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Abstract: DC distribution technology is emerging as a prospective form of future power system owing to its advantages such as
high controllability and easy compatibility. In medium- or low-voltage DC distribution systems, the two-level voltage-source
converter (VSC) has become one of the preferred topologies for grid-connected converters. A comprehensive small-signal
model for VSC-based DC distribution systems, which takes into consideration the AC filter, DC distribution cables, and all the
controllers in the VSC is presented in this study. Based on the ideal AC source, an absolutely stable synchronous rotating
coordinate system is built to preclude the influence of the short circuit ratio of the AC system. The proposed model is verified
using a detailed electromagnetic transient simulation carried out using power systems computer-aided design (PSCAD). To
analyse the impact of neglecting the AC filter and phase-locked loop controller, two simplified models are established, and a
detailed comparison of the three models is presented. The results indicate that when using the two simplified models, the time-
domain responses are significantly different from those in the PSCAD simulation and the obtained feasible domains of the
control parameters tend to be either more optimistic or conservative. Thus, to carry out a small-signal stability analysis, the use
of the proposed comprehensive model is recommended to ensure the safety of the DC distribution system.

1 Introduction
In recent years, DC distribution networks have been increasingly
incorporated into electric power systems owing to their stronger
controllability, easier compatibility, and lower power losses
compared with the corresponding properties of AC distribution
networks [1–4]. Considering that the voltage level of typical DC
distribution networks does not exceed 100 kV, the two-level
voltage-source converter (VSC) has become a widely used
topology for grid-connected converters in DC distribution systems.
Small-signal stability analysis is essential for the design and
operation of a power system [5, 6], and thus, it is important to
develop an accurate and efficient small-signal model for VSC-
based DC distribution systems.

Small-signal modelling for DC system has been extensively
studied in extant studies. In [7–11], small-signal models of VSC-
based high voltage DC (VSC-HVDC) transmission systems were
reported, and the impact of control parameters on small-signal
stability was analysed. However, the AC filter was neglected in
these models. Compared with the HVDC transmission system, the
power quality requirement for AC systems is stricter in DC
distribution systems. Furthermore, the presence of a two-level VSC
converter with PWM modulation leads to the induction of a large
number of harmonics into the AC system. Hence, ignoring the AC
filter in small-signal models is inappropriate. A small-signal model
of VSC-based DC distribution networks was established and a
reduced-order method was proposed in [12]; however, this model
neglected the phase-locked loop (PLL) controller to simplify the
model. Although Zhou et al. [13] proved that the control
parameters of the PLL controller do not considerably influence the
small-signal stability, completely ignoring the PLL may cause the
model to neglect some state variables and thereby inaccurately
reflect the dynamic process of the system. In [14, 15], dq
coordinate systems based on the point of common coupling (PCC)
voltage were developed to propose small-signal models of VSC
converters. The premise of these models was that the short circuit
ratio (SCR) of AC systems is large and the perturbation of the PCC
voltage can thus be neglected. However, AC systems in DC
distribution networks are frequently weak, and hence, this
modelling method is not suitable for DC distribution systems. In
summary, the small-signal models established in earlier works

pertained mainly to HVDC transmission systems and the
controllers in VSC were simplified. A comprehensive small-signal
model for a DC distribution network and the comparison of
simplified and comprehensive models to verify the applicability of
simplified models have not reported yet.

This study involved the development of a comprehensive small-
signal model for VSC-based DC distribution systems, which
represents the dynamics of the AC filter, DC distribution cables,
and all the controllers in the VSC. Considering the impact of the
SCR of an AC system, an absolutely stable dq coordinate system
was established based on an ideal AC source. In addition, the
proposed model was validated using a detailed electromagnetic
transient simulation carried out using power system computer-
aided design (PSCAD). Two simplified models that neglected the
AC filter or PLL controller were also built and a detailed
comparison of the three models was carried out to verify the
applicability of the simplified models. The results indicated that
when using the two simplified models, the obtained feasible
domains of the control parameters tended to be either more
optimistic or conservative, thereby leading to inaccurate stability
results.

