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ABSTRACT

The mechanism for thermosolutal convection and the coupling effects of flow, temperature and solute
fields during the vertical Bridgman growth of Hg;_,Cd,Te single crystals have been numerically
analyzed. The calculations take into account the thermophysical properties and their dependence on
temperature and composition. The results show that there are two main thermal convection cells in the
melt caused by two temperature gradients during the growth of Hg;_,Cd,Te single crystals.
The stabilizing axial solute gradient in the melt will significantly damp the thermal convection cells
when the absolute value of the solute Rayleigh number is close to the value of the thermal Rayleigh
number. When there is a large solute gradient in the melt, the thermosolutal convection will become
unstable, and the upper flow cell will evolve into a two-cell flow pattern. During the growth of
Hg,_,Cd,Te single crystals, the radial solute segregation in the melt develops non-monotonically with
two minima values. Thus, the methods that solely aim at either damping or enhancing the

thermosolutal convection are not always able to improve the radial solute segregation.
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1. Introduction

[I-VI Semiconducting single crystals are widely used for
devices operating in the infrared and near-infrared spectral
regions [1,2]. These single crystals are often grown from the melt.
Although the processing conditions for these single crystals differ
from each other in some details, the quality of these crystals is
governed by a similar set of mechanisms, which describe the
processes of flow, heat and solute transport processes and the
coupling effects between these processes. The corresponding
important processing concepts and the key problems during the
single-crystal growth from the melt were reviewed by Brown [3].
The vertical Bridgman configuration is one of the most popular
techniques for the confined solidification growth of the II-VI
semiconducting single crystals [4-6]. The three-zone furnace and
the constant gradient furnace are the two main forms of the
vertical Bridgman configurations in practice [7,8]. However, II-VI
semiconducting single crystals grown by the vertical Bridgman
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method often have defects associated with poor crystalline
perfection and non-uniform composition distribution [9,10]. All
the defects can be divided into two types: microscopic and
macroscopic defects. The methods for improving the two types of
defects are very different [11]. Due to the small typical scale of
microscopic defects, these defects can be improved by heat
treating after the growth processes. However, macroscopic defects
have a large scale, which means that it is much more difficult to
improve these defects after growth processes. In order to control
the macroscopic defects in single crystals grown by the vertical
Bridgman method, transport processes and coupling effects of
flow, heat transfer and solute transfer during the growth of single
crystals should be investigated in detail. In recent years, a lot of
experimental and numerical research has been carried out. Wang
experimentally measured the radial and axial solute segregations
in single crystals grown in a three-zone furnace [12]. Adornato
numerically studied the design effects of growth furnace and
ampoule on the temperature field, the convection, the shape of
melt-crystal interface and the solute macrosegregation in the
crystal [13,14], and the author compared the numerical results
with the experimental data from Wang [12]. The work was the
first comparison between theoretical results and experimental
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data for single-crystal growth. Kim [15-17] numerically studied
the importance of the damping effect of the solute gradient and
the pulling rate of the ampoule during the single-crystal growth in
the vertical Bridgman configuration by quasi-steady-state model
and transient model, respectively. Dercy [18,19] studied the
growth processes in the vertical Bridgman configuration by the
k—e& model. The research showed that laminar and turbulent
models presented significant differences in the results of flow
structure, concentration profiles, and the movement of melt-
crystal interfaces. Based on the understanding of the physical
mechanism of convection and the coupling effects of flow, heat
transfer and solute transfer, the numerical parameter optimiza-
tion method for the vertical Bridgman growth has been developed
in recent years. Muller developed an overall design software to
determine the detailed temperature profile in the growth furnace
and provided useful information for optimization of the single-
crystal growth [20]. This designed software was unable to analyze
the solute profiles in the melt. Margulies obtained a small radial
temperature gradient through optimizing the pulling rate and the
temperature field in the growth furnace [21]. Capper developed a
new method of accelerating crucible rotation technique (ACRT).
By this method, a flatter solidification interface was obtained, and
radial and axial solute segregations in single crystals were
improved [22,23].

