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I.  INTRODUCTION 

OR stroke patients, active rehabilitation training with the 

voluntary participation of patients can improve the 

rehabilitation effect [1], [2]. Therefore, human-machine 

interfaces (HMIs) are widely used for the active control of 

rehabilitation devices, in which the electroencephalogram 

(EEG) and surface electromyogram (sEMG) are commonly 

used for the manifestation of motion intention [3]–[6]. 

However, the single-modality manipulation of EEG or sEMG 

cannot sufficiently satisfy the requirements of active control. 

For instance, the sEMG signals of stroke patients could be too 

weak to manifest their motion intention [7], and muscular 

fatigue will deteriorate sEMG signals [9], [8]. In contrast to 

sEMG signals, EEG signals have a lower amplitude and a larger 

amount of noise, which makes them less accurate and 

unreliable [10], [11]. Therefore, the use of single-modality 

decoding via EEG or sEMG for motion intention is not the 

optimal solution. 

Multi-modal fusion can capture the complementary 

 
Manuscript received August 23, 2022; Revised October 28, 2022; 

Accepted x x, 2022. This work was supported in part by the National 
Natural Science Foundation of China (Grant No. 51975451). S. Yang 
and M. Li are co-first authors. (Corresponding author: Min Li; E-mail: 
min.li@mail.xjtu.edu.cn).  

S. Yang, M. Li, and J. Wang are with the Department of Mechanical 
Engineering, Xi’an Jiaotong University, Xi’an 710049, China. 

information of different modalities, thus improving the 

recognition accuracy and prediction robustness [12]. Many 

scholars have proposed approaches for the fusion of EEG and 

sEMG [5], [9]–[11], [13]. Nevertheless, most of the existing 

fusion methods are model-agnostic approaches [12] that mainly 

rely on manually-selected features. Leeb et al. [9] extracted the 

power spectral density (PSD) features of EEG signals and the 

threshold features of motions to train two Gaussian classifiers, 

respectively. The EEG and sEMG classification results were 

then fused by a Naïve Bayesian method to predict the final 

result. The accuracies of EEG and sEMG were respectively    

73% and 83%, and the accuracy of the fusion of the two 

modalities reached 93%. Al-Quraishi et al. [5] employed 

discriminant correlation analysis (DCA) to fuse 21 EEG 

channels with sEMG signals, and used the linear discriminant 

analysis (LDA), k-nearest neighbors (k-NN), Naïve Bayesian, 

random forest, and decision tree models to classify four classes 

of ankle motion. Li et al. [10] extracted the temporal features of 

EEG and sEMG signals and used parallel concatenation to fuse 

the features, after which five classes of hand motions of 

amputees were classified by LDA. Chowdhury et al. [11] used 

the correlation between band-limited power time-courses 

(CBPT) as the fused features of EEG and sEMG to classify 

hand grasp motion, and achieved an accuracy of 84.53 ± 4.58% 

for the group of disabled patients. However, these existing 

methods are characterized by several defects. First, the features 

are extracted by human-designed algorithms, which may lose 
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the intrinsic information of the raw data [14]. Second, the 

fusion and prediction processes are separated, thus it hinders 

the model from optimizing different parts of itself [15]. Third, 

there are relationships between the spatial distribution and 

functional couplings of the EEG and EEG channels and the 

EEG and sEMG channels [16], [17]. While the conventional 

fusion methods only fuse the features at the numerical level, 

which ignores the real-world connections between the different 

channels.  

Neural network is a model-based fusion approach that has 

shown promising performance in many assignments [12], and it 

can automatically complete feature extraction and fusion, as 

well as end-to-end prediction [15]. It solves the first two 

problems mentioned above, but still fails to manifest the 

couplings and spatial distribution of sEMG and EEG. For 

instance, as one of the most famous deep learning methods, the 

convolutional neural network (CNN) has shown excellent 

classification ability in many assignments [18], [19], but it can 

only deal with regularized input such as pictures or videos [16]. 

