8%. Further details
and validations of our model can be found in our previous
studies.10�11�23�24

3. RESULTS AND DISCUSSION
To investigate the effect of reduced volume on vesicle
dynamics in a confined channel, we simulated the dynamic
behaviors of vesicles with � = 0�872− 1 at Cn = 1/6,
Figure 2. Vesicles with � = 0�872− 1 presented several
dynamics, such as tank-treading, swinging and tumbling,
Figures 2(a)–(b). A vesicle with � = 1 exhibited a steady
tank-treading motion, which assumed a steady deformation
index and inclination angle. Vesicles with � < 1 presented
unsteady dynamics, which assumed an oscillating defor-
mation index and inclination angle. The swinging motion

Figure 2. Dynamic behaviors of vesicles in a confined channel at Cn = 1/6. Deformation index D (a) and inclination angle � (b) at � = 10 versus
time �t. (c) Equilibrium inclination angle �e and equilibrium deformation index De versus reduced volume � . (d) Oscillation amplitude of inclination
angle �� and deformation index �D versus reduced volume � .

was observed for vesicles with � = 0�965 and 0.997, as
the oscillation amplitude of inclination angle �� was less
than �. �� increased to � as � was decreased to 0.872,
and the vesicle exhibited a tumbling motion. For vesicles
with � = 1 and 10, the equilibrium deformation index
De linearly decreased with increasing �, and the equilib-
rium inclination angle �e linearly increased with increas-
ing �, Figure 2(c). The same qualitative tendency was
observed in 2D confined channels.17 As � was increased
from 0.872–1, the oscillation amplitude of both deforma-
tion index and inclination angle rapidly decreased to 0,
Figure 2(d). Vesicles under unbounded shear flows showed
the same qualitative tendency.25

To investigate the effect of confinement on vesicle
dynamics, we simulated the dynamic behaviors of a vesi-
cle with � = 0�872 and � = 10 in confined channels with
two different confinements Cn = 1/6 and 1/3, Figure 3.
An increase of the confinement triggered a transition of
vesicle dynamics from tumbling to swinging. For instance,
the vesicle at Cn = 1/6 exhibited a tumbling motion
(Fig. 3(a)). The major axis of the ellipsoidal vesicle (arrows
in Fig. 3(a)) rotated about the vesicle center. While Cn
was increased to 1/3, the dynamic state of the vesicle was
changed to a swinging motion, Figure 3(b). The major axis
of the ellipsoidal vesicle (arrows in Fig. 3(b)) exhibited a
swing instead of a rotation about the vesicle center. In the
meantime, the vesicle membrane showed a rotation like a
tank tread, which was indicated by the trajectory of a fixed
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Figure 3. Different dynamic states of a vesicle with � = 0�872 and �= 10 in two different confined channels. (a) Tumbling at Cn= 1/6. (b) Swinging
at Cn= 1/3. Arrows indicate the major-axis of the vesicles. Black dots show the trajectory of a fixed point on vesicle membrane.

Figure 4. The effect of confinement on quantities associated to different vesicle dynamics including tank-treading, swinging and tumbling. (a)
Equilibrium inclination angle versus the confinement. (b) Oscillation amplitude of inclination angle versus the confinement. (c) Equilibrium deformation
index and oscillation amplitude of deformation index versus the confinement for a vesicle with �= 10. (d) Oscillation period versus the confinement
for a vesicle with �= 10.
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Figure 5. Pressure field outside the vesicle with �= 10. Vesicles with � = 1 in confined channels with different values of the confinement at �t = 9:
(a) Cn = 1/3, (b) Cn = 1/4 and (c) Cn = 1/6. Vesicles with � = 0�872 in confined channels with different values of the confinement at �t = 12: (d)
Cn = 1/3, (e) Cn = 1/4 and (f) Cn = 1/6. Vesicles in (a)–(c) are in tank-treading regime; vesicle in (d) is in swinging regime and vesicles in (e) and
(f) are in tumbling regime.

point on the membrane, Figure 3(b). The transition of tum-
bling to swinging induced by the increase of the confine-
ment was not presented in previous 2D simulations.16�17