In the paper, numerical simulations of the growth of
Hg,_xCd,Te single crystals in the vertical Bridgman configuration
are carried out. The thermosolutal convection and the coupling
effects of flow, heat transfer and solute transfer during the vertical
Bridgman growth are studied in detail.

2. Formulation
2.1. Physical model

In the vertical Bridgman configuration, the cylindrical ampoule
is placed at the axis of the growth furnace, and the melt is sealed
in the cylindrical ampoule. The size and the shape of the crystal
are determined by those of the ampoule. The three-zone furnace
formed by the high isothermal, low isothermal and adiabatic
zones is widely used for the single-crystal growth. The schematic
diagram of the three-zone furnace is shown in Fig. 1.

The high and the low isothermal zones of the system are
designed symmetrically. The medium value of the temperatures of
two zones equals the solidifying point of Hg;_,Cd,Te at x = 0.2.
Neglecting the finite heat transfer between the furnace and
ampoule, ideal heat transfer conditions are adopted from the
following calculations.

2.2. Mathematical statement

Experimental data [24] showed that there were three stages
during the single-crystal growth in the vertical Bridgman
configuration, the initial transient stage, the middle steady stage
and the final transient stage, as shown in Fig. 2.

During the period of the middle steady stage, the solidification
rate of the crystal is equal to the pulling rate of the ampoule. Only
during the period of the middle steady stage can the composition
in the crystal reach the desired value. Thus, the pseudo-steady-
state model (PSSM) is used to analyze the steady growth stage of
Hg,_xCd,Te single crystals in the present work.

PSSM accounts for the translation of the ampoule by supplying
the melt of a uniform composition Cyp to the top of the ampoule
with a uniform velocity V;;,, and at the same time, removing the
crystal from the bottom of the ampoule with the pulling rate
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Fig. 1. Schematic diagram of the three-zone furnace.

Ve=(pc/Pm)Vm, Wwhose composition is the same as that of the melt.
The above simplification neglects the initial and the final transient
stages during single-crystal growth. Because of the very low
velocity in the melt (um/s in general), the flow pattern in the
vertical Bridgman configuration is almost axisymmetric. The
governing equations and the melt-crystal interface equation are
written in a two-dimensional stationary cylindrical coordinate
system, whose origin is at the top of the ampoule, as shown in
Fig. 1. The spatial location of the melt-crystal interface is
expressed as h(r). The normal unit vector 7i and the tangential
unit vector t of the melt-crystal interface are defined by

ér + hé;
G

. & —heé N
n= , =
(1 +h)'

(1)

where h,=0h/dr and €., €, are the unit vectors of the axial and the
radial coordinates, respectively.

Because the flow pattern in the melt is almost axisymmetric,
calculations are carried out only in the right section of the
ampoule in this work. The mathematical equations consist of: the
energy balance equations in the melt, crystal and ampoule;
the momentum equation, the species conservation equation
and the continuity equation in the melt; and the location equation
of the melt-crystal interface. All equations are expressed in
dimensionless form by scaling lengths with the ampoule height L,
velocities with o,/L and pressure with p,o2,/L2. Meanwhile, the
dimensionless concentration and temperature differences are
defined as S(r,z) = C/Co—1 and 0(r,z)=(T—T.)/(Ty—T.), respectively.

The dimensionless governing equations are

V.V=0 (2)
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Fig. 2. CdTe composition versus axial position for the Hg;_,Cd,Te (x=0.2) single crystal.