In essence, due to the spatial distribution of EEG and sEMG 

electrodes and the functional couplings between them [13], 

graph is a more appropriate description.  

Graph theory is more advantageous in dealing with signals 

from the discrete spatial domain [20]. As an extension of CNN, 

graph convolutional network (GCN) has shown brilliant 

performance in the feature extraction and classification of EEG 

signals. For instance, Song et al. [16] built the Dynamical 

Graph Convolutional Neural Network (DGCNN), which takes 

the PSDs of different EEG channels as the input to classify six 

categories of emotions. Li et al. [21] proposed the Graph-based 

Convolutional Recurrent Attention Model (GCRAM), which 

represents the spatial characteristics by graph embedding and 

uses a convolutional recurrent attention network to extract 

features and fulfill classification. They also investigated the 

influence of three different connections on accuracy. Although 

GCN is successful in dealing with EEG-related assignments, to 

the best of the authors’ knowledge, it has not yet been 

employed in building a model-based fusion approach for EEG 

and sEMG. 

In this work, the GCN-based Fusion Strategy for EEG and 

sEMG (GFSEs) is constructed. It aims at providing a more 

accurate and robust solution for the recognition of hand motion 

intention under muscle fatigue situation. That method has the 

potential to improve the accuracy and reliability of active 

control for stroke rehabilitation. The three steps of feature 

extraction, feature fusion, and classification are connected and 

coherent, which enables the model to learn from each step and 

realize end-to-end prediction. There are two reasons of building 

fusion model based on GCN. First, GCN is one of the powerful 

and widely used models in deep learning [22], and it can process 

non-Euclidean structure data and complete computation fast 

[23]. Second, compared with other graph neural networks 

(GNNs) that focus on the features of each node, GCN manifests 

the global information of the whole graph [24]. This matches the 

requirement of using multiple electrodes to represent user’s 

intention. 

The construction of an sEMG and EEG fusion graph faces 

numerous challenges. First, unlike EEG graphs, in which the 

distribution of the EEG electrodes is definite according to brain 

regions [15], [16], the electrodes of muscles and brain neurons 

do not share a definite spatial distribution. Therefore, the proper 

topological structure of the fusion graph should be studied. 

Second, the edge weights of the fusion graph are crucial for 

graph convolution. Thus, the appropriate connection should be 

investigated. Third, the amplitude of EEG signals is much 

weaker than that of sEMG signals [25]; if the two signals are 

directly input into the graph, the EEG information may be 

neglected. Thus, a suitable standardization method should be 

investigated to make full use of the intrinsic information of both 

types of signals. 

In this paper, three key problems are investigated, including 

the topologies of the fusion graph, the functional connectivity 

between nodes, and the proper standardization approach for the 

fused data. In the experiments, all the models are tested by 

sEMG at a 0%-30% “fatigue” level via 10 rounds of five-fold 

cross-validation. Four different fusion graphs with two different 

standardization methods are tested, and the effects of several 

functional connectivity approaches are then investigated. 

Finally, the best model is compared with the other models using 

parallel fusion approach and models of single-modality data. 

The arrangement of the remainder of this paper is as follows. 

Section Ⅱ introduces the methodology of the fusion model. 

Section Ⅲ describes the data acquisition protocol and the 

experiments in terms of the accuracy of different models. 

Section Ⅳ discusses the phenomena observed in this work, and 

Section Ⅴ provides the final conclusion. 

II. METHODOLOGY 

A. Overview of the Multi-Modal Fusion Method 

The overview of the proposed GFSEs is shown in Fig. 1. The 

 
Fig. 1.  The overview of the GCN-based Fusion Strategy for EEG and sEMG (GFSEs). 
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whole process consists of three procedures: preprocessing and 

standardization, feature extraction and fusion, and classification 

and prediction. It is an end-to-end approach in which the raw 

EEG and sEMG signals are separately pre-processed and then 

cropped along the temporal sequence. After pre-processing, the 

data is cropped into segment and standardized within the 

segment. Then functional connectivity values of each two 

channels are computed and assigned to the corresponding edges 

of the graph. Finally, the data of each channel is input into the 

matching nodes to complete the construction of one fusion 

graph. In essence, each graph represents the state of motion 

intention during a specific period, and its features are extracted 

and fused by the GCN. Then, a fully connected (FC) network 

completes the prediction procedure. 

