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Abstract
Clinical studies on the relationship between pesticide exposure at home and infertility in the general population are scarce. 
Whether the antioxidant nutrients or other health-related factors affect the pesticide–infertility relationship remains unknown. 
This nationwide study screened 29,400 participants of the National Health and Nutrition Examination Surveys conducted 
between 2013 and 2018. The participants were subdivided according to dietary zinc intake based on the recommended 
dietary allowances as the low-zinc and high-zinc groups (< 8 and ≥ 8 mg/day, respectively), and according to body mass index 
(BMI; cut-off 28 kg/m2) as the low-BMI and high-BMI groups. Participants who were exposed to pesticides at home had an 
increased risk of infertility (odds ratio [OR] = 1.56, 95% confidence intervals [CI]: 1.06–2.29). The incidence of infertility 
differed in low-zinc and high-zinc groups (OR, 95% CI: 2.38, 1.40–4.06 vs. 0.98, 0.53–1.79, respectively), indicating an inter-
action between pesticide exposure and zinc intake in households (P = 0.047), which suggests that a zinc-rich diet may reduce 
the risk of pesticide-induced infertility. Similarly, the relationship between pesticide exposure and infertility risk differed in 
the low-BMI and high-BMI groups (OR, 95% CI: 0.90, 0.42–1.93 vs. 2.23, 1.39–3.58, respectively; P = 0.045), suggesting 
that high BMI may intensify the infertility risk caused by pesticide exposure. These new findings reveal the antagonistic and 
synergistic effect of zinc and obesity, respectively, in pesticide-induced infertility risk and suggest that individuals who are 
obese and on a low-zinc diet may be more susceptible to infertility induced by household pesticide exposure.
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Introduction

Worldwide, an estimated 2.3 billion kg pesticides are used 
in agriculture annually, and pesticides enter our daily 
lives in a variety of ways (Juntarawijit and Juntarawijit 
2018; Nougadère et  al. 2020; de Gavelle et  al. 2016; 
Sieke et al. 2018; Ferré et al. 2018; Benbrook and Davis 
2020). Research has increased the extant concerns that the 
permissible pesticide levels in food may be too high for 
humans, especially vulnerable groups, such as pregnant 
women (Vandenberg et al. 2012; Hayes et al. 2002). Fucic 
et al. showed that many pesticides are endocrine disruptors, 
and that exposure to even very low doses of pesticides may 
produce observable biological effects, such as diabetes, 
neurodegenerative diseases, cancer, and birth defects 
(Fucic et al. 2021). Recently, Chiu et al. reported that eating 
fruits or vegetables with pesticide that were within the 
normal human exposure range was associated with adverse 
reproductive outcomes in humans (Chiu et al. 2018).
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Given the ubiquity of pesticide exposure, eating fewer 
fruits and vegetables seems like a ‘better’ option. However, 
evidence of a relationship between diet and female fertility 
and of a lower fruit intake with infertility has increasingly 
accummulated (Skoracka et al. 2021). To improve their 
chances of conception, many women request treatment with 
dietary supplements with variable ingredients (Vitagliano 
et al. 2021). A systematic review by Salas-Huetos et al. indi-
cated that daily diets rich in some antioxidant nutrients, such 
as vitamin C, vitamin E, selenium, and zinc, were inversely 
associated with low semen quality parameters (Salas-Huetos 
et al. 2017). Owing to these conflicting results, the relation-
ship between pesticide exposure and infertility needs to be 
further investigated. The risks of using pesticides in home 
have also been overlooked. Clinical studies of the relation-
ship between household pesticide exposure and infertility 
are limited, and Morris emphasised the need to replicate 
the association between pesticide exposure and infertility 
(Morris 2018). In addition, obesity is strongly associated 
with infertility and is a major contributor to various causes 
of infertility (Sharma et al. 2013; Talmor and Dunphy 2015). 
Dietary factors and physical fitness might affect the relation-
ship between pesticide exposure and infertility in infertile 
individuals who are exposed to pesticides.

