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Abstract: Estimating phasors as quickly as possible while guaranteeing accuracy is important to ensure reliable fault
detection and isolation in power systems. Window length is an important factor for phasor estimation. The
conventional fixed window length cannot handle well the many and diverse fault voltage and current signals. By
analysing the relationship between accuracy and window length of a phasor estimation using the matrix pencil
method, a criterion is established to determine whether or not the estimated phasor is credible. Then, an adaptive
algorithm to estimate the phasors using dynamic window length is proposed. Analytical and experimental
investigations show that the proposed algorithm can accurately and timely estimate phasors and can enable reliable
and quick relay operation.
1 Introduction

Phasor estimation is vital in digital relays [1–4]. Rapidly and
accurately estimating the phasor for digital relays is important to
reliably detect and isolate faults. In modern power systems, the
operating conditions and fault types are different; therefore, the
corresponding fault voltage and current signals are diverse. As a
result, rapidly and accurately estimating the phasor during fault
transient is very difficult. Generally, a more complicated signal
demands a longer data window to achieve a sufficiently accurate
phasor [5, 6], whereas a longer data window is not necessary in
some simple signals. Studying an adaptive algorithm that
considers signal complexity is important to estimate the phasor as
quickly as possible while ensuring accuracy.

Much research has been carried out on phasor estimation, such as
Fourier transform [7–12], recursive-least-squares technique [13], and
Newton’s method [14]. Fourier algorithm and its improvements have
been widely used in phasor estimation owing to their computational
efficiency [7–9]. However, because the Fourier algorithm is
essentially a decomposition based on a set of sinusoidal signals, it
is not suitable for signals that contain inter-harmonic, decaying
DC and damped sinusoidal components. The Prony algorithm,
which models a signal as a linear combination of exponentials,
much better imitates transient signals under fault conditions. The
Prony-based algorithms can be more efficient in estimating
phasors [15–18]. Hence, an increasing number of Prony-based
algorithms, generally categorised as the Prony method and matrix
pencil method (MPM), have been profoundly studied in recent
years [19, 20]. The efficiency and speed of the MPM-based phasor
estimation method have also been dramatically improved [21, 22].
Some researchers have introduced modified MPM to the power
system frequency response identifications [23, 24]. However, the
performance of these algorithms still cannot satisfy the
requirements of relay protection in power systems [25–27].

Although the window length of the Prony-based algorithms can be
unrestricted, in practice, the estimation errors of the phasor will be
affected by the window length. As we know, speed and accuracy
cannot be both simultaneously satisfied in phasor estimation, and
they may contradict each other under various conditions. A fixed
shorter window will result in an unacceptable estimation error in
some complicated fault transients. On the other hand, a fixed
longer window is not necessary for some simple fault transients,
which may result in additional delay in the tripping process.
This paper presents an adaptive algorithm for estimating phasors
using a dynamic window length. By analysing the complexity of a
given signal and the rank of the constructed matrix, a criterion is
established to determine whether or not the estimated phasor
is credible. With the aid of the criterion, when a given signal is
simple, a short data window can be selected to quickly estimate
the phasor. In contrast, when the given signal is complicated, a
longer data window is used to achieve accurate result. The
proposed adaptive algorithm can correctly estimate the phasor.

The rest of this paper is organised as follows. Section 2 briefly
introduces the phasor estimation algorithm based on MPM and
analyses the relationship between the complexity of the signal and
the rank of the constructed matrix. Section 3 proposes an adaptive
algorithm via a developed criterion. Section 4 shows improvement
of the method to deal with a noisy signal. Section 5 verifies the
algorithm performance and discusses the effect on the power
system protection. Finally, Section 6 presents the conclusion.
2 Basic theory

A phasor estimation algorithm can be designed based on the
fundamental MPM theory [22]. The relationship between the
window length and accuracy of the estimated phasor is
theoretically analysed in the following sections.
2.1 Phasor estimation