2 Power system and controllers under
consideration
Fig. 1a shows the DC distribution network considered in this study. 
The AC system is connected to a medium-voltage DC distribution
system via an interconnected transformer and a VSC station. In
addition, an AC filter is introduced between the transformer and
the VSC to enhance the power quality of the AC system. Fig. 1b
shows the equivalent circuit of the system shown in Fig. 1a. The
vertical impedance of the AC system (transformer and AC filter)
can be represented in terms of R1 and L1, and Cg and Rcg represent
the transverse capacitance and resistance of the AC filter,
respectively. The VSC station is modelled using a phase reactor Lv
and a DC capacitor Cv. In the DC distribution system, the DC cable
is modelled as a π circuit consisting of rd1, Ld1 and Cd1, and RL
represents the DC load.

In this research, an ideal AC system is selected and its internal
dynamics and controllers are neglected, as also performed in
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related studies [6–12]. The control system of the VSC station can
be represented as in Fig. 2. The PLL controller uses a control
method similar to that used in [10] to synchronise the VSC station
and the PCC voltage. The conventional vector-current controller
(VCC) consisting of an outer and inner loop controller is adopted
for active and reactive type control [8].

3 Non-linear state-space model of the DC
distribution system
3.1 Selection of dq axis and coordinate transformation
formula

In earlier studies, dPLLqPLL coordinate systems based on the PCC
voltage u̇s, as shown in Fig. 3a, were established for small-signal
modelling. The premise of this method was that the SCR of an AC
system is large and the angular velocity of us is constant. When the
perturbation of us cannot be neglected, the small-signal model
established considering the dPLLqPLL coordinate system is
inaccurate. Considering the characteristics of the DC distribution
system, this paper proposes an absolutely stable dGqG coordinate

system based on an ideal AC source. The dG axis and the ideal AC
source ea are coincident, and hence the dGqG component of the
ideal AC source are ed = e and eq = 0.

The VSC station maintains synchronicity with the PCC voltage
via the PLL controller; thus, the electrical quantities in the VSC
station undergo dq transformation under the dPLLqPLL coordinate
system. Fig. 3b shows the transformation relationship between the
dGqG and dPLLqPLL axes. The coordinate transformation formula
can be expressed as

Ad
P = Ad1

P + Ad2
P = Adcos δPLL − AqsinδPLL

Aq
P = − Aq1

P + Aq2
P = Adsin δPLL + Aqcos δPLL

Ad = Ad1 − Ad2 = Ad
Pcos δPLL + Aq

PsinδPLL

Aq = Aq1 + Aq2 = − Ad
Psin δPLL + Aq

Pcos δPLL

(1)

where A and AP represent the electrical quantities under dGqG and
dPLLqPLL axes, respectively; angle between dG axis and a-axis is
θG = ω0t, and angle between dPLL axis and a-axis is θPLL = δPLL + 
ω0t.

3.2 Modelling of AC network connected with VSC station

As shown in Fig. 1b, the differential equation obtained from
branches ①②, ②③, and ②④ in the AC network can be expressed in
dGqG reference frame, as sequentially given in the following
equation:

L1
d
dt

isd

isq
= − R1

isd

isq
+ ω0L1

isq

−isd
−

usd

usq
+ e

0

Lv
d
dt

ivd

ivq
= ω0Lv

ivq

−ivd
+

usd

usq
−

uvd

uvq

Cg
d
dt

ucgd

ucgq
= 1

Rcg

usd

usq
− 1

Rcg

ucgd

ucgq
+ ω0Cg

ucgq

−ucgd

(2)

where isd, isq, ivd, ivq, ucgd, and ucgq are the introduced state
variables. To eliminate usd and usq, the KCL algebraic equation
pertaining to node ② can be expressed as

usd

usq
= Rcg

isd

isq
− Rcg

ivd

ivq
+

ucgd

ucgq
(3)

The intermediate variables uvd and uvq are eliminated as indicated
in the subsequent sections.

Fig. 1  Considered DC distribution system
(a) Structure of the considered DC distribution network, (b) Equivalent circuit of the considered system

 

Fig. 2  Control system of VSC converter
 

Fig. 3  Transformation between d two different dq coordinate systems
(a) Two different dq coordinate systems, (b) Transformation between dGqG and
dPLLqPLL coordinate systems
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3.3 Modelling of the VSC

3.3.1 Modelling of PLL controller of VSC: Fig. 4 shows the
control block diagram of a typical PLL controller, in which the
difference between usq

P  and its reference 0 is provided as the input
of the PI controller. When the PLL is in the steady-state, the dPLL
axis is synchronised to the PCC voltage usa, and the output is the
phase angle θPLL of the dPLL-axis.