Therefore, we aimed to explore whether effect modifiers, 
such as dietary zinc intake and body mass index (BMI), 
could modulate the relationship between pesticide exposure 
and infertility and to analyse how the dietary zinc intake and 
BMI affect this association.

Materials and methods

Study population and data sources

The nationally representative population and data included 
in this study were sourced from the National Health and 
Nutrition Examination Survey (NHANES), conducted 
by the National Center for Health Statistics (NCHS) and 
Centers for Disease Control and Prevention (CDC), that used 
a complex, multi-stage, stratified sample survey to obtain 
data representative of the entire non-institutionalised US 
population. Continuous public data from the NHANES 
database (three cycles: 2013–2014, 2015–2016, and 
2017–2018) were included in the analysis because only 
three cycles containing the infertility questionnaire were 
completed before the coronavirus disease pandemic. 
We collected demographic, examination, dietary, and 
questionnaire data. During the data processing, we excluded 
individuals for whom data on pesticide exposure, infertility, 
dietary intakes, BMI, and other covariates were missing. 
The final analysis dataset included 2680 American women.

Ethical approval

The study was approved by the NCHS Ethics Review 
Board, and the original protocol is available online (https:// 
www. cdc. gov/ nchs/ nhanes/ irba98. htm). All participants 
aged 18 to 46 years were included and provided written 
informed consent.

Infertility

Infertility was defined based on the response to the 
following item in the questionnaire: ‘Have you ever tried 
and failed to get pregnant for at least a year?’ The response 
‘yes’ was defined as ‘ever infertile’, the response ‘no’ was 
defined as ‘fertile’, and participants with missing responses 
were excluded from the study (Gleason et al. 2019).

Household pesticide exposure

Household pesticide exposure was defined based on the response 
to the following item in the questionnaire: ‘In the past 7 days, 
were there any chemical products used in your/his/her home 
to control fleas, roaches, ants, termites, or other insects?’ The 
response ‘yes’ was defined as ‘household pesticide exposure’, the 
response ‘no’ was defined as ‘no household pesticide exposure’, 
and participants with missing responses were excluded from the 
study (Chen et al. 2020a, b). Moreover, to further understand 
the effects of pesticide exposure, we explored the relationship 
between pesticide metabolites in urine and infertility risk. With 
other covariates complete, a total of 616 participants with 
chlorophenol metabolites in urine (NHANES 2013–2014, 
and 2015–2016), and 738 participants with organophosphate 
metabolites in urine (NHANES 2015–2016, and 2017–2018) 
were available for the analysis.

Dietary antioxidant nutrient intake

The 24-h dietary antioxidant nutrient intake data were 
obtained by dietary recall interview, and all interview 
data were collected by trained professionals in mobile 
examination centres. The 24-h recall interview collection 
method is the most commonly used method to determine 
dietary intake in large surveys and has been used by the 
NHANES for many years based on consensus among 
expert panels (Ahluwalia et al. 2016). The recommended 
dietary allowances (RDA) for zinc, selenium, vitamin E, and 
vitamin C for women are 8 mg/day, 55 µg/day, 15 mg/day, 
and 75 mg/day, respectively. Based on the RDA values, the 
zinc, selenium, vitamin E, and vitamin C intake data were 
categorised into two groups (low and high groups).

https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.cdc.gov/nchs/nhanes/irba98.htm
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Potential covariates