We consider a given signal combined by a series of base signals

y(n) =
∑M
k=1

Rykz
n
k =

∑M
k=1

Ayk exp [(ak + j2pfk )nTs + juyk ]. (1)

The complex-valued amplitude Ryk = Ayk exp (juyk ) represents
amplitude Ayk and initial phase θyk. Meanwhile, the
complex-valued frequency zk = exp [(ak + j2pfk )Ts] represents
frequency fk and attenuation factor αk. M is the number of base
signals.

y(n) in (1) is a signal combined by a series of base signals. The
base signals Rkz

n
k are complex, but a real signal can be expressed

by the combination of these complex signals. From Euler’s
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formula exp (jw) = cos(w)+ j sin (w), which can be transformed to

cos(w) = exp (jw)+ exp (− jw)

2
and

sin(w) = exp (jw)− exp (− jw)

2j
,

a damped or steady sinusoidal real signal can be expressed as a pair
of conjugate complex exponential signals. In addition, a damped or
steady offset real signal can easily be expressed as long as fk is equal
to 0. Thus, (1) can describe various electrical signals under transient
conditions.

A Hankel matrix can be constructed using the signal

Y =

y(0) y(1) · · · y(L− 1)
y(1) y(2) · · · y(L)

..

. ..
. . .

. ..
.

y(N − L) y(N − L+ 1) . . . y(N − 1)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, (2)

where L is the column number of Y and N is the window length for
signal processing. L should be chosen in a proper range, i.e.

M ≤ L ≤ N −M . (3)

We choose a unitary reference signal

x(n) = zn1 = exp (j2pf1Tsn). (4)

We can prove that the power frequency complex-valued amplitude
Ry1, i.e. the phasor, of y(n) can be expressed as [22]

1/Ry1 = xR1Y
+xC1 (5)

where Y+ is the pseudo-inverse of matrix Y and vectors xR1 and xC1
are the row and column vectors, respectively, sequentially arranged
by x(n).
2.2 Ranks of the matrix and signal

In practice, the result of (5) is accurate when N is sufficiently long;
deviation or error will occur if a shorter N is chosen, which can be
explained as follows:

Substituting (1) into (2), we obtain

Y =

∑M
k=1

Rykz
0
k

∑M
k=1

Rykz
1
k · · · ∑M

k=1
Rykz

L−1
k

∑M
k=1

Rykz
1
k

∑M
k=1

Rykz
2
k · · · ∑M

k=1
Rykz

L
k

..

. ..
. . .

. ..
.

∑M
k=1

Rykz
N−L
k

∑M
k=1

Rykz
N−L+1
k . . .

∑M
k=1

Rykz
N−1
k

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Equation (6) can be decomposed as

Y = ZARyZB, (7)
2

where

ZA =

1 1 · · · 1
z1 z2 · · · zM

..

. ..
. . .

. ..
.

z
N−L
1 z

N−L
2 · · · z

N−L
M

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, (8)

ZB =

1 z1 · · · zL−1
1

1 z2 · · · zL−1
2

..

. ..
. . .

. ..
.

1 zM · · · z
L−1
M

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, (9)

Ry = diag(Ry1, Ry2, . . . , RyM ). (10)

This result can be observed by substituting (8)–(10) into (7), which
directly yields (6).

ZA and ZB are Vandermonde matrices; thus, they are full-column
rank and full-row rank matrices, and both ranks of ZA and ZB areM.
Ry is a diagonal matrix, and the rank of Ry isM. According to (7), the
rank of Y is also M.

For convenience, we define the rank of a signal. If a signal is a
linear combination of M damped exponential components such as
y(n) in (1), the rank of the signal is defined as M.

Therefore, the rank of Y is equal to the rank of y(n) under normal
circumstances.

If signal y(n) is complex, M is large, and N is short, then (3) will
not be satisfied, i.e. column L will be less than M, or row N− L + 1
will be greater than M. Matrix decomposition in (7) cannot be
performed. Thus, the fundamental of MPM will be irrational, and
the result of (5) will be wrong. In addition, the row or column will
be less than M, and the rank of Y will be less than M.