B. Recording and Pre-processing of EEG and sEMG 
Data 

In this study, 12 channels of EEG signals and 4 channels of 

sEMG signals were simultaneously recorded by SynAmps2 

(Neuroscan, USA) at a rate of 𝑓𝑠  =  500 Hz. All the EEG 

electrodes were positioned according to the international 10-10 

system using Ag/AgCl electrodes. The involved EEG 

electrodes were FZ, FC1, FCZ, FC2, C3, C1, CZ, C2, C4, CP1, 

CPZ, CP2, PZ, M1, and M2. M1 and M2 were the reference 

electrodes. Moreover, the bi-polar sEMG electrodes on the 

right arm of the subjects were positioned according to the 

Surface EMG for Non-Invasive Muscle Evaluation (SENIAM, 

seniam.org) criteria. The sEMG differential electrodes 1 to 4 

were mounted on the extensor digitorum, extensor carpi radialis, 

superficial digital flexor, and flexor carpi ulnaris of all the 

subjects, respectively. 

Let 𝑁𝑒  and 𝑁𝑚  represent the number of EEG and sEMG 

channels, respectively, and 𝑁𝑎 = 𝑁𝑚 + 𝑁𝑒 is the total number 

of electrodes. In each recording, the raw data were a 

two-dimensional (2D) matrix 𝑿 ∈ ℝ𝑁𝑎×𝑘 . Each row represents 

the recording samples 𝑹𝑖 |𝑖∈ [1,𝑁𝑎] = [𝑝1
𝑖  , 𝑝2

𝑖  , . . . , 𝑝𝐾
𝑖 ] from the 

i-th electrode, where 𝐾 = 𝑇 × 𝑓𝑠, and 𝑇 is the duration of the 

recording. Then, the EEG signals were bandpass-filtered 

between 1 and 70 Hz, and the EMG signals were filtered by a 

fourth-order Butterworth bandpass filter between 10 and 200 

Hz.  

It is difficult to quantify fatigue levels, and the subjective 

feelings of subjects are inaccurate. To assess the robustness of 

the fusion method, Leeb et al. [9] degraded the amplitude of 

sEMG signals to simulate muscular fatigue at different levels. 

In this study, a simulation method was employed to produce 

graded fatigue sEMG signals at fatigue levels of 0%-30%. As 

shown in Equation (1), They were simulated by degrading the 

amplitude of the sEMG signal and adding a proportional 

Gaussian noise to it. The percentage of Gaussian noise is 

defined according to the signal-to-noise ratio (SNR). The 

reasons of adding noise are: when fatigue increases, the 

variance of EMG’s amplitude will increase, and its root mean 

square will rise[26]-[28]. Besides, reducing the amplitude 

simulates the exhausted situation of participant. For instance, a 

10% fatigue sEMG signal is produced by adding a 10% 

Gaussian noise to the signal which has been 10% reduced (has 

90% amplitude of the original signal). 

{
 
 

 
 

𝜀𝑛 |𝑛𝜖[0,0.1,0.2,0.3] = √
𝑃𝑁
𝑃𝑠

𝑹𝒇𝑛 |𝑛𝜖[0,0.1,0.2,0.3]
𝑖 = 𝑹𝑖 × (1 − 𝑛) + 𝜀𝑛 × 𝑹𝒏𝒊

 ,        (1) 

where 𝜀𝑛 is the percentage of Gaussian noise, 𝑃𝑁  and PS are 

respectively the noise signal power of 𝑹𝑖, 𝑹𝒇𝑛
𝑖  is the simulated 

fatigue signal from 0 to 30%, and 𝑹𝒏𝒊 is a random vector that 

has the same size as 𝑹𝑖 in a standard normal distribution. 

