
Author's personal copy

Nuclear Engineering and Design 241 (2011) 4767–4774

Contents lists available at ScienceDirect

Nuclear Engineering and Design

journa l homepage: www.e lsev ier .com/ locate /nucengdes

Correlations for predicting single phase and two-phase flow pressure drop in
pebble bed flow channels

Bofeng Baia,∗, Maolong Liua, Xiaofei Lva, Junjie Yana, Xiao Yanb, Zejun Xiaob

a State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b Lab of Bubble Physics and Natural Circulation, Nuclear Power Institute of China, Chengdu 610041, China

a r t i c l e i n f o

Article history:
Received 12 February 2011
Received in revised form 15 May 2011
Accepted 2 June 2011

a b s t r a c t

An experimental study was conducted on the pressure drop of the single phase and the air–water two-
phase flow in the bed of rectangular cross sections densely filled with uniform spheres. Three kinds of glass
spheres with different equivalent diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of
the test sections. The Reynolds number in the experiment ranged from a dozen to thousands for the single-
phase flow and from hundreds to tens of thousands for the two-phase flow. In the present flow-regime
model, the bed was subdivided into a near-wall region and a central region in order to take the wall effect
into account to improve the prediction at low tube-to-particle diameter ratios. Improved correlations are
obtained based on the previous study to consider the single-phase flow pressure drops for finite pebble
beds with spherical particles and nonspherical particles by fitting the coefficients of that equation to
both the database and the present experiment. The correlation is consistent with the observed physical
behavior which explains its comparatively good agreement with the experimental data. A new empirical
correlation for the prediction of two-phase flow pressure drops was proposed based on the gas phase
relative permeability as a function of the gas phase saturation and the void fraction. The correlation fit
well for both experimental data of spherical particles and nonspherical particles.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

An accurate prediction of the pressure drop for single- and two-
phase flow through porous media composed of stationary granular
particles is critical in the design and operation of the pebble bed
reactor which will be one of the most promising reactors in safety
and efficiency.

Since the well-known works of Darcy or Forchheimer, in par-
ticular, most of the researches concerning the single phase flow
pressure drop in packed beds were either based on an overall anal-
ysis of the bed as a continuum or as a porous medium affected by
the porosity distribution which was a function of the shape and size
of the packing materials, bed geometric ratio and porosity profiles
(Nemec and Levec, 2005a; Montillet et al., 2007). Ergun’s equation
stated that the pressure drop of the flow through a bed of spheri-
cal particles with a uniform size was a result of kinetic and viscous
losses (Ergun and Orning, 1949). Bernsdorf et al. (2000) concluded
that a significant error occurred when only shear forces were taken
into account. Most researchers believed that Ergun constants were
determined empirically for each bed for they were not only depen-
dent on the particle geometry but varied from one macroscopic
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bed to another (made of the same particles) owing to the different
structures of the packing within the bed after repacking (Jiang et al.,
2000). Nevertheless, Nemec and Levec (2005a) believed that there
existed some principles for the values. Recent theoretical works
developed different approaches to the modeling of the pressure
drop (Montillet et al., 2007; Çarpinlioğlu and Özahi, 2008).

The hydrodynamics of the two-phase flow pressure drop in
packed beds was traditionally studied from an empirical point of
view. Previous researchers suggested the prediction of pressure
drop and liquid holdup by means of empirical correlations based on
dimensional analysis and visual observations over a relatively nar-
row range of experimental conditions (Wammes and Westerterp,
1991; Ratnam et al., 1993). Four groups of models in general were
reported and are concluded here as shown in Table 1. The first group
followed the Lockhart–Martinelli correlations in a horizontal pipe
and used the parameter as well as the two-phase multipliers (Goto
and Gaspillo, 1992), and the definitions of the parameters were
modified in some of the cases (Ellman et al., 1988). In the second
group the pressure drop was related to the gas and liquid phases
through relative permeability (Boyer et al., 2007). The third set was
based on a mechanic approach in which mass and momentum bal-
ances were built for gas and liquid phases with closure laws for
interfacial forces mainly between liquid and solid and between liq-
uid and gas (Tung and Dhir, 1988; Boyer et al., 2007; Schmidt, 2007).
Different from the above three groups of models in which a uni-
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Nomenclature

A, B coefficients of Ergun-type equation
D hydraulic diameter of packed bed (m)
de equivalent particle diameter [6Vp/Sp] (m)
Gas* modified Galileo number for s phase [Ga∗

s =
(�s/�s)