Further, if approximately equal complex-valued frequencies exist,
(e.g. zi) and is close to zj, distinguishing them in the numerical
calculation becomes difficult. Hence, the rank of Y calculated by a
practical device will be less thanM, and large errors in (5) will occur.

In summary, if

rank(Y ) = rank(y(n)), (11)

the result of (5) will be accurate; otherwise, deviation or error will
occur.

If the window length of y(n) is sufficiently long, the phasor
estimated by (5) can be correct because a sufficiently large matrix
Y can be constructed, and the rank of Y can reach M.
3 Adaptive algorithm for phasor estimation

By taking into account the requirement of reliability and speed for
power system protection, this section presents an adaptive
algorithm for estimating phasors using a dynamic window length.

Voltage and current signals are complicated and many. A criterion
is required to determine whether or not the phasor estimated by (5) is
credible. With the aid of the criterion, the relay can be properly
tripped as quickly as possible.

A straightforward idea is to calculate and compare the ranks of Y
and y(n). Unfortunately, in a practical voltage or current signal, the
rank of the signal cannot be obtained in advance. Therefore, we
cannot directly compare the ranks of the signal and matrix.

The feature of the rank of Y should be determined. When the
window length of signal y(n) is long and the size of Y is large, Y
will contain much redundant information, and Y can easily express
all information of the signal. If two base signals are subtracted
from y(n), the rank of y(n) becomes M− 2, and the rank of Y
correspondingly becomes M− 2.

For instance, if we subtract a power frequency signal from y(n),
the ranks of the matrix and the signal become M− 2. (According
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to Euler’s formula

cos(w) = exp (jw)+ exp (− jw)

2
,

the power frequency signal corresponds to two base signals.)
If the window length of y(n) is sufficiently short and the size of Y

is small, the rank of Y will be less than that of y(n), and Y cannot
express all the information of the signal, i.e. the rank of Y is not
determined by the number of base signals in y(n) but by the size
of Y . If two base signals are subtracted from y(n), the rank of y(n)
becomes M− 2. However, the size of Y does not change; thus, the
rank of Y will not become M− 2.

This feature can be used to construct the criterion. For any given
y(n), we calculate in advance the phasor Ry1 using (5) and then
transform it to power frequency signal y1(n) in the time domain.
We then subtract the power frequency signal from the original
signal y(n).

y−(n) = y(n)− y1(n). (12)

Following the structure of Y , we construct Y− using y−(n) and
compare the ranks of Y and Y−. If

rank(Y−) = rank(Y )− 2, (13)

the window length of y(n) is sufficiently long, and the result of (5) is
credible. If

rank(Y−) = rank(Y ), (14)

the window length of y(n) is not sufficiently long, the result of (5)
becomes suspect, and a longer window length is required.

Considering the deviation in the numerical calculation, the
constraint in (13) can be minimised as

rank(Y−) , rank(Y ), (15)

and the constraint in (14) can be minimised as

rank(Y−) ≥ rank(Y ) (16)

Using the criteria in (15) and (16), the phasor estimated by (5) can be
checked. A proper window length can be chosen in advance to
estimate the accurate phasor as quickly as possible.
4 Dealing with noisy signals

The practical voltage and current signals can be easily polluted by
noise, which may come from signal measurement, conversion, or
transmission. Noise influences the rank of the matrix; hence, the
above algorithm should be modified.
Fig. 1 Distribution of the singular values of Y
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We consider a given signal with a noise

y(n) =
∑M
k=1

Rykz
n
k + r(n). (17)

y(n) is the observed signal, and r(n) is the noisy signal. To reduce the
influence of the noisy signal, y(n) can be rewritten as

y(n) =
∑M
k=1

Rykz
n
k +

∑rm
k=1

Ryrkz
n
rk + r1(n). (18)

As a finite signal, part of r(n) can be decomposed as
∑rm

k=1 Ryrkz
n
rk ,

which has the similar form with the ideal signal, and the rest is
represented as r1(n), which is expected to have smaller influence
with ideal signal compared with r(n). The complex-valued
amplitude Ryrk and complex-valued frequency zrk have similar
meaning with Ryk and zk, respectively. rm is the number of base
signals of the noise. When rm is large, the approximation in (18)
is better. If rm is sufficiently large and the deviation r1(n) in (18)
can be ignored, observed signal y(n) can be constructed as Hankel
matrix Y similar to (2). Y can be decomposed as

Y = ZArRyrZBr (19)

where

ZAr =

1 1 · · · 1
z1 z2 · · · zM

..