C. Functional Connectivity of EEG and sEMG Signals 

In this section, three approaches of functional connectivity 

are employed to represent the couplings of EEG with sEMG and 

EEG with EEG. Pearson coefficient, mutual information, and 

coherence are employed as the weights of edges, and they are 

computed by Equations (2), (3), and (4), respectively. For all of 

the equations, when applied in EEG-EEG channels they 

represent the synchronization of brain regions and the activity 

patterns of brain [30], [31]. When applied in EEG-sEMG 

channels, they describe the information transmission of the loop 

between cortex and muscle, thus manifest the causation of 

sEMG by EEG [33],[25]. 

𝑟 =
∑(𝑥 − 𝑚𝑥)(𝑦 −𝑚𝑥)

√∑(𝑥 − 𝑚𝑥)
2∑(𝑦 − 𝑚𝑦)

2
 ,                    (2) 

where 𝑥  and y are the two vectors used to compute the 
functional connectivity, 𝑟  is the Pearson coefficient, and 
𝑚𝑥 and 𝑚𝑦 are the mean values of the vectors, respectively.  

𝐶𝑥𝑦 =
𝑎𝑏𝑠(𝑃𝑥𝑦)

2

(𝑃𝑥𝑥 ∙ 𝑃𝑦𝑦)
 ,                                      (3) 

where 𝐶𝑥𝑦 is the coherence of x and y, 𝑃𝑥𝑥 and 𝑃𝑦𝑦 are the PSDs 

of x and y, respectively, and 𝑃𝑥𝑦  is the cross-spectral density of x 

and y. 

{
 
 

 
 𝐼(𝑥; 𝑦) =∑ ∑ 𝜌(𝑥, 𝑦) log (

𝜌(𝑥, 𝑦)

𝜌(𝑥)𝜌(𝑦)
)

𝑦𝑥

𝑁𝑜𝑟𝑀𝐼(𝑥; 𝑦) =
𝐼(𝑥; 𝑦)

√𝐻(𝑥)𝐻(𝑦)

 ,         (4) 

 
 
Fig. 2. The constructures of the four fusion graphs. From 1 to 9, the 
channels are FC, C3, CZ, C4, PZ, sEMG1, sEMG2, sEMG3, sEMG4. 
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where 𝐼(𝑥; 𝑦) is the mutual information between x and y, and 

𝜌(𝑥) and 𝜌(𝑦) are the probability density functions of x and y, 

respectively. The joint probability density is defined as 𝜌(𝑥, 𝑦), 
𝐻(𝑥) and 𝐻(𝑦)  are the Shannon entropies of x and y, 

respectively, and 𝑁𝑜𝑟𝑀𝐼(𝑥; 𝑦)  is the normalized mutual 

information. 

For each edge, its functional connectivity is 𝑊𝑖 =
𝐹𝑓𝑐(𝑹𝒘𝑚 , 𝑹𝒘𝑛) , where 𝑖𝜖𝑀𝑒  is the index of the edges, 

𝑚, 𝑛𝜖 [1, 𝑁𝑎]  are the indexes of the nodes, and 𝐹𝑓𝑐  is the 

connectivity computation method. According to previous 

studies [25] , [32], coherence within 10–15 Hz is set as the edge 

weight. Moreover, the weights of the Pearson coefficient and 

mutual information are normalized by min-max standardization. 

The performance of all the connectivity approaches was tested, 

as reported later. 

D. Standardization and Topological Structure of the 
Fusion Graph  

An undirected graph 𝐺 =  (𝑿𝒘 , 𝑬, 𝑨) is constructed for each 

window of the signals. In each graph, the temporal signal 

sequence 𝑹𝒇𝑛
𝑖  is cropped into slices 𝑹𝒘𝑖 |𝑖∈ [1,𝑁𝑎] =

[𝑝1
𝑖  , 𝑝2

𝑖  , . . . , 𝑝𝐾𝑤
𝑖 ]  via a sliding window to manifest local 

features, where 𝐾𝑤 =  𝑇𝑤 × 𝑓𝑠 , and 𝑇𝑤  is the length of the 

sliding window. Moreover, 𝑹𝒘𝑖  are the features of the i-th node 

of graph 𝐺, and 𝑿𝒘 is the feature matrix of graph 𝐺. Finally, A

∈ℝ𝑁𝑎×𝑁𝑎 is a binary or weighted adjacency matrix describing 

the connections between the nodes, 𝑬𝑖|𝑖𝜖𝑀𝑒  represents the edges 

between the nodes, and 𝑀𝑒 is the total number of the edges.  