2g(deε/(1 − ε))3]
g gravitational acceleration (m s−2)
js superficial velocity of s phase (m s−1)
ks viscous relative permeability for s phase
kst inertial relative permeability for s phase
L length of the packed bed (m)
n exponent in Eq. (12)
Res Reynolds number [Res =�sjsde/�s]
Res* modified Reynolds number for s phase [Re∗

s =
�sjsde/[�s(1 − ε)]]

�Ps total pressure drop including gravitational contri-
bution of s phase (Pa)

p pressure (Pa)
pc capillary pressure [pc = pg − pl] (Pa)
Sp surface of particle (m2)
Vp volume of particle (m3)
X constant in Eq. (15)

Greek letters
˛ void fraction
ε bed porosity
� surface tension (N m−1)
� dynamic viscosity of s phase (Pa s)
� density of s phase (kg/m3)
 pressure drop

Subscripts
s gas or liquid phase
g gas phase
l liquid phase
p particle
w wall
TP two-phase flow

form correlation was obtained for the whole operating range, the
fourth set was presented with different correlations for different
flow patterns based on the theoretic analysis of the characteris-
tic of the flow patterns. More recent experimental works focused
mainly on proposing a more refined cartography of flow patterns
(Bai et al., 2010). To review the models quantitatively, the corre-
lations of the first three groups of models were compared with
the experimental data collected from references. And the result of
the fourth model was cited here directly from the original refer-
ence. All the resulting mean relative errors are listed in Table 1.
The smallest mean relative error occurred with the fourth set of
models.

The objective of the present work is to acquire a profound
knowledge about the single-phase and two-phase flow pressure
drops as well as the effect of the parameters and the bed specifica-
tions. Three kinds of particles with different equivalent diameters
(3 mm, 6 mm, and 8 mm) are used for the establishment of the
test section. According to the experimental data from the present
work and references available, two new empirical correlations for
single-phase and two-phase flow pressure drop, respectively, are
proposed based on different models with greater soundness and
accuracy.

Table 1
Mean relative error of four groups of models.

Model no. Reference Mean relative error (%)

Pressure drop Liquid
holdup

1

Larkins et al. (1961) 30 50
Charpentier et al. (1969) 118 11
Midoux et al. (1976) 127 36
Wammes and Westerterp (1991) 71 17
Larachi et al. (1991) 73 17

2

Sáez and Carbonell (1985) 30 20
Sáez et al. (1986) 20–30 –
Nemec et al. (2001) 40 10
Lakota et al. (2002) 40 10
Nemec and Levec (2005b) 41 7

3

Holub et al. (1993) 40 17
Al-Dahhan et al. (1998) 30 13
Attou et al. (1999) 60 17
Narasimhan et al. (2002) 30 13
Boyer et al. (2007) 20 20

4
Turpin and Huntington (1967) 38a, 31a, 19a –
Varma et al. (1997) 14a, 12a, 2.7a –

a RMSD.

2. Pressure drop models

2.1. Single-phase flow pressure drop

The pressure drop of single-phase flow in infinite packed beds is
known to be dependent on Reynolds number, bed porosity ε, parti-
cle geometry and particle size distribution. The pressure drop is the
result of the frictional losses and the inertia characterized by the
linear dependence of flow velocity and the quadratic dependence
of flow velocity, respectively (Vafai and Tien, 1981; Çarpinlioğlu
and Özahi, 2008).

�Ps
L

= A (1 − ε)2

ε3
�s
js

d2
e

+ B (1 − ε)
ε3

�s
j2s
de

(1)

where�Ps is the overall pressure drop including gravitational con-
tribution of s phase, L the length of the packed bed, js the superficial
velocity of s phase and de is the equivalent particle diameter; A
and B are constants. Ziolkowska and Ziolkowski (1988) defined
the streamline flow, the transitional flow and the turbulent flow.
In order to cover the whole range of Reynolds numbers from the
streamline flow to the turbulent flow, the dimensionless pressure
drop for s phase, � s, is written in terms of modified Reynolds and
Galileo numbers as follows (Eisfeld and Schnitzlein, 2001; Niven,
2002; Nemec and Levec, 2005a).

 s = �Ps

�sj2s

de
L

= ARe∗
s

Ga∗
s

+ BRe∗2
s

Ga∗
s

(2)

Re∗
s = �sjsde

�s(1 − ε) (3)