. ..
. . .

. ..
.

z
N−L
1 z

N−L
2 · · · z

N−L
M

1 · · · 1
zr1 · · · zrm

..

. . .
. ..

.

z
N−L
r1 · · · z

N−L
rm

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, (20)

ZBr =

1 z1 · · · zL−1
1

1 z2 · · · zL−1
2

..

. ..
. . .

. ..
.

1 zM · · · z
L−1
M

1 zr1 · · · z
L−1
r1

..

. ..
. . .

. ..
.

1 zrm · · · z
L−1
rm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (21)

Ryr = diag(Ry1, Ry2, . . . , RyM , Ryr1, . . . , Ryrm). (22)

Our study is concerned with the ideal components of y(n); therefore,
the definition of the rank of the observed signal is still M, which is
the number of ideal base signals.

For consistency with Section 3, the rank of matrix Y should be
redefined. The rank of Y should only reflect the ideal part of the
signal.

We consider the singular values of Y . The typical singular value
distribution is shown in Fig. 1.

Fig. 1 shows that the singular values can be divided into two
categories. Some of them are much larger than the others. The
large ones represent the ideal part of the observed signal, whereas
the small ones represent the noisy part.

Thus, we redefine the rank of the matrix as the number of large
singular values.

Some distributions of the singular values are not easy to
distinguish. Some algorithms give a threshold or relative threshold
to count the number of large singular values. We set the maximum
curvature of the singular values as the threshold, and the rank of
the matrix can be determined.

From the redefinition of the rank of a matrix, the criteria expressed
in (15) and (16) can also be suitable for signals with noise.

Thus, for any voltage or current signals, whether polluted or not,
an adaptive algorithm can be applied to estimate phasors using a
dynamic window length.
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Table 1 Phasor estimation for y1(n)

Window
length, ms

Rank
(Y )

Rank
(Y−)

Credible Amplitude Phase
(。)

TVE,
%

1 4 4 × 10.67 42.90 7.70
2 6 5 √ 10.00 45.00 0.00

Table 3 Phasor estimation for y3(n)

Window
length, ms

Rank
(Y )

Rank
(Y−)

Credible Amplitude Phase
(。)

TVE,
%

1 3 2 √ 10.00 45.00 0.00
5 Performance evaluation

Phasors of various ideal or noisy signals are estimated to ensure the
validity of the proposed algorithm. The effect on power system
protection is investigated. Comparison of the proposed and
conventional algorithms is also presented.

5.1 Performance verification

In this section, the window length is chosen using the criteria in (15)
and (16) for the constructed signals, and phasors are estimated to
verify the performance of the proposed algorithm.

The sampling rate of the constructed signal is 10 kHz. In the
following section, the window length is measured by time (ms). It
is another representation of window length N. As N = T · fs, 1 ms is
equivalent to 10 sampling values. The parameter L, which is used
in the process of the proposed algorithm, is empirically set as an
integer which is around N/3.
5.1.1 Verification of ideal constructed signals: We consider
the signal with harmonic components

y1(n) = 10 sin (v1t + p/4)

+ sin (2v1t)+ 2 sin (3v1t + p/6),
(23)

where ω1 = 2πf1 and f1 = 50 Hz. We estimate the phasor using the
proposed algorithm.