Our study considered the following variables as covariates: 
age, race/ethnicity, family income, smoking status, 
educational level, marital status, work activity, cotinine, 
waist circumference, BMI, alcohol consumption, and 
dietary intakes, such as zinc, selenium, vitamin E, vitamin 
C, caffeine, folate, sodium, potassium, phosphorus, 
calcium, magnesium, copper, iron, lycopene, beta-
cryptoxanthin, beta-carotene, vitamin A, vitamin D, 
vitamin K, lutein-zeaxanthin, niacin, use of multivitamins, 
energy, protein, and fibre. In this study, we categorised 
race/ethnicity as non-Hispanic white, non-Hispanic black, 
other Hispanic, Mexican–American, and other races. 
Family income was defined using the poverty income 
ratio. Education level (as defined by the NHANES) was 
classified as ‘did not graduate from high school’, ‘high 
school graduate’, and ‘college graduate or above’. Marital 
status was classified as ‘married or lives with partner’ and 
‘lives alone’. BMI was obtained from examination data, 
and the participants were categorised into two groups 
based on the value of 28 kg/m2. Participants were asked 
if they had smoked more than 100 cigarettes previously, 
and those who answered that they had been smoking over 
several days or daily were classified as ‘current smokers’; 
those who were not smoking currently were classified as 
‘former smokers’; and those who had not smoked at least 
100 cigarettes previously were regarded as ‘never smokers’. 
Work activity was categorised as vigorous, moderate, and 
light work activities.

Statistical analysis

The statistical software packages of R (http:// www.R- proje 
ct. org, The R Foundation) and Free Statistics software 
version 1.3 were used for all analyses (Yang et al. 2021). 
Categorical and continuous variables are represented by 
the number (n) and percentage (%), and mean and standard 
deviations, respectively. The statistical methods used in the 
analyses include the chi-square test, two-tailed Student’s t 
test, and logistic regression. Model 1 did not consider any 
variables in the univariate analysis. In model 2, age and 
race/ethnicity were considered in the multivariate analysis. 
In combination with previous evidence, and in order to 
obtain more robust results, the following covariates were 
further adjusted in model 3 based on model 2: family 
income, smoking status, educational level, marital status, 
work activity, cotinine, waist circumference, BMI, alcohol 
consumption, and dietary intakes, such as zinc, selenium, 
vitamin E, vitamin C, caffeine, folate, sodium, potassium, 
phosphorus, calcium, magnesium, copper, iron, lycopene, 
beta-cryptoxanthin, beta-carotene, vitamin A, vitamin D, 
vitamin K, lutein-zeaxanthin, niacin, use of multivitamins, 

energy, protein, and fibre. Odds ratios (ORs) and 95% 
confidence intervals (CI) were calculated. The subgroup 
analyses according to the dietary antioxidant nutrient intake 
and BMI were performed using the stratified multivariate 
logistic regression model. We tested for potential interaction 
among the subgroups by using a likelihood ratio test 
comparing the model with only common non-interaction 
term against adding a term to the model in which the two 
predictor variables [pesticide exposure at home × subgroup 
variable (dietary antioxidant nutrient intake or BMI)] 
are multiplied. A two-sided P < 0.05 was considered 
statistically significant.

Results

Baseline characteristics of the study population

A flowchart of the exclusion and inclusion criteria is 
shown in Fig. 1. As shown in Table 1, among the 2860 
participants who met the criteria for inclusion in the final 
analysis, 242 (9.0%) reported exposure to pesticides in 
their households. The mean age of participants in our 
study population was 32.7 ± 7.5 years, and 11.9% of the 
participants self-reported ever infertility. There were no 
significant differences between the pesticide exposure and 
non-exposure groups except for race/ethnicity, poverty 
income ratio, marital status, smoking status, cotinine, and 
infertility. The mean value of zinc, selenium, vitamin E, 
and vitamin C daily intake in the study population were 
8.7 mg, 94.8 ug, 6.9 mg, and 45.1 mg, respectively, and 
the daily intake of vitamin E, and vitamin C was below the 
RDA value. Pesticide use in the study population was more 
likely to occur in lower-income households. Infertility rates 
in the pesticide non-exposure and exposure groups were 
11.5% and 16.1%, respectively.

Association between covariates and infertility risk

The univariate analyses revealed that age, family income, 
BMI, waist circumference, marital status, and smoking 
status were associated with infertility. Dietary antioxidant 
intake, including zinc, selenium, vitamin E, and vitamin 
C, was un-associated with infertility (Supplementary 
Table 1).