Figure 4 showed the effect of confinement Cn on
quantities associated to different vesicle dynamics of
tank-treading, swinging and tumbling. Among these
quantities were the equilibrium inclination angle 
�e�, the
equilibrium deformation index 
De�, the oscillation ampli-
tude (�D and ��) and period 
T � of deformation index
and inclination angle. As Cn was increased from 1/8 to
1/3, �e monotonically decreased at � = 1 while mono-
tonically increased at � = 10, no matter vesicles are in
tank-treading or swinging regime, Figure 4(a). The same
qualitative tendency was observed for 2D vesicles.16 De

monotonically increased with increasing Cn for vesicles
with �= 10, Figure 4(c). Both �� and �D monotonically
decreased with increasing Cn for vesicles with �= 1 and
10, Figures 4(b)–(c). The increase of the confinement sup-
pressed the oscillations in the deformation and inclination
of vesicles under shear flows. Additionally, the oscillation
period T of inclination angle was observed to monoton-
ically increase with increasing confinement for vesicles
in tank-treading, swinging or tumbling regime. Here, T
for vesicles in tank-treading regime represented the period

of membrane tank-treading. These results indicate that
the channel walls significantly affected the characteristics
of vesicle dynamics, including tank-treading, swinging or
tumbling, especially at high confinement.
To gain further insight of the effect of confinement on

vesicle dynamics, we presented the pressure field of the
shear plane in confined channels with three different con-
finements, Cn = 1/3, 1/4 and 1/6, Figure 5. The pressure
values were relative deviations from the pressure at the
center point of the vesicle. Red and blue color showed
the regions with higher and lower pressure, respectively.
For vesicles in tank-treading regime, an increase of the
confinement induced an increase in the nonuniformity of
the pressure around the vesicle, Figures 5(a)–(c), thus the
deformation of vesicles increased with increasing confine-
ment, Figure 4(c). For vesicles in tumbling regime at lower
confinement Cn = 1/6 and 1/4, the pressure had no sig-
nificant change along the vesicle membrane so that the
pressure had no significant effect on the tumbling of vesi-
cles, Figures 5(e)–(f). The nonuniformity of the pressure
around the vesicle membrane significantly increased with
increasing confinement, Figures 5(d)–(f). As the confine-
ment was increased to 1/3, a higher pressure region was
observed between the wall and the vesicle tip approaching
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the wall, while a lower pressure region was observed
between the wall and the vesicle tip departing from the
wall, Figure 5(d). This pressure distribution caused a neg-
ative torque against the rotation or swinging of the vesi-
cle. Thus, the oscillation amplitude of inclination angle
decreased with increasing confinement, Figures 4(b)–(c),
and the increase of the confinement even triggered a tran-
sition of vesicle dynamics from tumbling to swinging,
Figure 3.
In summary, a 3D theoretical model was developed

to study the dynamics of vesicles in a bounded shear
flow. The size effect in microscale flow was presented
by the effect of confinement, i.e., ratio of vesicle size to
microchannel size. We found that the oscillation of vesicle
deformation degree significantly decreased with increasing
confinement. The dynamical state of vesicles can be alter-
nated by increasing the confinement due to the change of
pressure field resulting from the interactions between the
vesicle and walls. In addition, our 3D model demonstrated
that an increase in confinement can trigger the dynamical
state of a non-spherical vesicle from tumbling to swing-
ing, whilst it was from tumbling to tank-treading in pre-
vious 2D simulations.16�17 Therefore, our 3D model pro-
vides new insights into the effect of confinement on vesicle
dynamics and can be used to further study vesicle dynam-
ics in microscale shear flows.

4. CONCLUSION
In this paper, we developed a 3D model based on the
front tracking method and investigated the dynamics of a
vesicle in a confined microscale shear flow. Our results
demonstrate that vesicle dynamics in confined microchan-
nels had significant difference from that in unbound shear
flows. The increase of the confinement (ratio of the vesi-
cle size to microchannel size) significantly reduced the
oscillation amplitude of deformation index and inclination
angle. The oscillation period of inclination angle signifi-
cantly increased with increasing confinement for vesicles
in tank-treading, swinging or tumbling regime. Further-
more, an increase of the confinement can trigger a transi-
tion of vesicle dynamics from tumbling to swinging. We
also explained the effect of confinement on vesicle dynam-
ics via the change of pressure field due to varied con-
finements. This study provides new insight into vesicle
dynamics under bounded shear flows and could be useful

to study the flow of vesicle suspensions at microscale, e.g.,
in vivo capillaries and in vitro microfluidics.
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