The equation of the PLL controller considering the diagram
shown in Fig. 4 can be expressed as

θPLL = ∫ − kp + ki
s ⋅ usq

P + ω0 dt (4)

where kp and ki are the PI control parameters in the PLL controller.
The derivative of (4) can be expressed as

dδPLL
dt = − kp + ki

s ⋅ usq
P (5)

Then, the state-space equations of the PLL controller can be
expressed as

dz1

dt = − usq
P

dδPLL
dt = − kpusq

P + kiz
(6)

where z1and δPLL are the introduced state variables. In addition, z1
is an auxiliary variable representing the integral part of the PI
controller in the PLL.

3.3.2 Modelling of VCC of VSC: Fig. 5 shows the control block
diagram of the VCC in the VSC station consisting of the outer and
inner loops. The active outer loop is responsible for the regulation
of the DC voltage or active power, and the reactive outer loop
maintains the AC voltage or reactive power at a constant value.
The outputs obtained by the outer loops are provided as the input
of the decoupled inner loops, which generate the d and q axes
voltage reference for the PWM modulation.

The algebraic equations of the active outer loop can be
expressed as (7) and (8)

ivd
P ∗ = Udc

∗ − Udc kp1 + ki1
s (7)

P = 3
2(usdivd + usqivq)

ivd
P ∗ = (P∗ − P) kp1 + ki1

s

(8)

where P and P* are the actual and reference values of the active
power injected into the VSC station from the AC system,
respectively, Udc and Udc

∗  are the actual and reference values of the
DC voltage, respectively, and kp1 and ki1 are the PI control
parameters in the active outer loop, respectively.

Similarly, the dynamic equations for the reactive outer loop can
be expressed as (9) and (10)

Q = 3
2( − usdivq + usqivd)

ivq
P ∗ = (Q∗ − Q) kp2 + ki2

s

(9)

us = usd
2 + usq

2

ivq
P ∗ = (us

∗ − us) kp2 + ki2
s

(10)

where Q and Q* are the actual and reference values of the reactive
power injected into the VSC station from the AC system,
respectively, us and us* are the actual and reference values of the
AC voltage, respectively, and kp2 and ki2 are the PI control
parameters in the reactive outer loop, respectively.

The d and q axes voltage reference from the inner loops can be
expressed as

dz2

dt = − Udc + Udc
∗ / dz2

dt = − P + P∗

dz3

dt = − Q + Q∗/ dz3

dt = − us + us
∗

dz4

dt = ivd
P ∗ − ivd

P

dz5

dt = ivq
P ∗ − ivq

P

(11)

where z2 and z3, and z4 and z5, are the introduced state variables
and auxiliary variables representing the integral part of the PI
controllers in the VCC, respectively.

Note that uvd
P  and uvq

P  can be expressed using (7)–(11), which
can eliminate the intermediate variables uvd and uvq.

3.4 Modelling of DC network connected with VSC station

The equivalent circuit of the DC network is shown in Fig. 6. The
DC distribution line is modelled as a π circuit considering the fact
that the cables are widely used in DC distribution systems. The DC
load is represented by a resistance RL.

Assuming that the active power loss in the VSC station is
neglected, the dynamic equations of the DC network shown in
Fig. 6 can be expressed as

(Cv + Cd1)
dUdc

dt = id1 − id

id1 = 3
2 ⋅ usdivd + usqivq

Udc

Ld1
did
dt = udc − uL − id

Cd1
duL
dt = id − 1

RL
uL

(12)

where Udc, id, and uL are the introduced state variables, and id1 is
the intermediate variable.

4 Linearised small-signal model of the DC
distribution system
4.1 Linearised small-signal model

A 15-order non-linear state-space model of the DC distribution
system shown in Fig. 1 can be expressed based on the discussion in
Section 3 as

dx
dt = f (x, u) (13)

where the state vector x has an order of 15 and consists of 6 AC
network variables (isd, isq, ivd, ivq, ucgd, ucgq), 2 PLL controller
variables (z1, δPLL), 4 VCC variables (z2, z3, z4, z5), and 3 DC
network variables (Udc, id, uL). The input vector is u = Udc

∗ , Q∗ .
To investigate the small-signal stability of VSC-based DC

distribution system based on the first Lyapunov criterion, the
linearised state-space equations can be obtained via

dΔx
dt = AΔx + BΔu (14)
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where A and B are the characteristic matrix and the input matrix,
respectively, and Δx and Δu denote the small-signal state vector
and the input vector, respectively. Based on the first Lyapunov
criterion, the small-signal stability of the DC distribution system
can be analysed by considering the eigenvalues of the characteristic
matrix A. The block diagram of the small-signal model is shown in
Fig. 7, and the variables between the different submodels are the
interfaced variables. The state variables are labelled in red.