Association between pesticide exposure at home 
and infertility risk

As shown in Table 2, in model 1, individuals exposed 
to pesticides in their households had a higher risk of 
infertility than those unexposed (OR 1.48, 95% CI: 
1.03–2.13, P = 0.035). Similar results were obtained using 

http://www.R-project.org
http://www.R-project.org
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model 2, which was adjusted for sociodemographic data 
(OR 1.5, 95% CI: 1.03–2.17, P = 0.033), and a higher 
risk was observed in model 3, which was adjusted for all 
the covariates that are listed in Table 1 (OR 1.56, 95% 
CI 1.06–2.29, P = 0.024). Among associations between 
urinary concentrations of pesticide metabolites and 
infertility risk, Dimethylphosphate was associated with 
infertility risk (OR = 1.05, 95% CI: 1.00–1.09, P = 0.043) 
(Supplementary Table 2).

High dietary zinc intake weakens the association 
between pesticide exposure and infertility risk

A significant interaction was observed between zinc intake 
and household pesticide exposure for infertility (interaction 
likelihood ratio test: P = 0.047; Table 3). Stratified analysis 
based on zinc intake showed that, in the high dietary 
zinc group, infertility rates in the pesticide-exposed and 
-unexposed groups were 11.5% and 11.6%, respectively. 

Fig. 1  Flowchart of the study
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Table 1  Baseline characteristics of the study sample

Variables Total (n = 2680) Pesticide unexposed (n = 2438) Pesticide exposed (n = 242) P value

Demographic
  Age, mean (SD), (years) 32.7 ± 7.5 32.7 ± 7.5 32.8 ± 8.1 0.885

Race, n (%) 0.009
   Mexican American 442 (16.5) 396 (16.2) 46 (19)
   Non-Hispanic White 938 (35.0) 866 (35.5) 72 (29.8)
   Non-Hispanic Black 568 (21.2) 498 (20.4) 70 (28.9)
   Other Hispanic 266 ( 9.9) 244 (10) 22 (9.1)
   Other race 466 (17.4) 434 (17.8) 32 (13.2)
   Poverty income ratio, median (IQR) 1.9 (1.0, 3.7) 2.0 (1.0, 3.8) 1.6 (0.8, 2.8)  < 0.001
Education_level, n (%) 0.197
   College education or above 1768 (66.0) 1621 (66.5) 147 (60.7)
   Graduated from high school 514 (19.2) 461 (18.9) 53 (21.9)
   Did not graduate from high school 398 (14.9) 356 (14.6) 42 (17.4)
Marital_status, n (%) 0.024
  Married or live with partner 1573 (58.7) 1448 (59.4) 125 (51.7)
  Live alone 1107 (41.3) 990 (40.6) 117 (48.3)
  BMI, (kg/m2) median (IQR) 28.2 (23.3, 34.2) 28.2 (23.4, 34.4) 28.1 (23.2, 33.8) 0.746
  Waist_circumference, (cm) Median (IQR) 93.6 (82.1, 107.2) 93.7 (82.1, 107.6) 92.7 (81.8, 104.8) 0.432

Smoke, n (%) 0.019
   Never 1878 (70.1) 1719 (70.5) 159 (65.7)
   Former 302 (11.3) 280 (11.5) 22 (9.1)
  Current 500 (18.7) 439 (18) 61 (25.2)

Work activity, n (%) 0.291
   Light 1482 (55.3) 1356 (55.6) 126 (52.1)
   Moderate 709 (26.5) 646 (26.5) 63 (26)
   Vigorous 489 (18.2) 436 (17.9) 53 (21.9)
  Cotinine, (ng/ml) median (IQR) 0.0 (0.0, 2.3) 0.0 (0.0, 1.6) 0.1 (0.0, 36.3)  < 0.001