V.VU=— %’Z’ + Prv2U + Pr(RasS — Ray(0 — 1))

(3)
V.ww=_P pyry (4)
or
V.Vo =V (5)
= _Pr 2
V.VS=2 Vs (6)
Peé,- V6 = y.V*0 (7
Peé, - V0 = 3,V?0 (8)

Assuming the liquidus line of the Hg,_,Cd,Te alloy is a straight
line and taking the solidifying point at the concentration Cy/k as

the reference temperature 0%, the dimensionless melt-crystal
interface equation is written as

0(r,h(r)) = 0%, + mS +1—1/x) 9)
Because densities of the melt and crystal are almost equal, the
dimensionless velocity boundary conditions can be written as

z=0:U=Pe, V=0
z=1:U= PE, V=0
r=0:0U0/or=0, V=0
r=A:U=Pe, V=0 (10)
where A is the dimensionless outer radius of the ampoule.
The dimensionless solute boundary conditions are
z=0:5=0
z=1:5=0
r=0:05/0r=0
r=A4:05/or=0 (11)

The dimensionless temperature boundary conditions are

z=0:0=1.0

z=1:0=0

r=0:00/or=0
0=1.0, high zone

r=A4:{0=0, low zone (12)
00/0r =0, adiabatic zone

The dimensionless boundary conditions at the melt-ampoule
interface are

Um|r?‘5 = Pe Vm|rﬁ6 =0

%) _ 00 3
or

|, or|_s 0

r=5
m

(13)

r=0
m

The dimensionless boundary condition at crystal-ampoule
interface is

00

o0
ch

= Kigy

(14)
r?é rfé

The dimensionless boundary conditions at the melt-crystal
interface are

V.t=Pe@, 1), V- fi=DPe@,- )

(15)
(i - VO),, — K(ii - VO) = StPe(ii - ;) (16)
{i-VS), =%(1 —K)(S + 1, - i) (17)

The subscripts m, ¢ and a donate the melt, the crystal and the
ampoule, respectively. The dimensionless groups in the above
equations are defined in Table 1.
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2.3. Numerical scheme

A nonuniform grid of 200 x 20 was used in the calculations of
the single-crystal growth in the three-zone furnace, as shown in
Fig. 3. The meshes in the melt zone are gradually refined from the
centre of the melt zone to the top of the ampoule, the melt-crystal
interface, the axial line of the ampoule, and the melt-ampoule
interface. The meshes in other calculation zones are uniform. The
mesh density in the melt zone is twice as high as that in the
crystal and ampoule zones. It has been shown that the calculation
results based on this grid are grid-independent solutions.

The pressure-velocity coupling is solved by the SIMPLER
algorithm. The shape of the melt-crystal interface is described
by the staircase approaching method and solved iteratively. The
convection terms are discretized by the power-law scheme, and
diffusion terms are discretized by the central difference scheme.
The discretized equations are solved by the alternate direction
iteration method.

Calculations start with the melt-crystal interface determined
by the initial temperature profile. Under the fixed melt-crystal
interface conditions, the convergence criterion is satisfied when
the absolute values of the maximum relative variation of all
calculated variables between successive iterations are <107
Then, a new melt-crystal interface is obtained by formula (9), and
the comparison of the previous and new melt-crystal interfaces is
performed. If there is any difference between the positions of the
two interfaces, the calculation will be carried out repeatedly.
Otherwise the calculations stop.

2.4. Thermophysical properties

In order to obtain more accurate calculated results, the
thermophysical properties and their dependence on temperature
and composition should be used. All the data [25-30] are
expressed as a function of temperature and composition in this
paper.

Liquidus line

Tim(X) = 670 + 422 x (a1X + a2%°/% + a3x°/?) (18)

where T, is in °C. The coefficients {qa;} in formula (18) are {1.9967,
—1.3101, 0.3146}. x is the mole fraction of CdTe and xe[0,1].

Table 1
The dimensionless groups.