4.2 Verification and comparison of small-signal models

To verify the accuracy of (14), the aforementioned model (Model I)
was analytically evaluated using a Matlab program. The actual DC
distribution system model was simulated using PSCAD, and a
Bergeron model is chosen for the DC distribution line to make the
simulation program more realistic. The parameters of the system
are listed in Table 1. 

Initially, the operation points of the system are Udc = 1 p.u. and
Q = 0 p.u. The introduced small disturbance is a 0.1 kV step change
of the DC voltage reference from 10 to 10.1 kV at 3 s. The curves
of different state variables obtained using the two methods during
the small disturbance are compared in Fig. 8. 

The results shown in Fig. 8 illustrate that the time-domain
responses of ΔUdc, Δivd, Δisd, Δisq, Δucgd and Δucgq calculated
using MATLAB closely coincide with those obtained using the

simulation in PSCAD; this indicates the accuracy of the
aforementioned small-signal model.

To analyse the applicability of the simplified models, Model II
(neglecting the AC filter) and Model III (neglecting the PLL
controller in the VSC station) were established using the same
method as that used for Model I. The comparison of the curves of
the different state variables obtained using MATLAB and PSCAD
during the 0.1 kV step change of the DC voltage reference at 3 s is
presented in Fig. 9. 

The results shown in Fig. 9 illustrate that the time-domain
responses obtained using MATLAB and PSCAD are considerably
different. Thus, the proposed model, that is, Model I can be
considered to be more accurate than Models II and III, and it is
concluded that neglecting the AC filter or PLL controller in the
small-signal model can produce a significant error.

5 Small-signal stability analysis
5.1 Eigenvalue analysis

The eigenvalues of the characteristic matrix, along with the
frequencies, damping ratios, and main participating variables for
VSC-based DC distribution system shown in Fig. 1 are presented
in Table 2. Note that only the main participating variables obtained
by Model I are listed in Table 2.

The damping ratio [15] of an underdamped mode λ = σ ± jω can
be expressed as

ξ = −σ
σ2 + ω2 (15)

When the damping ratio ξ < 0.05, the corresponding mode can be
regarded as a poor-damping mode, which may give rise to a low-
frequency oscillation and lead to system small-signal instability.

Fig. 4  Control block diagram of the typical PLL controller
 

Fig. 5  Control block diagram of the VCC in VSC station
 

Fig. 6  Equivalent circuit of the DC network connected with VSC converter
 

Fig. 7  Relationship between submodels of VSC system
 

Table 1 System parameters [16]
Parameters Values
main circuit AC system resistance R1 0.2 Ω

AC system inductance L1 1 mH
converter inductance Lv 10 mH

filter capacitance Cg 2 μF
filter resistance Rcg 2 Ω

DC side capacitance Cv 4 mF
DC line resistance Rd1 0.1 Ω
DC line inductance Ld1 0.01 H

DC line capacitance Cd1 5 μF
resistive load 1000 Ω

control system PLL controller (kp, ki) (50, 900)
DC voltage controller (kp1, ki1) (5, 10)

reactive power controller (kp2, ki2) (0.05, 10)
active inner controller (kp3, ki3) (5, 10)

reactive inner controller (kp4, ki4) (5, 10)
 

Fig. 8  Responses of the state variables ΔUdc, Δivd, Δisd, Δisq, Δucgd and
Δucgq in Model I to the DC voltage reference disturbance
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Furthermore, the modes closer to the imaginary axis correspond to
slower decays in the time domain, and they may change to appear
in the right side of the imaginary axis owing to the error caused by
system parameters and small-signal model. Two types of critical
modes are in bold in Table 2.

The data presented in Table 2 indicate that when the AC filter is
neglected, the state variables Δisd, Δisq, Δucgd and Δucgq are not
introduced in Model II. The dynamics of mode 8 and mode 9
(labelled as bold italic) cannot be clarified because the variables
that are neglected are the main participating variables of these
modes in Model I. Similarly, the dynamics of mode 3 (labeled
underlined) are ignored owing to the omission of Δz1 and ΔδPLL.
Hence, more oscillation modes emerge in the considered system
when using Model I and neglecting the AC filter or PLL controller
may weaken the small-signal stability problems of the DC
distribution system.