The window length used for the estimation, the ranks of Y and
Y−, the determination whether the result is credible or not, the
amplitude, and the initial phase of the phasor are listed in Table 1.
The total vector error (TVE) is also introduced to show errors of
phasor estimation. TVE is defined as

TVE =



























(Xr − X0r)

2 + (Xi − Xi)
2

X 2
0r + X 2

0i

√
,

where Xr and Xi are, respectively, the real and imaginary parts of
estimates given by the proposed algorithm, and X0r and X0i are the
corresponding parts of theoretical values. The correct amplitude
and initial phase should be 10 and 45, respectively.

If we use 1 ms as the window length, the ranks of Y and Y− are
equal. According to the criterion in (16), the estimated phasor is not
credible. The calculated amplitude and initial phase are shown in
columns 5 and 6, respectively. They show large deviations, and
the criterion in (16) is available. This result indicates that a longer
window should be applied to obtain more accurate results.

If we use 2 ms as the window length, the rank of Y− is less than
that of Y . According to the criterion in (15), the estimated phasor is
credible. The calculated amplitude and initial phase are shown in
columns 5 and 6, respectively. We can see that they are accurate,
and the criterion in (15) is available.
Table 2 Phasor estimation for y2(n)

Window
length, ms

Rank
(Y )

Rank
(Y−)

Credible Amplitude Phase
(。)

TVE,
%

2 6 6 × 11.89 50.73 21.82
5 7 7 × 9.98 45.01 0.20
10 9 8 √ 10.00 45.01 0.02

4

The signal is constructed, so the rank of y1(n) can be acquired
previously. As y1(n) is combined by 3 sinusoidal signals, the rank
of y1(n), M, is 6. As can be seen, the rank of Y is equal to the
rank of y1(n) when we use 2 ms as the window length; they are
not equal when we use 2 ms as the window length. This conforms
to our theoretical analysis.

The signal in (23) is simple; thus, we can easily and accurately
estimate the phasor using a very short window length. Tripping
the relay without superfluous delay is certainly helpful.

Let us consider a more complicated signal,

y2(n) = 10 sin (v1t + p/4)+ sin (2v1t)

+ 2 sin (3v1t + p/6)

+ 3 exp (− 0.01t)

+ 2 sin (2v1t) exp (− 20t),

(24)

which contains harmonics, decaying DC, and damped sinusoidal
components. We estimate the phasor using the proposed algorithm.

Different window lengths are chosen to estimate the phasor. As
listed in Table 2, when the window length is set to 2 or 5 ms, the
ranks of Y and Y− satisfy the conditions in (16) and indicate that
the estimated phasor are not credible. The calculated amplitude
and initial phase shown in columns 5 and 6, respectively, verify
the decision. A longer window length of 10 ms is applied, and the
rank of Y− is less than that of Y . Thus, the calculated amplitude
and initial phase shown in columns 5 and 6, respectively, are
credible.

As the decaying DC component is corresponding to one base
signal and the other three components are corresponding to two
base signals, respectively, the rank of y2(n), M, is 9. This agrees
with the results.

The signal in (24) is more complicated than that in (23); thus,
more information, i.e. longer window length, is required to obtain
a credible phasor. In some conditions, the voltage or current
signals after a system fault are messy. Delaying the relay waiting
time for correct phasor is thus necessary.

As the proposed algorithm is based on a signal which is combined
by series of complex-valued signals, it is naturally applicable for
complex-valued signals. Without loss of generality, consider the
following signal,

y3(n) = 10 exp (jv1t + jp/4)

+ exp (j2v1t)+ 2 exp (j3v1t + jp/6),
(25)

where ω1 = 2πf1 and f1 = 50 Hz. We estimate the phasor using the
proposed algorithm (Table 3).

The result is similar with the real signals. It is worth noting that
Y− is also constructed by a complex-valued signal. The amplitude,
and the initial phase of the phasor are estimated correctly.