Quantity Definition
Prandtl number Pr=ym/om
Schmidt number S¢=Ym/Dm

Ra=( BTLBg( Tu—Tv) )/mexm)
Ras=( /))SLBgCO)/( Vm“m)
K=/Am

2=/t
St:Ahf/(Cpm(THfTL))
Pe:vg/(“m/’-)

Thermal Rayleigh number
Solute Rayleigh number

Ratio of thermal conductivities
Ratio of thermal diffusivities
Stephan number

Peclet number

0 0.2 0.4

Solidus line

Tc(x) = 670 + 422 x [b1(2x> — 1) + b, cos x
4 b3e®* =1 £ byIn(1 +x) + bs(e* — 1)] (19)

where T is in °C. The coefficients {b;} are {7.5101, 7.3069, 0.5564,
12.3343, —11.9492}. x is the mole fraction of CdTe and xe[0,1].
Specific heat of the melt

Cpm(*, T) = (C1X + C2%% + €3%%) + (C4 + C5X

T 10°)
2 3
+ CeX” + C7X )W + (g + CoX) <T> (20)
where cpr, is in cal/g - °C. The coefficients {c;} are {—0.1603, 0.4637,
—0.6013, 0.03426, 0.0661, —0.2970, 0.4503, 0.01056, 0.1023}.T is
the temperature of the melt expressed in °C. x is the mole fraction
of CdTe and xe[0,1].

Specific heat of the crystal

CpcX,T) = [(12.45 — 2.88x + (2.17 + 5.73x)% /M(x) (21)

where ¢, is in cal/g°C. T is the temperature of the crystal
expressed in °C. x is the mole fraction of CdTe and x<[0,1]. M(x) is
the mole mass of Hg,_,Cd,Te expressed in g/mol.

Density of the melt

T
P, T) =di +dax 4 (d3 + dmﬁ (22)

where p, is in g/cm>. The coefficients {d;} are {7.8971, —0.7263,

0.1885, —2.2213}. T is the temperature of the melt and

Te[680,835] °C. x is the mole fraction of CdTe and xe[0,0.2].
Density of the crystal

p.(x) = 8.077 — 2.225x (23)

where p. is in g/cm?>. x is the mole fraction of CdTe and xe[0,1].
It is difficult to measure the thermal conductivities, but we can
calculate the thermal conductivities of Hg;_,Cd,Te by the formula
A=pCpoL.
Thermal diffusivity of the melt

Um(x,T)=BInT — A (24)

where o, is in mm?/s. T is in °C and Te[670,841]°C. x is the mole
fraction of CdTe and xe[0,0.301]. B and A are coefficients
depending on the mole fraction of CdTe.

Thermal diffusivity of the crystal

0c(x,T) = Ag — AT + AsT? — AsT> (25)

where o, is in mm?/s. T is in °C/1000 and Te[670,727] °C. x is the
mole fraction of CdTe and xe[0,0.301]. Ag, A;, A, and As are
coefficients depending on the mole fraction of CdTe.

Here, the coefficients of the above two formulas are expressed
in quartic function of composition as 3°2;cx°~". {c;} are shown in
Table 2.

0.6 0.8 1
Z

Fig. 3. Calculation grid used in three-zone furnace.
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Table 2
The coefficients of the functions of B, A and A;.

c [ c3 Cq Cs
B 9585 —6295 1362 -116.90 10.47
A 62,781 —41,191 8893 —756.73 67.40
Ao 2772 -1777 384 —36.04 2.78
Ay 19,175 —11,606 2236 —162.08 9.94
Ay 49,858 —30,112 5728 —386.93 20.98
As 42,900 —26,017 5016 —338.88 16.21

Table 3
The thermophysical properties of the ampoule and the geometric parameters of
the vertical Bridgman configuration.

Quantity Symbol (units) Value
Thermal conductivity Za (W/[Kcm) 0.025
Density 0. (g/cm?) 2.2
Specific heat cpa (J/Kg) 1.05
Ampoule length L (cm) 6
Length of gradient zone La (cm) 1.5
Crystal radius R¢ (cm) 0.6
Outer radius of ampoule R, (cm) 0.9
Solidifying point at x=0.2 To (°C) 702
Temperature difference Ty—Ty (°C) 300
Initial mole fraction of CdTe Co 0.2
Pulling rate Vg (um/s) 0.2

Mass diffusivity of CdTe in the crystal

(26)

4
De(x,T) = 3.15 x 107 x 107353 exp (2'24“0)

T

where D, is in pm?/s. T is in K and Te[673,973]K. x is the mole
fraction of CdTe and x<[0,0.3].
Equilibrium segregation coefficient

K =(0.210 + 0.790x) ! (27)

where x is the mole fraction of CdTe and x<[0,1].