Ga∗
s =

(
�s
�s

)2
g
(
deε

1 − ε
)3

(4)

de = 6Vp
Sp

(5)

where the subscript s represents the liquid-phase l or the gas-phase
g, respectively; �s, Res*, Gas* and �s are the density, the modified
Reynolds number, the modified Galileo number and the dynamic
viscosity for s phase, respectively, g the gravitational acceleration,
and de is the equivalent particle diameter; Vp and Sp represent the
particle volume and the particle surface.
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Through a linear regression analysis for the different data sets,
Leva et al. (1950) and Eisfeld and Schnitzlein (2001) assumed that
the Ergun-type pressure drop equation was valid within the over-
all range of the investigated parameters. However, this correlation
fails to reflect explicitly any influence due to the finite size of real
packed beds. In practice any packing is bounded by confining walls,
so that the influence of the tube-to-particle diameter ratio, D/de, on
the pressure drop is expected. In other words, for the finite packed
beds, there exists a wall zone where the average porosity is greater
than in the core of the bed since the spatial distribution of par-
ticles conforms to the shape of the wall (Achenbach, 1995). For
sphere particle bed, the strong dependence of the pressure drop on
the porosity causes a nonuniform velocity distribution across the
particle bed, since the disturbance of the statistical particle arrange-
ment adjacent to the wall generates here a higher porosity than the
average value in the bed (Achenbach, 1995).

2.2. Two-phase flow pressure drop

For two-phase flow, the microscopic equations of motion for
the liquid and gas phase under tricking flow conditions were first
implemented by Sáez and Carbonell (1985) and Sáez et al. (1986)
and then extended by Nemec et al. (2001) and Nemec and Levec
(2005b):

−dpl
dz

+ �lg =
[
A

kl

Re∗
l

Ga∗
l

+ B

klt

Re∗2
l

Ga∗
l

]
�lg (6)

−dpg
dz

+ �gg =
[
A

kg

Re∗
g

Ga∗
g

+ B

kgt

Re∗2
g

Ga∗
g

]
�gg (7)

where ks and kst are defined as viscous and inertial relative perme-
ability for s phase, respectively.

Previous researchers used the representation of the capillary
pressure pc = pg − pl which has extensive use in the analysis of
the multiphase flow through porous media to produce a relation
between pg and pl. However, the validity of such a representation
for packed beds is not established. This representation implies that
the capillary pressure gradient is proportional to the gradient of
the liquid fraction (1 −˛). As the liquid fraction does not change
significantly for a steady-state fully established flow, the capillary
pressure gradient dpc/dz is negligible with regard to the fluid pres-
sure gradient (Attou et al., 1999):

dpg
dz

= dpl
dz

= dpTP

dz
(8)

where the subscript TP represents two-phase flow.
As is mentioned above, the dimensionless pressure drop in the

single phase flow results from two independent contributions: the
viscous term and the inertial term and they are dominant at low and
high Reynolds number, respectively. In the general case of two-
phase flow, a similar constitutive equation for the dimensionless
pressure drop, �TP, is proposed, in which each contribution to the
force corresponding to the single-phase flow is scaled by a factor,
the relative permeability. The relative permeability is defined as
the ratio of the single-phase flow pressure drop (leaving the gravity
pressure drop out of consideration) to the two-phase flow pressure
drop obtained at the same interstitial velocity:

ks = �ps
�pTP

(9)

Based on Eq. (2), the dimensionless pressure drop for two-phase
flow can be expressed as

 TP = A

ks

Re∗
s

Ga∗
s

+ B

kst

Re∗2
s

Ga∗
s

(10)

Table 2
Dimensionless constant X in Eq. (14).

Particle type X

Spheres 4.37
Cylinders 6.54
Extrudates 3.31
Raschig rings 9.52

Viscous and inertial relative permeability are important in the
study on multiphase flow through porous media (Scheidegger,
1974). It is assumed that the relative permeability of each phase
remains the same in both viscous and turbulent flow regimes. Sáez
and Carbonell (1985) produced experimental evidence to support
the following assertion

ks = kst (11)

It is still controversial that the relative permeability is independent
of surface tension (Eötvös number), liquid and gas phase Reynolds
and Galileo number. However, there is a dominating assumption
in the previous works that the relative permeability is the func-
tion exclusively of liquid holdup. Based on this assumption, Sáez
and Carbonell (1985), Attou et al. (1999), Nemec et al. (2001) and
Lakota et al. (2002) fit data for holdup and pressure drops in beds
packed with Raschig rings, Berl saddles, spheres, cylinders and car-
bon rings. Their works point to the insensitivity of the relative
permeability–saturation curves to the particle shape (Sáez et al.,
1986). Therefore, the similar assumption is employed in the present
work instead of holdup by void fraction.