5.1.2 Verification of constructed signals with noise: The
voltage or current signals acquired in practice will inevitably be
polluted by noise. We add a white Gaussian noise in which the
Table 4 Phasor estimation for y1(n) with noise

Window
length ms

Rank
(Y )

Rank
(Y−)

Credible Amplitude Phase
(。)

TVE,
%

10 5 6 × 11.36 39.38 17.15
15 6 5 √ 10.00 44.99 0.02
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Table 5 Phasor estimation for y2(n) with noise

Window
length, ms

Rank
(Y )

Rank
(Y−)

Credible Amplitude Phase
(。)

TVE,
%

15 7 7 × 9.62 47.27 5.44
30 9 8 √ 10.00 44.99 0.02
signal-to-noise ratio is 50 dB to the ideal signals in (23) and (24). We
estimate the phasor using the proposed algorithm.

The phasor estimation for y1(n) with noise is listed in Table 4.
According to the criteria in (15) and (16), a 15-ms window length
is required to obtain a credible result.

The phasor estimation for y2(n) with noise is listed in Table 5.
According to the criteria in (15) and (16), a 30-ms window length
is required to obtain a credible result.

Signals polluted by noise are more complicated than ideal signals.
As expressed in (18), to simulate as much as possible the noisy
components of the signal using base signals, a large rm, which is
the number of base signals, may be required. Thus, a long window
should be used to estimate the phasor.
5.2 Response time

The aim of the proposed algorithm is to estimate the phasor as
quickly as possible while guaranteeing accuracy. Hence, the
response time of the proposed algorithm should be investigated.
The response time is dependent on the asymptotic time complexity
and the window length.

The asymptotic time complexity can represent the computational
burden for practical application. As addition is much easier than
multiplication, the asymptotic time complexity is approximately
the count of multiplications used in an algorithm. The asymptotic
time complexity of the proposed algorithm is O(N3). It is larger
than that of Fourier algorithm, which is O(N ). It means that for the
same window length, the proposed algorithm has to deal with
much more multiplications than Fourier algorithm. Hence the data
processing time of them will be different in the same hardware
equipment. A simple test about time consumption of the proposed
and Fourier algorithms has been made and the comparison is
shown in Fig. 2.

The relative time consumption of the proposed and Fourier
algorithms can be obtained intuitively in Fig. 2. Much more time
needed for the data processing of the proposed algorithm. When
the computing device is not efficient, this part of response time
will be remarkable. However, the time consumption of data
processing of an algorithm is not inherent, but related with the
performance of hardware. In recent years, the computing speed of
signal processing devices has been dramatically improved,
especially after using the technology of hardware multiplication.
Hence, this part of response time will become smaller and smaller
with the development of hardware.
Fig. 2 Comparison of time consumption of the proposed and Fourier
algorithm
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Another part of response time is dependent on the window length.
For any phasor estimation algorithm, there must be long enough
input sequence to generate the correct output. The window length
of Fourier algorithm is usually 20 ms (one cycle, when the power
frequency is 50 Hz), and the window length for half-cycle Fourier
algorithm is 10 ms. The proposed algorithm has adaptive window
length. When the input signal is simple, the window length needed
is very short. For example, as shown in Table 1 in Section 5.1,
Only 2 ms are needed to estimate a phasor. When the signal is
very complicated or severely polluted by noise, a long window
length is needed. Generally, the proposed algorithm can quickly
give accurate results with acceptable computational burden in most
instances, and can also prevent suspect phasor misleading power
system protections on rare conditions.

Considering two factors of response time, the asymptotic time
complexity and the window length, and the development of field
devices, the proposed algorithm has a more competitive prospect.

5.3 Influence of sampling rate

A higher sampling rate will provide more signal information and
result in higher accuracy [22]. Under the same period, a higher
sampling rate get a longer sampling value range, and the
constructed matrix will be larger and easier to conform on (11).
That is, under different sampling rate, the proposed algorithm will
adaptively choose different window length to estimate phasors.
Considering the signal in (23), we test the sampling rates 2.5, 5,
and 10 kHz, which are widely used in practice, as well as 500 Hz,
and 20 kHz for contrast. The chosen window lengths are shown in
Fig. 3.