There are not many experimental data of other thermophysical
properties used in the calculations, so the values at x=0.2 are used
instead [16].

Mass diffusivity of CdTe in the melt

D =55 x 107 cm?/s

Kinetic viscosity of the melt
v=1.08 x 103 cm?/s

Thermal expansion coefficient in the melt
Br=7.95x10">1/°C

Solutal expansion coefficient in the melt
. =—0.305 1/mol (CdTe)

Latent heat of solidification
Ah; = 130.4]/g

In all the calculations, the units of all the above thermophysical
properties were converted into international units. The fitting
errors of all the above formulas are <2.5%.

The thermophysical properties of the ampoule and the
geometric parameters of the vertical Bridgman configuration used
in the calculations are listed in Table 3.

It seems that either the upper limit or the lower limit of
temperature in Table 3 is out of the temperature ranges in
formulas (22), (24)-(26), so we have to extrapolate these formulas

to the corresponding temperature ranges to calculate those
thermophysical properties.

3. Results and discussions

As shown in formulas (2)-(8), the most important dimension-
less non-thermophysical parameters in the governing equations
are the thermal Rayleigh number, the solutal Rayleigh number
and the Peclet number. In this paper, the thermosolutal convec-
tion and the coupling effects of flow, heat and solute transfer
processes during the growth of Hg;_,Cd,Te single crystals are
exemplified by the calculations under two conditions: one is
increasing the thermal Rayleigh number from Ra=0 to
Ra=1.0 x 10° at the fixed solute Rayleigh number Ras=0, and the
other is decreasing the solute Rayleigh number from Ras=0 to
Ra=—1.0x10° at the fixed thermal Rayleigh number
Ra;=1.0 x 10°. The main calculation results of the temperature,
flow and solute concentration fields are shown below.

3.1. Temperature profiles

The temperature profiles under different conditions are shown
in Fig. 4. As shown in Fig. 4, the temperature profiles under all the
conditions are similar to each other. The reason for this is that the
Prandtl number of the Hg,_,Cd,Te melt is small, which makes the
temperature profiles hardly affected by the flow in the melt. When
the thermal Rayleigh number is very large, the isothermal lines in
the melt will become flat and will be almost parallel to each other.
At this time, there is a well-mixed zone of temperature in the
melt. The isothermal lines in the crystal are still almost the same
as those under other conditions.

The radial temperature gradient is defined as the biggest
temperature difference of the axial cross-sections

GTragiat = (T(n, m)) — (T(n,: 1)) (28)

where n is the serial number of calculation nodes in z-direction
and n=1,...,200. m is the serial number of nodes at the inner wall
of the ampoule in r-direction.

The radial temperature gradients under different conditions
are shown in Fig. 5. In Fig. 5, the negative values reflect the cross-
temperature field with higher temperature at the centerline of the
ampoule, while lower temperature is at the wall of the ampoule,
and vice versa.

As shown in Fig. 5, there are two peaks of the radial
temperature gradients along the axial position of the ampoule.
The axial positions of the two peaks are at the intersection of the
high isothermal zone and the adiabatic zone, and at the
intersection of the low isothermal zone and the adiabatic zone,
respectively. The radial temperature gradients in the crystal are
almost similar to each other, while the radial temperature
gradients in the melt are very different. When Ra=0,Ras=0, the
radial temperature gradients in the melt are the largest, which
gradually decrease as the thermal Rayleigh number increases. The
reason for this is that the flow intensity in the melt will increase
as the thermal Rayleigh number increases, making the radial
temperature gradients smaller due to the mixing effect. When
Ra=10°, the radial temperature gradient in the melt has almost
disappeared. Gradually reducing the solute Rayleigh number at
fixed thermal Rayleigh number Ra=10°, the flow intensity in the
melt will decrease because of the damping effect of the axial
solute gradient. Under these conditions the mixing effect of flow
will become weak, and the radial temperature gradients will
increase reversely.
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Fig. 5. The radial temperature gradients along the axial position of the ampoule.