5.2 Impact of control parameters of outer loop controller of
VCC on small-signal stability

This section presents the analysis of the impact of the outer loop
controller parameters kp1, ki1, kp2 and ki2 on the small-signal
stability and the evaluation of the effect of neglecting the AC filter
or PLL controller by comparing the eigenvalue loci and feasible
regions of the control parameters.

Fig. 10 shows the eigenvalue loci involving the change in kp1
and ki1, and the evaluation of the impact of the parameters on the
dominate mode (mode 7) of the system using Models I, II, and III. 
Fig. 10 indicates that when kp1 varies from 1 to 50 or ki1 varies
from 1 to 10,000, mode 7 gradually changes from an underdamped
stable mode to a negatively damped unstable mode. Figs. 11a and b
demonstrate the relationships among the parameters and the real
axis, as obtained by the three models. Fig. 11a indicates that the

Fig. 9  Responses of the state variables in Models II and III to DC voltage reference disturbance
 

Table 2 Eigenvalue analysis for Model I (integrated model), Model II (without AC filter), and model III (without PLL controller)
Modes Model I Model II Model III Main participating variables for Model I

Eigenvalue f, Hz ξ Eigenvalue ξ Eigenvalue ξ
1 −1.99 0 1 −2 1 −2 1 Δz2 Δz3 Δz4 Δz5
2 −2±j0.004 0 1 −1.97±j0.07 1 −2±j0.004 1 Δz4 Δz5
3 −25.5±j16.7 2.66 0.84 −24.4±j16.4 0.83 — — Δz1 ΔδPLL
4 −134.7 0 1 −186.6±j49 0.968 −157.7±j90 0.867 Δisd Δisq Δz3 Δz5
5 −212.8 0 1 Δisd Δisq Δz3 Δz5
6 −105±j4474 712.1 0.02 −105±j4474 0.023 −105±j4474 0.023 Δid ΔUL
7 −151±j570.9 90.86 0.26 −196.2±j550 0.336 −189±j528 0.337 Δisd Δisq Δz2 Δz3 Δz4
8 −251.5±j316 50.3 0.62 −43204.7 1 −254±j309 0.636 Δisd Δisq Δucgd Δucgq
9 −2044±j258 41.11 0.99 −44894.1 1 −2043±j325 0.987 Δisd Δisq Δucgd Δucgq
 

Fig. 10  Eigenvalue locus of Models I, II, and III with changes in kp1 and ki1
(a) With change in kp1 of Model I, (b) With change in kp1 of Models II, III, (c) With change in ki1 of Model I, (d) With change in ki1 of Models II, III
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feasible regions of kp1 obtained by the three models are kp1 < 16.2,
kp1 < 21.7, and kp1 < 21.7. Similarly, Fig. 11b indicates that the
feasible regions of ki1 are ki1 < 1410, ki1 < 1740, and ki1 < 1680 for
the three models. To verify the eigenvalue analysis results, the

time-domain responses of the DC distribution system simulated in
PSCAD were plotted, as presented in Figs. 11c and d. Fig. 11c
shows that when kp1 steps from 5 to 20 at 10 s, the DC voltage
experiences an amplitude oscillation, which corroborates only with
the stable region of kp1 = 16.2 obtained using Model I, as shown in
Fig. 11a. Furthermore, the eigenvalues of the oscillatory mode
(mode 7) pertaining to Model I are λ = 129±j1285.25 and the period
of amplitude oscillation is 0.005 s, which strongly agree with the
results obtained using the PSCAD simulation. Similarly, Fig. 11d
indicates that when ki1 steps from 10 to 1500, the AC current isd
experiences an amplitude oscillation, which corroborates only with
the stable region of ki1 < 1410 obtained using Model I. In addition,
the period of amplitude oscillation is 0.011 s, which is in
agreement with the PSCAD simulation results. The close
agreements between the MATLAB-based eigenvalue analysis and
simulation results obtained using PSCAD verify that Model I is
more accurate than Models II and III, and the feasible regions of
kp1 and ki1 obtained using Models II and III are too optimistic. In
addition, Figs. 10a and c indicate that smaller values of kp1 and ki1
are preferable to realise small-signal stability.