Dietary
  Alcohol, (gm) median (IQR) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.807
  Caffeine, (mg) median (IQR) 72.0 (5.0, 150.0) 72.0 (5.0, 150.0) 61.5 (8.0, 159.8) 0.68
  Energy, (kcal) median (IQR) 1850.0 (1381.0, 2366.0) 1843.0 (1380.0, 2359.0) 1998.0 (1412.0, 2492.0) 0.137
  Protein, (gm) median (IQR) 67.5 (49.1, 91.6) 67.6 (49.4, 91.5) 65.7 (45.8, 91.7) 0.575
  Fibre, (gm) median (IQR) 13.4 (8.7, 19.7) 13.5 (8.8, 19.9) 12.7 (8.0, 18.5) 0.106
  Folat, (mcg) median (IQR) 306.0 (205.0, 445.0) 304.0 (207.0, 445.0) 311.5 (186.2, 440.8) 0.672
  Sodium, (mg) median (IQR) 3008.0 (2145.0, 3971.0) 2994.0 (2146.0, 3963.0) 3158.0 (2144.0, 4103.0) 0.277
  Potassium, (mg) median (IQR) 2136.0 (1525.0, 2841.0) 2131.0 (1527.0, 2848.0) 2174.0 (1471.0, 2824.0) 0.612
  Phosphorus, (mg) median (IQR) 1158.0 (832.8, 1530.0) 1158.0 (834.8, 1528.0) 1157.0 (821.2, 1541.0) 0.656
  Calcium, (mg) median (IQR) 783.0 (506.0, 1110.0) 783.0 (505.0, 1109.0) 781.0 (509.5, 1114.0) 0.846
  Copper, (mg) median (IQR) 1.0 (0.7, 1.4) 1.0 (0.7, 1.4) 1.0 (0.7, 1.3) 0.96
  Iron, (mg) median (IQR) 11.1 (7.8, 15.3) 11.1 (7.8, 15.3) 11.0 (7.4, 15.8) 0.908
  Magnesium, (mg) median (IQR) 247.0 (178.0, 331.2) 247.5 (178.2, 332.0) 238.5 (173.2, 315.0) 0.186
  Lycopene, (mcg) median (IQR) 1731.0 (13.8, 5177.0) 1720.0 (12.0, 5177.0) 1910.0 (111.0, 5004.0) 0.566
  Beta-cryptoxanthin, (mcg) median (IQR) 25.0 (7.0, 80.0) 26.0 (7.0, 81.0) 23.0 (6.0, 63.5) 0.188
  Beta-carotene, (mcg) median (IQR) 706.0 (262.0, 2240.0) 718.5 (264.0, 2254.0) 570.5 (248.5, 1923.0) 0.153
  Vitamin A, (mcg) median (IQR) 434.0 (231.8, 720.0) 437.0 (234.2, 720.8) 395.0 (209.2, 702.8) 0.174
  Vitamin D, (mcg) median (IQR) 2.6 (0.9, 5.2) 2.6 (0.9, 5.2) 2.7 (0.6, 4.9) 0.331
  Vitamin K, (mcg) median (IQR) 67.9 (37.1, 135.2) 68.8 (37.4, 136.6) 62.9 (36.2, 129.0) 0.398
  Lutein-zeaxanthin, (mcg) median (IQR) 689.5 (316.0, 1442.0) 699.5 (317.2, 1452.0) 555.0 (298.0, 1285.0) 0.176
  Niacin, (mg) median (IQR) 20.4 (14.1, 27.8) 20.4 (14.2, 27.7) 20.4 (13.5, 28.6) 0.932

Use of multivitamin, n (%) 0.507
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The association between pesticide exposure and infertility 
risk was not statistically significant in the multivariate 
logistic analysis (OR 0.98, 95% CI: 0.53–1.79, P = 0.937). 
However, in the low dietary zinc group, infertility rates in 
the exposed and unexposed groups were 21.4% and 11.3%, 

respectively. Among participants with low zinc intake, 
exposure to pesticides was associated with a 138% higher 
risk of infertility (OR 2.38, 95% CI: 1.40–4.06, P = 0.001). 
Significant interactions were not observed between the intake 
of other antioxidant nutrients (selenium, vitamin E, and 
vitamin C) and pesticide exposure with regard to infertility 
(interaction likelihood ratio tests: P = 0.334, P = 0.356, and 
P = 0.560, respectively; Supplementary Tables 3–5).