3.2. Flow fields

The stream function profiles calculated under different condi-
tions are presented in Fig. 6. The flow directions with negative
values of stream function are considered as clockwise, and vice
versa.

As shown in Fig. 6, there are two main flow cells in the melt
except at Ra=Ras=0. At this time, there is only the force flow
caused by the pull of the ampoule. As the thermal Rayleigh
number increases at Ras=0, there exist thermal convection cells in
the melt, and the intensity of those cells will increase as the
increase of the thermal Rayleigh number. As the thermal Rayleigh
number increases, the intensity of the lower cells approaches that

of the upper cells. Because the decrease in the solute Rayleigh
number means the increase in stabilizing solute gradients in the
melt, the flow intensity will decrease with reduction in the solute
Rayleigh number at Ra;=10°. The damping effect of the stabilizing
solute gradients on the lower flow cells is more significant than on
the upper flow cells. When the solute Rayleigh number decreases
from 0 to —105, the intensity of the flow cells will not decrease
significantly. Only when the absolute value of the solute Rayleigh
number is close to the value of the thermal Rayleigh number will
the damping effect of the solute gradients be significant. If the
solute Rayleigh number approaches —10°, secondary weak flow
cells will appear near the upper flow cell, and the upper flow cell
will evolve into a two-cell flow construction.



44

L. Jun, B. Bofeng / Journal of Crystal Growth 311 (2008) 38-46

Yl
i » s & o]l & Ay
& i L ol T N
i - : 3 - :
= g Yy © J 9 phy
) 4 . m
0.2 o 0.2 ol @ 2 0.2 b I 5
ol - @ @ @
B e | 1 ol u |
S| © A of . A
i =} @ : 3 :
N 5 o > o3 ®
(=]
04 (IS 0.4 0.4 #
mliig RS E I < I == ="}
1 S o S -~ I
N N o N .,—rE N _,_,_,-\§ N 5
i i 9 - S - ® =
0.6 | 061 |3 06 | 06 | 06 |3
B | | | | - | =}
[o e}
0.8 0.8 0.8 0.8 p= 0.8 0.8 -
1 ] 1 ! J 1 ] ] 1 ! J 1 I J 1 I J
0 02 O 02 0.2 0 0.2 0 0.2 0 0.2
R R R R R R
Fig. 6. Flow-field profiles calculated in the ampoule.
1 0 0 0
i m I m o n ||z
N g - © © © © - ©
0.8 F Loz 2 02 2 z 7 02p 3
_ i o o 1 It It
- | i W m I m
- - - @ ® = ©
0.6 |5 0.4 = 0.4 |= 0.4k
=i £
~ ——1 ~N 5\_, N = ~ ~N —
S04 f 0.6 |- 0.6 0.6 06| 0.6 |
02k 0.8 08 0.8 |- 08 08
0 [ b L R L o L ;o L ]
0 02 0 0.2 0 0.2 0 0.2 0 02 0 0.2
R R R R R R

1-0. 95 2-0. 85 3-0.75 4-0.65 5-0. 55 6-0. 45

Fig. 7. Solute profiles calculated in the ampoule.

3.3. Solute profiles

The solute profiles corresponding to the flow fields in Fig. 6 are
shown in Fig. 7. The values shown in Fig. 7 are c/co.