kg = kgt = ˛n (12)

 TP = 1
kg

[
A

Re∗
g

Ga∗
g

+ BRe∗2
g

Ga∗
g

]
(13)

Sáez and Carbonell (1985) and Levec et al. (1986), for lack of the
substantial experimental data for the analysis of gas-phase relative
permeability, proposed empirical expressions for the gas-phase rel-
ative permeability and the exponent n in Eq. (12) was believed to
be practically independent of the particle size, but strongly affected
by the particle shape. Lakota et al. (2002) obtained an empirical
expression for the gas-phase Reynolds number

n = X + 0.0478 × (Reg)
0.774 (14)

The constant X is dependent on the particle shape, as is shown in
Table 2, which limits the application of Eq. (14).

3. Experimental apparatus and procedure

3.1. Experimental apparatus

The experimental apparatus is shown in Fig. 1. The primary parts
are: a plexiglass test section, a water reservoir, a centrifugal pump
and two valves for the control of the mass flow rate. Two Dwyer
glass rotameters with different measure ranges are used to measure
the gas flow. The accuracy of the two glass rotameters is 0.05 m3/h
and 0.03 m3/h, respectively. And the Rosemount 3051 water flow
meter is used to measure the water flow rate, and its accuracy is
±0.075% of full scale. The MPM498 static pressure transducer has
accuracy within ±0.5% of full scale for the measurement of the inlet
pressure of the test section. A T-type thermocouple is installed at
the inlet of the test section to measure the bulk flow temperature
and it has an accuracy of ±0.1 ◦C and the measurement repetitive-
ness is within ±0.1 ◦C.

As is shown in Fig. 2, a polycarbonate plate serves as the front
plane for the visual observation, a layer of semisphere aluminum
particles is carved on the aluminum plate, and another layer of
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Fig. 1. Schematic diagram of the experimental apparatus.

Fig. 2. Special aluminum plate with particle diameter of 6 mm.

Table 3
Properties of the three different packings.

Case no. 1 2 3

Packing shape Rectangle
Dimensions of the packing

Length (mm) 181.90 311.80 361.33
Width (mm) 311.80 57.00 78.00
Height (mm) 3.95 7.90 10.53

de (mm) 3.00 6.00 8.00
ε 0.3408 0.3781 0.3976

sphere glass particles which are of the same diameter as the semi-
sphere aluminum particle is filled between the aluminum plate and
the polycarbonate plate. Experiments are conducted on three types
of test sections with particles of three equivalent diameters (3 mm,
6 mm and 8 mm). The specifications of the three different channels
are listed in Table 3.

3.2. Experimental procedures

A predetermined flow rate of water is established to flow
through the porous layer first. Thus, the packed bed is initially cov-
ered with water to ensure complete wetting. When the liquid flow
rate is stable, gas is introduced into the bed. The gas flow rate first
increases to a predetermined maximum, and then reduces to a low
level. On both the increased and reduced gas flow rate conditions,
the pressure drop, the inlet temperature and pressure, the flow rate
of gas and liquid are recorded with NI Data Acquisition System. The
operating ranges are shown in Table 4.

4. Results and discussion

4.1. Single-phase flow pressure drop

Fig. 3 shows the dimensionless pressure drop � s vs. the
Reynolds number for s phase. All data points scatter around a gen-
eral trend. The coefficients of Ergun-type equation of the present
work are presented in Table 5. According to Fig. 3, the Ergun-

Table 4
Flow parameter range in the experiment.

de (mm) Fluid type Rep

Min. Max.

3.00
Gas 42 3226
Water 286 2210
Gas/water 521 4194

6.00
Gas 19 1523
Water 463 4601
Gas/water 573 9152

8.00
Gas 13 1059
Water 451 4198
Gas/water 380 14,713
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Fig. 3. Experimental single-phase pressure drop vs. Ergun-type equation.

Table 5
Coefficients of Ergun-type equation.

de (mm) Fluid type D/de A B

3.00
Gas 2.3267 99.44 0.0032
Water 143.61 0.0773

6.00
Gas 2.3125 466.31 0.0616
Water 1048.99 0.2185

8.00
Gas 2.3197 526.89 0.8451
Water 1631.90 0.1043
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Fig. 4. Comparison of the coefficients of A and B of Ergun-type equation between
different experimental data.

type equation with the constants recommended by Ergun (A = 180,
B = 1.8) disagrees with the experimental data.