In a comparable manner, Fig. 12 shows the eigenvalue loci with
the change in kp2 and ki2, pertaining to Models I, II, and III. 
Figs. 13a and b show the relationships among kp2, ki2, and the real
axis obtained by the three models, and the feasible regions of kp2
and ki2 are kp2 < 0.168; kp2 < 0.158; kp2 < 0.145, ki2 < 109; or ki2 >
329. To verify the results, the time-domain responses of the DC
voltage, simulated in PSCAD, were plotted, as presented in
Figs. 13c and d. These figures indicate that when kp2 steps from
0.05 to 0.165 or when ki2 steps from 10 to 300, no small-signal
instability appears in the system, which agrees only with the stable
region of kp2 < 0.168 obtained in the case of Model I. This analysis
demonstrates that Model I is more accurate than Models II and III,
and the feasible regions of kp2 and ki2 obtained using Models II and
III are too conservative.

5.3 Impact of control parameters of inner loop controller of
VCC on small-signal stability

Fig. 14 shows the eigenvalue loci with changes in kp3 and ki3 and
assists in the evaluation of the impact of the parameters on the
dominant modes (mode 7) of the system, pertaining to Models I, II,
and III. Fig. 14a indicates that when kp3 varies from 0.01 to 5,
mode 7 changes gradually from a negatively damped unstable
mode to an underdamped stable mode. Fig. 14b shows that when
ki3 varies from 1 to 5000, mode 7 obtained using Models I and III
changes from a stable mode to an unstable mode, whereas mode 7
obtained using Model II is continuously stable. Fig. 15 shows the
relationships among kp3, ki3, and the real axis obtained using the
three models, and the feasible regions of kp3 and ki3 are kp3 > 0.41,
ki3 < 3495; kp3 > 0.22; kp3 > 0.6, and ki3 < 3690. Furthermore,
Fig. 14 indicates that a larger value of kp3 and smaller value of ki3
are preferable to ensure small-signal stability.

Similarly, the findings shown in Fig. 16 were used to evaluate
the impact of kp4 and ki4 on the dominant modes (mode 4 and mode
5) of the system, pertaining to Models I, II, and III. Fig. 16a
indicates that when kp4 varies from 0.01 to 10, mode 4 and mode 5
gradually change from unstable negatively damped modes to stable
underdamped modes, and finally, they become overdamped modes.
Fig. 16b shows that when ki4 varies from 1 to 1000, mode 4 and
mode 5 are continuously stable. Fig. 17 shows the relationships
among kp4, ki4, and the real axis as obtained by the three models,
and the feasible regions of kp4 and ki4 are noted to be kp4 > 0.325,
kp4 > 0.321, and kp4 > 0.348. 

5.4 Impact of control parameters of PLL controller on small-
signal stability

The impact of kp and ki on small-signal stability cannot be analysed
using Model III because the PLL controller is ignored in this case.

Fig. 11  Feasible regions of kp1 and ki1 obtained using Models I, II, and III
and variation curves in PSCAD
(a) Relationship between kp1 and real axis, (b) Relationship between ki1 and real axis,
(c) Variation curve of DC voltage when kp1 changes, (d) Variation curve of isd when
ki1 changes

 

Fig. 12  Eigenvalue locus of Models I, II, and III with changes in kp2 and
ki2
(a) With change in kp2 of Model I, (b) With change in kp2 of Models II, III, (c) With
change in ki2 of Model I, (d) With change in ki2 of Models II, III

 

Fig. 13  Feasible regions of kp2 and ki2 obtained using Models I, II, and
III and variation curves in PSCAD
(a) Relationship between kp2 and real axis, (b) Relationship between ki2 and real axis,
(c) Variation curve of DC voltage when kp2 changes, (d) Variation curve of DC
voltage when ki2 changes
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Accordingly, this part discusses the analysis of the impact of kp and
ki on small-signal stability by considering Models I and II.

Fig. 18 shows the eigenvalue loci with changes in kp and ki and
assists in evaluating the impact of the parameters on the dominate
modes (mode 3) of the system pertaining to Models I and II. 
Fig. 18a shows that when kp varies from 0.01 to 100, mode 3
obtained by Model I changes from an unstable mode to a stable
mode, whereas mode 3 obtained using Model II is continuously
stable. Fig. 18b shows that when ki varies from 1 to 1000, mode 3
changes gradually from an overdamped stable mode to an
underdamped stable mode. Fig. 19 shows the relationships among
kp, ki, and the real axis, and the feasible region of kp and ki obtained
using Model I is kp > 0.36. Further, in the case of Model II, the
system is continuously small-signal stable with changes in kp and
ki.