Because the equilibrium segregation coefficient of Hg,_,Cd,Te
alloy is larger than unity, the CdTe solute will enter the crystal
preferentially and an abundant HgTe area will form near the
interface during the solidification processes. Furthermore, be-
cause HgTe composition is heavier than CdTe, the axial solute
gradient in the melt is stabilizing. As shown in Fig. 7, when there
is no natural convection in the melt at Rai=Ras=0, the solute profile
is almost an exponential pattern and isoconcentration lines in the
melt are horizontal and parallel to each other. As the thermal
Rayleigh number increases, natural convection cells will appear in

the melt, and due to the large Schmidt number of the Hg,_,Cd,Te
alloy, the effects of the natural convection cells on the solute
profiles are significant. When there are two main convection cells
in the melt, two well-mixed solute zones will appear. As shown in
Fig. 6, the directions of lower flow cells are clockwise, so the
abundant HgTe composition in this area is carried to the
centerline of ampoule. Thus, the solute profiles at a given axial
location in the lower melt decreases from the wall to the
centerline of the ampoule, while that in the upper melt is reverse.
When the upper flow cells become unstable and evolve into a
two-cell flow construction, three well-mixed solute zones will
appear in the melt. When the decrease of the solute Rayleigh
number is enough to damp the convection obviously, the distorted
isoconcentration lines will become flatter.



L. Jun, B. Bofeng / Journal of Crystal Growth 311 (2008) 38-46 45

0-0e T T L] L) L] L] ] | | 1
# Rat=0Ras=0
+ Rat=1E6Ras=0
) v Rat=1.E9Ras=0
0.06 L é Rat=1E9Ras=-1E6

0.04

0.02

Radial Solute Gradient

-0.02

-0.04 1 1 1 L

Rat=1E9Ras=-1E8 []
Rat=1E9Ras=-1E9

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
Z

Fig. 8. The radial solute gradients along the axial positions of the ampoule.

The radial solute gradient is defined as the biggest solute
concentration difference of the axial cross-sections

Gsradial = S(n, m) — S(H, 1) (29)

where n is the serial number of calculation nodes in z-direction
and n=1,...,200. m is the serial number of nodes at the inner wall
of the ampoule in r-direction.

The radial solute gradients are shown in Fig. 8. In Fig. 8, the
negative values reflect the cross-solute profile with higher
concentration at axial line, while lower concentration is at wall,
and vice versa.

As shown in Fig. 8, when Ra=Ras=0, the radial solute
segregation in the melt is almost zero. Because the solute
segregation in the crystal is determined by the radial solute
segregation in the lower melt, just the radial solute segregation in
the lower melt is discussed here. When the thermal Rayleigh
number increases at the fixed solute Rayleigh number Ras = 0, the
intensity of flow and the radial solute segregation both increase.
However, when Ra,>10° the radial solute segregation decreases
as the thermal Rayleigh number increases. At this time, there are
two well-mixed solute areas in the melt, and a smaller radial
solute segregation is obtained. When reducing the solute Rayleigh
number at Ra; = 10°, the intensity of flow will decrease and the
mixing effect in the melt will become weaker. So the radial solute
segregation will be worse again. When the damping effect of the
axial solute gradients is significant, the intensity of flow will
decrease obviously, and the radial solute segregation will be
improved again. From Fig. 8, we see that the radial solute
segregation in the melt undergoes a non-monotonic evolution
during the growth.

4. Conclusions

The numerical calculations of the single-crystal growth of
Hg,_,Cd,Te in the vertical Bridgman configuration have been

carried out. The main results are as follows:

(1) The stabilizing solute gradients will damp the convection
caused by temperature gradients in the melt. Only when the
absolute value of the solute Rayleigh number is close to the
value of the thermal Rayleigh number will the damping
effects of the solute gradients be significant.

(2) When the solute gradient is large, the upper flow in the melt
will become unstable and will evolve into a two-cell
construction.

(3) The radial solute segregation undergoes a non-monotonic
evolution during growth processes. Thus, the methods that
just aim at damping or enhancing the thermosolutal convec-
tion are not always able to improve the radial solute
segregation. Damping or enhancing the convection after
judging the range of the flow intensity during a real growth
process is a more feasible method.
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