As illustrated in Fig. 3, higher sampling rates need shorter window
length to give accurate results. If the sampling rate is higher than 10
kHz, it has little influence on the chosen window length. Similar
results can be obtained with the signal given in (24). In practical
application, the sampling rate depends on PTs and CTs deployed
in the substations. The proposed algorithm can adapt to kinds of
sampling rate.

5.4 Effect on power system protection

Phasors can be quickly and accurately estimated using the proposed
algorithm. Thus, protection methods based on phasors can be
improved. The performance of the distance protection is evaluated
as follows: a double-end power system simulation model was built
in PSCAD, and the single-line diagram is shown in Fig. 4.

The system is operated at 50 Hz, and the parameters of the system
are listed in Table 6.

The distance protection deployed at the left side of a 100-km
transmission line is investigated. The set point for the distance
protection is 90% of the entire line. The sampling rate is 10 kHz.

5.4.1 Strategy of window length selecting: The criteria in
(15) and (16) just judge the given window length is proper or not.
Fig. 3 Chosen window lengths at different sampling rates
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Fig. 4 Double-end power system simulation model
For practical application, a strategy to obtain an optimal window
length should be given. The intuitive way is to test every window
length from the minimum to a proper value step by step. It will
cost extremely high computational burden and it is not necessary.

The strategy of window length selecting should be cooperated
with its practical scenarios. Different relays have different
requirements of time response. For a specific relay, a group of
window lengths should be prepared beforehand. If the phasor is
provided for fast relays, small window lengths should be tested; if
the phasor is used by backup protections or delayed relays, large
window lengths should be tested. For instance, if the phasor is
used for zone I distance protection, the group of window lengths
can be chosen as 5, 10, 15, 20, 25 and 30 ms. Then apply the
criteria for the most ordinary window length. If it is feasible, try to
reduce the window length until it is not feasible; if it is not
feasible, try to enlarge the window length until it is feasible. The
flow chart is shown below.

In Fig. 5, T0 is the most ordinary window length, such as 20 ms
for zone I distance protection, and dT is the interval of different
window length, such as 5 ms. T1 and T2 are auxiliary variables
and T is the proper window length. It is worth noting that when
the minimum window length is feasible, the proper window length
should be the minimum window length; when the maximum
window length is not feasible, it should be reported that no proper
window length exist. As the group of window length is not large,
the proper window length could be decided with at most 4 times’
judgment for zone I protection.

5.4.2 Verification of the internal fault: A single-phase (phase
A) fault at 80% of the entire line is introduced after 0.3 s. The current
and voltage signals are shown in Fig. 6.

Today, phasors used for distance protection are estimated using
the Fourier algorithm. The distance protections using the Fourier
and proposed algorithms are compared.

The full-cycle Fourier algorithm, i.e. a window length of 20 ms, is
used to estimate the phasors of the voltage and current signals. Then,
the measured impedance can be obtained by

Zm = Vma

Ima + k · 3Im0
(26)

where Vma and Ima are the phasor of the voltage and current in phase
A, respectively, and Im0 is the zero-sequence current. k is the
zero-sequence compensation factor, which can be obtained using
zero-sequence impedance z0 and positive impedance z1 of the
Table 6 Parameters of the line and source impedances

Parameters Value

length of transmission line 100 km
positive-sequence impedance of transmission line 0.018 + j0.262 Ω/km
zero-sequence impedance of transmission line 0.178 + j0.670 Ω/km
positive-sequence source impedance at the
left-side

2 + j26.39 Ω

zero-sequence source impedance at the left-side 3 + j75 Ω
positive-sequence source impedance at the
right-side

j24.12 Ω

zero-sequence source impedance at the right-side j69 Ω
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transmission line, i.e.

k = z0 − z1
3z1

. (27)

The impedance characteristic seen from bus M is shown in Fig. 7.
The operating zone is enlarged and shown at the top right corner.