Table 3 shows the effect of neglecting the AC filter (Model II)
or PLL controller (Model III) on the feasible regions of the control
parameters in the VSC station. It can be concluded that using
simplified small-signal models potentially leads to the
determination of optimistic or conservative feasible regions of
control parameters in the VSC station, thereby leading to
inaccurate small-signal stability conclusions.

6 Conclusion
This paper proposed a comprehensive small-signal model of a
VSC-based DC distribution system, which considers the AC filter,
DC distribution cables, and all the controllers in the VSC station.
Based on the ideal AC source, an absolutely stable synchronous
rotating coordinate system was established to avoid the influence
of the SCR of the AC system. To analyse the effect of ignoring AC
filter and PLL controller, two simplified models were also
established and a detailed comparison of the three models was
performed. The primary conclusions of this study can be listed as
follows:

(i) By comparing the time-domain responses of different state
variables, obtained by MATLAB and PSCAD, it can be concluded
that the proposed comprehensive model is more accurate than the
other considered models, and neglecting the AC filter or PLL
controller in the small-signal model may produce a significant
error.
(ii) The eigenvalue analysis indicated that more oscillation modes
appear in the DC distribution system when using the
comprehensive model, and thus, neglecting the AC filter or PLL
controller may weaken the small-signal stability problems of the
DC distribution system.
(iii) Table 3 indicates that using simplified small-signal models
potentially leads to the determination of optimistic or conservative
feasible regions of the control parameters in the VSC station,
which may lead to incorrect small-signal stability conclusions.
(iv) The eigenvalue loci pertaining to the change in the control
parameters in the VSC station indicate that to ensure small-signal
stability, it is preferable to choose smaller values of PI control
parameters of the DC voltage outer loop controller (kp1, ki1), larger
values of the proportional parameters of the active inner loop
controller (kp3), and smaller values of the integral parameters of the

active inner loop controller (ki3). Both underdamped and
overdamped modes emerged in the eigenvalue loci with changes in
the other control parameters (kp2, ki2, kp4, ki4, kp, ki); therefore, the
values of these parameters must be suitably selected according to
the actual condition of the system.

Fig. 14  Eigenvalue locus of Models I, II, and III with the changes in kp3
and ki3
(a) With change in kp3 of Models I, II, and III, (b) With change in ki3 of Models I, II,
and III

 

Fig. 15  Feasible regions of kp3 and ki3 obtained using Models I, II, and
III
(a) Relationship between kp3 and real axis, (b) Relationship between ki3 and real axis

 

Fig. 16  Eigenvalue locus of Models I, II, and III with the changes in kp4
and ki4
(a) With change in kp4 of Models I, II, and III, (b) With change in ki4 of Models I, II,
and III

 

Fig. 17  Feasible regions of kp4 and ki4 obtained using Models I, II, and
III
(a) Relationship between kp4 and real axis, (b) Relationship between ki4 and real axis

 

Fig. 18  Eigenvalue locus of Models I, II, and III with changes in kp and ki
(a) With change in kp of Models I, II, and III, (b) With change in ki of Models I, II,
and III

 

Fig. 19  Feasible regions of kp and ki obtained using Models I, II, and III
(a) Relationship between kp and real axis, (b) Relationship between ki and real axis
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Table 3 Impact of ignoring the AC filter and PLL controller on the feasible domain of the control parameters
Parameters Model I Model II(without AC filter) Impact Model III(without PLL controller) Impact
DC voltage controller kp1 kp1<16.2 kp1<21.7 optimistic kp1<21.7 optimistic

ki1 ki1<1410 ki1<1740 optimistic ki1<1680 optimistic
reactive power controller kp2 kp2<0.168 kp2<0.158 conservative kp2<0.145 conservative

ki2 ki2- ki2- no impact ki2<109 or ki2>329 conservative
active inner controller kp3 kp3>0.41 kp3>0.22 optimistic kp3>0.6 conservative

ki3 ki3<3495 ki3- optimistic ki3<3690 optimistic
reactive inner controller kp4 kp4>0.325 kp4>0.321 optimistic kp4>0.348 conservative

ki4 ki4- ki4- no impact ki4- no impact
PLL controller kp kp>0.36 kp- optimistic — —

ki ki- ki- no impact — —
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