High BMI strengthens the association 
between pesticide exposure and infertility risk

Table 4 shows an interaction between BMI and household 
pesticide exposure for infertility (interaction likelihood 
ratio test: P = 0.045). In the low BMI (< 28 kg/m2) group, 
infertility rates in the pesticide-exposed and -unexposed 
groups were 7.4% and 8.6%, respectively. The association 
between pesticide exposure and infertility risk was not 
statistically significant in the multivariate logistic analysis 
(OR 0.90, 95% CI: 0.42–1.93, P = 0.790). However, in the 
high-BMI (≥ 28 kg/m2) group, infertility rates in the exposed 
and unexposed groups were 24.8% and 14.2%, respectively. 
Among participants with a higher BMI, exposure to 
pesticides was associated with a 123% increased risk of 
infertility (OR 2.23, 95% CI: 1.39–3.58, P = 0.001).

Table 1  (continued)

Variables Total (n = 2680) Pesticide unexposed (n = 2438) Pesticide exposed (n = 242) P value

  No 2653 (99.0) 2412 (98.9) 241 (99.6)
  Yes 27 ( 1.0) 26 (1.1) 1 (0.4)

Antioxidants
  Vitamin C, (mg) median (IQR) 45.1 (18.8, 104.7) 45.2 (18.8, 105.2) 43.0 (19.4, 97.1) 0.95
  Vitamin E, (mg) median (IQR) 6.9 (4.5, 10.5) 6.9 (4.5, 10.4) 6.9 (4.3, 11.3) 0.726
  Selenium, (mcg) median (IQR) 94.8 (67.5, 129.4) 94.8 (67.9, 129.1) 95.5 (63.4, 131.5) 0.998
  Zinc, (mg) median (IQR) 8.7 (6.0, 12.0) 8.7 (6.0, 11.9) 8.6 (5.8, 12.2) 0.564

Infertile, n (%) 0.044
  Fertile 2361 (88.1) 2158 (88.5) 203 (83.9)
  Ever infertile 319 (11.9) 280 (11.5) 39 (16.1)

Table 2  Association between pesticide exposure at home and infertil-
ity risk

OR, odds ratio; CI, confidence intervals
a Model 1: unadjusted
b Model 2: adjusted for sociodemographic covariates
c Model 3: adjusted for all covariates listed in Table 1

N (%) OR 95% CI P value

Model  1a

  No pesticide expo-
sure

2483 (11.5) Reference

  Pesticide exposure 242 (16.1) 1.48 1.03–2.13 0.035
Model  2b

  No pesticide expo-
sure

2483 (11.5) Reference

  Pesticide exposure 242 (16.1) 1.50 1.03–2.17 0.033
Model  3c

  No pesticide expo-
sure

2483 (11.5) Reference

  Pesticide exposure 242 (16.1) 1.56 1.06–2.29 0.024

Table 3  Association between 
pesticide exposure at home and 
infertility risk by dietary zinc 
intake

OR, odds ratio; CI, confidence intervals
Adjusted for all covariates listed in Table 1

Subgroup N (%) OR 95% CI P value P value for interaction

Zinc intake (< 8 mg/day) 0.047
  No pesticide exposure 1069 (11.3) Reference
  Pesticide exposure 112 (21.4) 2.38 1.40–4.06 0.001

Zinc intake (≥ 8 mg/day)
  No pesticide exposure 1369 (11.6) Reference
  Pesticide exposure 130 (11.5) 0.98 0.53–1.79 0.937
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Discussion