Fig. 7 shows that the impedance characteristic curve enter the
operating zone 18 ms after the fault occurs. Because of the
cross-window data, which contain both the normal operating data
and fault data, the time when the impedance characteristic curve
enters the operating zone is shorter than 20 ms. The relay does not
immediately trip at 18 ms but waits for a short period such as Δt
to confirm the decision. Thus, the relay will trip at Δt + 18 ms after
the fault.

Subsequently, we evaluate the performance of the distance
protection using the phasor estimated by the proposed algorithm.
According to the criteria in (15) and (16) and the flow chart in
Fig. 2, after 3 times’ judgment, the window length is set at 10 ms
after the voltage and current signals are tested. Using the same
procedure, the impedance characteristic seen from bus M is shown
in Fig. 8.

Fig. 8 shows that the impedance characteristic curve enters the
operating zone 9.2 ms after the fault occurs. Because of the
cross-window data, the time when the impedance characteristic
curve enters the operating zone is shorter than 10 ms. Thus, the
relay will trip at Δt + 9.2 ms after the fault.

Because the voltage and current signals shown in Fig. 6 are not
very complicated, the phasor estimation can be accurately
accomplished in a very short window length. Using the full-cycle
Fourier algorithm requires more time delay to trip the relay and
may compromise the safety of the power system.

Fig. 9 shows the impedance characteristic seen from bus M if we
instead use the half-cycle Fourier algorithm.
Fig. 5 Flow chart of strategy of window length selecting
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Fig. 6 Current and voltage signals when a single-phase fault occurs

Fig. 7 Impedance characteristic obtained using the Fourier algorithm

Fig. 8 Impedance characteristic obtained using the proposed algorithm

Fig. 9 Impedance characteristic obtained using the half-cycle Fourier
algorithm

Fig. 10 Impedance characteristic obtained using the Fourier algorithm
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Fig. 9 shows that the decaying DC components in the voltage and
current signals strongly disturb the half-cycle Fourier algorithm, and
the estimated phasors are not reliable. The impedance characteristic
curve enters and then comes out of the operating zone. Thus, the
distance protection cannot decide to trip the relay.

If no criterion is set to verify the estimated phasor, the window
length may be set too long and delay the relay tripping or too
short to result in erroneous relay operation.
5.4.3 Verification of external fault: A single-phase (phase A)
fault at the head end of the next line is set after 0.3 s. The current
and voltage signals are shown in Fig. 6. The distance protections
using the Fourier and proposed algorithms are also compared.

The full-cycle Fourier algorithm is used to estimate the phasors of
the voltage and current signals. The impedance characteristic seen
from bus M is shown in Fig. 10.

Fig. 10 shows that the impedance characteristic curve enters the
operating zone at 23.6 ms and comes out of the operating zone at
29 ms. The relay may erroneously operate during this time.
Although the impedance characteristic curve is stable at a point
out of the operating zone with a short time delay, the deviations in
the estimation of phasors of the voltage and current signals, which
result in the deviations in the impedances, may cause erroneous
operation of the distance relay.

The performance of the distance protection using the phasor
estimated by the proposed algorithm is then investigated.
According to the criteria in (15) and (16) and the flow chart in
Fig. 2, after 3 times’ judgment, the window length is also set to
10 ms. The impedance characteristic seen from bus M is shown in
Fig. 11.

Fig. 11 shows that the impedance characteristic curve does not
enter the operating zone at all times. Because the phasors
estimated by the proposed algorithm are accurate and stable,
erroneous operation can be avoided.
Fig. 11 Impedance characteristic obtained using the proposed algorithm
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6 Conclusions

An adaptive algorithm for estimating phasors using a dynamic
window length has been proposed. According to the analytical and
experimental investigations presented in this paper, the following
conclusions are drawn:

(i) A criterion is proposed to determine whether the phasor
estimated by MPM is credible or not.
(ii) A proper window length can be chosen to estimate the accurate
phasor as quickly as possible.
(iii) The proposed algorithm can help in reliable and quick tripping
of the relay.

Because phasors are the basis of power system protection, accurate
and fast estimation algorithm is expected to be an attractive prospect
for their determination.
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