Fig. 4 shows the modified Ergun constants A and B vs. the tube-
to-particle diameter ratio, D/de proposed by previous studies and
by the present work. The coefficient A, the pressure drop at low
Reynolds number, increases with the decrease of the dimensionless
particle diameter. In contrast, the coefficient B, the pressure drop at
high Reynolds number, shows a reverse trend. As the influence of
the wall effect on single-phase pressure drop is quite complicate,
especially for small packed beds (D/de < 10), not only the porosity
in the near wall region, but also the other variables should be taken
into consideration to reflect the specific characteristic of each beds.

According to Eisfeld’s theory, at low Reynolds numbers the effect
of the wall friction reaches far into the packed beds, thus, dominat-
ing the creeping flow regime. In contrast, at high Reynolds numbers
the wall friction is restricted to a small boundary layer, so that the
porosity effect becomes prominent. The latter is less pronounced
than the friction effect, because the boundary layer is considerably
thin in this regime. The influence of the wall manifests itself in
two ways: (1) these external boundaries offer an additional resis-
tance due to the viscous friction at the wall (Carman, 1937). The
friction, which increases the pressure drop, is not negligible in
comparison with that caused by particles owing to the fact that
the friction surface of the wall increases relative to the total bed
surface corresponding to particles as D/dp decreases (Nemec and
Levec, 2005a); (2) a region of increased void fraction is formed near
the wall, which extends approximately for half a particle diameter
from the walls into the bed (Thadani and Peebles, 1966; Achenbach,
1995; Eisfeld and Schnitzlein, 2001). This bypass flow formed in this
region is a major reason for the severe departures of the experimen-

Fig. 5. Schematic diagram of two-regime model.

tal results. The smaller the tube-to-particle diameter ratio, D/de

is, the stronger is the influence on the pressure drop (Fand and
Thinakaran, 1990; Achenbach, 1995). By analyzing the wall effect
wall, the bed porosity and the particle shape, Nemec and Levec
(2005a) proposed a correlation for D/de > 10. For the improvement
in the prediction of the pressure drop at low tube-to-particle diam-
eter ratios, the observed wall effect is taken into account in dealing
with the respective coefficients A and B. In order to find the most
promising approach, Eisfeld and Schnitzlein (2001) compared 24
published correlations, and concluded that the most promising one
was that by Reichelt (1972). In the equation, the contribution of the
confining walls to the hydraulic diameter is analyzed by the wall
effect coefficient Aw. And the function Bw describes empirically the
porosity effect of the wall at high Reynolds numbers (Eisfeld and
Schnitzlein, 2001). The average porosity is employed to represent
the porosity of the packed beds. For the packed beds where the
wall effect is negligible (D/de > 10), this assumption is justifiably
right. However, when the beds are strongly affected by the wall
(D/de < 10), the nonuniformity of the porosity is to be taken into
consideration.

For spherical particles, Benenati and Brosilow (1962) and
Goodling (1983) measured the radial bed porosity distribution. The
porosity decreases from the unity at the wall to a minimum at a dis-
tance of de/2 and then levels out with decreasing amplitudes to a
constant value. This point is reached at a distance of nearly four
sphere diameters from the wall (Achenbach, 1995). Similar exper-
iments on the bed porosity distribution were conducted for other
particle shapes used in catalyst techniques. And the similar con-
clusion was obtained (Achenbach, 1995; Roblee et al., 1958). For a
preliminary analysis, the bed is subdivided into a near-wall region
and a central region as is shown in Fig. 5. In the central region, the
wall effect is neglected and the average porosity is employed to
represent the porosity of the packed beds. As a result, in the central
region, Aw and Bw equal to 1.

The following expression for the porosity of sphere particle bed
can be derived through a simple geometrical model.

ε = a0d
∗2
e + b0 (15)

where a0 = 0.78 and b0 = 0.375 (Carman, 1937). While in the
near-wall region, the bed porosity, εw, is closely related to the
characteristics of the packed beds (Achenbach, 1995).

εw = 63.6(d∗−1
e + 15)

−2 + 0.43 (16)
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Fig. 6. Comparison of the present model for coefficients of Aw and Bw of Ergun-type
equation for single-phase flow pressure drop with different experiment data.