In a nationally representative sample of adult women in 
the US general population, we explored the association 
between pesticide exposure at home and infertility risk, and 
then examined the modifiers of this relationship. In the low 
dietary zinc intake group, pesticide exposure was associated 
with a 1.38-fold increased risk of infertility compared with 
the pesticide-unexposed group. No association was found 
between pesticide use at home and infertility in the high 
dietary zinc intake group, which indicates that zinc intake 
may play a protective role against pesticide-exposure-
induced infertility. Conversely, in the high-BMI group, 
pesticide exposure induced a 1.23-fold increase in the risk of 
infertility, whilst no association between pesticide exposure 
and infertility was found in the low-BMI group, thereby 
suggesting a synergistic effect of BMI on the infertility risk 
that is triggered by household pesticide exposure. Therefore, 
our results indicate that dietary zinc intake and BMI act as 
modifiers of the association between household pesticide 
exposure and infertility.

Numerous studies have shown that occupational exposure 
or residence near agricultural environments where pesticides 
are frequently used confers a higher risk of adverse 
reproductive health outcomes (Shirangi et al. 2008; Naidoo 
et al. 2011; Razi et al. 2016; Settimi et al. 2008; Rahimi 
et al. 2020). In the few studies that found no such association 
(Bell et al. 2001; Willis et al. 1993), dietary zinc intake 
might not have been considered. Approximately 20% of 
the world’s population and 10% of the US population have 
zinc deficiency (Chen et al. 2020a, b). Moreover, studies 
exploring the influence of pesticides on infertility in the 
general population are limited. Our results further explored 
that pesticide exposure at home is associated with infertility 
risk in the general population. Our results are in line with the 
results of a recent study by Chiu et al., which showed that 
dietary pesticide exposure, even through fruits and vegetables, 
is associated with infertility (Chiu et al. 2018), which raises 
widespread concerns about dietary pesticide exposure. 
Pesticides demonstrate their toxic influence on humans and 
animals via oxidative stress-mediated pathways (Weis et al. 

2021; Sharma et al. 2020; Pašková et al. 2011). However, 
fruits and vegetables, as part of our healthy diet, contain many 
antioxidant nutrients, such as zinc, selenium, vitamin C, and 
vitamin E (Millen et al. 2016). However, it remains unknown 
whether these antioxidant nutrients or other health-related 
factors affect the pesticide–infertility relationship.

Our results showed a significant association between pes-
ticide exposure and infertility in the low-zinc diet group but 
not in the high-zinc diet group, suggesting a beneficial effect 
of daily zinc intake as recommended based on the RDA. 
We found that other antioxidant nutrients did not have the 
same effect as zinc. Different nutrient elements may not have 
the same effect intensity, and further experimental studies 
are needed to elucidate their effects. Dietary supplements 
containing zinc are important for fertility (Garolla et al. 
2020; Mumford et al. 2020; Vickram et al. 2021). Kerns 
et al. proposed that zinc is an essential ion for the ability of 
mammalian sperm to fertilise an ovum (Kerns et al. 2018). 
Similarly, Ebisch et al. concluded that zinc is important in 
the pathogenesis and prevention of infertility, considering 
its antioxidant properties (Ebisch et al. 2007). However, 
a new rigorous randomised controlled trial conducted by 
Schisterman et al. revealed that zinc supplementation did not 
significantly improve live birth rates among couples seeking 
infertility treatment (Schisterman et al. 2020), which disre-
garded the effect of some important potential factors, such as 
pesticide exposure. Despite these inconsistent results, given 
that zinc supplementation can alleviate infertility caused by 
pesticide exposure in daily life, we believe that zinc supple-
mentation is necessary for the infertile population. In addi-
tion, zinc, as a cofactor, is essential for the functioning of 
more than 300 enzymes (Vallee and Falchuk 1993). Zinc is 
the only metallic element that is required in all six classes 
of enzymes, i.e., lyases, ligases, transferases, isomerases, 
oxidoreductases, and hydrolases (Kerns et al. 2018). Upon 
entering the body, pesticides are metabolised by a number 
of biological metabolic enzymes, including paraoxonase and 
glutathione S-transferase (Volk et al. 2011), and zinc sup-
plementation may be beneficial in accelerating the metabolic 
elimination of pesticides. Furthermore, zinc interacts with 
cell membranes to counter the effects of various harmful 