Based on the work of Reichelt (1972) and Eisfeld and Schnitzlein
(2001), the wall effect coefficient, Aw and Bw, are expressed as fol-
lows

 s = A0Aw
Re∗
s

Ga∗
s

+ B0Bw
Re∗2
s

Ga∗
s

(17)

In the near-wall region,

Aw =
[
a+ b d∗

e

(1 − εw)

]2

(18)

Bw = (cd∗−2
e + d)

−2
(19)

d∗
e = de

D
(20)

And in the central region,

Aw = Bw = 1 (21)

In the above equations A0 = 180, B0 = 1.8, a = 0.8, b = 2, c = 3 and
d = 1; de* is the dimensionless particle diameter; D represents the
hydraulic diameter of the packed beds.

For the small packed beds (D/de < 10), as no central region exits,
the wall effect coefficient, Aw and Bw, are determined by with Eqs.
(18) and (19). While for the large packed beds (D/de > 10), compared
with the central region, the near-wall region can be neglected and
Aw and Bw are determined by Eq. (21). The improved correlations
shown in Fig. 6 are applicable for particles of spheres and cylinders
and for other particles regardless of their shapes by fitting its coef-
ficients to the given experimental database. The precision of this
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Fig. 7. Comparison of the present model for two-phase flow pressure drop with the
present experiment data.

correlation is influenced by the accuracy of the average porosity in
the near-wall region, which is hard to given a uniform expression
for various types of packed beds.

4.2. Two-phase flow pressure drop

Sáez et al. (1986) used the conduit models to calculate the
gas phase relative permeability. It was found that for gas phase
Reynolds numbers below a certain value, the gas phase relative
permeability–saturation curves, dependent on the liquid Reynolds
number, were a single function of the ratio of Reynolds to Galileo
numbers of the gas. For large values of the gas phase Reynolds
number, all the relative permeability curves converge to a single
function of saturation (Sáez et al., 1986). If a fit similar to Eq. (12)
was performed to the results obtained with the conduit models, n
is a function exclusively of Reg*/Gag* (Sáez et al., 1986; Levec et al.,
1986). Sáez and Carbonell (1985) and Levec et al. (1986) concluded
that the exponent n is a function of the gas phase Reynolds number.
However, in the present experiment, n proves to be correlated with
the void fraction ˛, as is shown in Fig. 7, which is more conclusive
than the previous conclusion since the influence of the two-phase
are taken into consideration. The expression of n obtained by the
present experiment is

n = 7.185˛+ 1.41 (22)

where the exponent n is a linear function of the void fraction.
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Fig. 8. Comparison of the present model for two-phase flow pressure drop with the
previous experimental data.

The correlation is compared to the previous experimental data
of Sáez and Carbonell (1985), Levec et al. (1986), Nemec et al. (2001)
and Lakota et al. (2002), as shown in Fig. 8. The correlation results
in a mean relative deviation of ±16% in the prediction of pressure
drops for 92 experimental data about the spherical particles and
that of ±23% in the prediction of pressure drops for 33 data about
the nonspherical particles (Rasching rings, Checked Marbles and
Cylinders). Compared with the relative error of the four groups of
models shown in Table 1, the present model is one of the models
with the smallest mean relative error.

5. Conclusions

In finite packed beds the additional influence of the confining
walls must be accounted for. In the present flow-regime model,
the bed is subdivided into a near-wall region and a central region.
Improved correlations are obtained based on the previous study
to consider the single-phase flow pressure drops for finite pebble
beds with spherical particles and nonspherical particles by fitting
the coefficients of that equation to both the database and present

experiment. The correlation is consistent with the observed physi-
cal behavior which explains its comparatively good agreement with
the experimental data. The correlation can be used to predict the
single phase pressure drop for both great tube-to-particle diameter
ratio packed beds (D/de > 10) and small tube-to-particle diameter
ratio packed beds (D/de < 10) by employing porosity correlation cor-
responding to the packed beds. The correlation is compared with
the previous experimental data and it fits well for both experi-
mental data of spherical particles and nonspherical particles. As
the influence of the wall effect on single-phase pressure drop
is quite complicate, especially for small packed beds (D/de < 10),
future study is necessary for the accurate predict of the single-phase
pressure drop with this model.

A new correlation for the prediction of two-phase flow pressure
drops is proposed based on the gas phase relative permeability as
a function of the gas phase saturation and the void fraction. The
correlation is compared with the previous experimental data and
the present experimental data. The correlation fits well for both the
experimental data of spherical particles and nonspherical particles.
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