Table 4  Associations between 
pesticide exposure at home and 
infertility risk by BMI

OR, odds ratio; CI, confidence intervals
Adjusted for all covariates listed in Table 1

Subgroup N (%) OR 95% CI P value P value for interaction

BMI (< 28 kg/m2) 0.045
  No pesticide exposure 1193 (8.6) Reference
  Pesticide exposure 121 (7.4) 0.90 0.42–1.93 0.79

BMI (≥ 28 kg/m2)
  No pesticide exposure 1245 (14.2) Reference
  Pesticide exposure 121 (24.8) 2.23 1.39–3.58 0.001



 Environmental Science and Pollution Research

1 3

substances that cause oxidative damage (Malhotra and 
Dhawan 2014). Goel et al. found that zinc supplementation 
played a potentially protective role in alleviating toxicity 
induced by chlorpyrifos in rats (Goel et al. 2005).

A significant association between pesticide exposure 
and infertility was found in the high BMI-group but not 
in the low-BMI group, suggesting the potential impact 
of obesity on this association. Obesity is associated with 
various adverse reproductive outcomes, including ano-
vulation, infertility, and an increased risk of miscarriage 
(Talmor and Dunphy 2015). The mechanism of obesity-
related decline in female fertility occurs through influ-
ences on endometrial receptivity, oocyte quality, and the 
hypothalamic-pituitary-ovarian axis (Ramlau-Hansen 
et al. 2007; Van Der Steeg et al. 2008). A clinical study 
conducted by Zhang et al. found a positive association 
between pesticide exposure and obesity (Zhang et  al. 
2019). However, the exact mechanism whereby obe-
sity interacts with pesticides to cause infertility is still 
unclear. Notably, Gutgesell et al. concluded that, given 
their lipophilic nature, many pesticides can accumulate in 
fatty tissue (Gutgesell et al. 2020). Therefore, it is reason-
able to believe that the synergistic effect of obesity and 
pesticide exposure on infertility risk occurs because the 
excess fat in the body delays the excretion of pesticides, 
thereby exacerbating their toxic effects. Further experi-
mental studies are necessary to verify our hypothesis.

Our study had some limitations. First, the inherent 
nature of cross-sectional studies precludes the inference 
of a temporal cause-effect relationship. Second, detailed 
information, such as the type, intensity, frequency, and 
duration of household pesticide exposure, which may 
have various effects on infertility, was unavailable in the 
NHANES database. Third, self-reported data may have 
introduced recall bias in mobile examination centre inter-
views. However, the incidence of infertility and pesticide 
exposure was generally consistent with that reported in 
the existing literature (Chen et al. 2020a, b; Glazer et al. 
2019). Fourth, though the multi-stage stratified prob-
ability design method was used, the participants in the 
NHANES database are American citizens and are not 
fully representative of people living in other regions of 
the world. Given these limitations, well-designed multi-
centre, controlled trials may be needed to confirm our 
findings.

Conclusion

In summary, we found an association between household 
pesticide exposure and infertility risk in the general adult 
female population. For the first time, we have reported 
the antagonistic effects of zinc and the synergistic 

effects of obesity in the mediation of pesticide-induced 
infertility. Though these new findings raise the concern 
that obese individuals who are on a low-zinc diet may be 
more susceptible to infertility triggered by the chronic 
toxicity of inevitable pesticide exposure in daily life, more 
evidence from randomised controlled studies is needed. 
Furthermore, experimental studies are essential to elucidate 
the exact interplay among zinc, obesity, pesticides, and 
infertility.
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