As shown in Fig. 2, four topological structures of the fusion 

graph are proposed: 2 EEG with no sEMG-sEMG edges 

(2EnMe), 5 EEG with no sEMG-sEMG edges (5EnMe), 2 EEG 

with sEMG-sEMG edges (2EwMe), and 5 EEG with 

sEMG-sEMG edges (5EwMe). In EEG map, C3, C4 and CZ are 

electrodes located in brain’s sensory and motor region, and the 

movement of right hand has significant effects on the potential 

of C3 and C4 [29]. Moreover, refer to the design in [11], PZ and 

FCZ are also added into the graph to give a comprehensive 

description of brain activity. All the EEG nodes are placed by 

spatial position and connected to neighboring nodes, and all the 

sEMG nodes are connected to each of the EEG nodes through 

functional connectivity. EMG-EMG connection of each node is 

also constructed to test whether it has a positive effect or not.  

For each graph, the feature matrix 𝑿𝒘  is standardized by 

Z-score standardization (5) and min-max standardization (6), 

respectively. Additionally, the edges of the graphs are weighted 

by the corresponding values of functional connectivity. The 

datasets of fusion graph 𝐺𝑑𝑛=[0,0.1,0.2,0.3]
𝑖  were constructed, and 

their performance was experimentally investigated, as described 

later.  
 

𝑝𝑖 − 𝜇

𝜎
,                                            (5) 

𝑝𝑖 − 𝑝𝑚𝑖𝑛
𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

  ,                                   (6) 

where 𝑝𝑖  is the signal sample in a column of 𝑿𝒘, 𝑝𝑚𝑖𝑛  is the 

minimum value of the column, 𝑝𝑚𝑎𝑥  is the maximum value of 

the column, 𝜇 is the mean value of the column, and 𝜎 is the 

standard deviation of the column. 

E. Graph Convolution and Model Training  

In this work, GCN is employed to learn the fusion graph 

representation, and the fusion features are sent to FC layers to 

output the final prediction. The specific operation of graph 

convolution was described in a previous work [34], and the 

basic format of graph convolution is given by Equation (7):  

𝐻𝑙+1 = 𝜎(�̃�−
1
2 ∙ (�̃� − �̅�) ∙ �̃�−

1
2 ∙ 𝐻𝑙 ∙ 𝑊𝑙),                (7) 

where 𝐻𝑙 ∈ ℝ𝑁𝑎×kl |𝑙∈[1,𝑡𝑚𝑎𝑥]  is the l-th feature matrix, 

𝑊𝑙 ∈ ℝkl×n |𝑙∈[1,𝑡𝑚𝑎𝑥]  is the l-th weight matrix, 𝑡𝑚𝑎𝑥  is the 

maximum training time, and 𝑘𝑙 is the length of the features of 

each node in the l-th iteration. Moreover, �̃�∈ℝ𝑁𝑎×𝑁𝑎  is the 

degree matrix of the graph, �̅� ∈ ℝ𝑁𝑎×𝑁𝑎 = A + I, and 𝜎 is the 

activation function.  

The GCN could be perceived as a form of Laplacian 
smoothing, the deeper layer would cause over-smoothing [35], 
so the layers should not be too deep. According to the previous 

studies, the GCN layers are often set as two [16], [36]; thus, two 

GCN layers are used in the model. Three FC layers are added 

after the GCN layers to fully classify the features. As reported in 

Table Ⅰ, the detailed parameters of the GCN and FC layers are 

set by experience and tests, and 𝑥 is the tensor in the forward 

process. The last GCN layer represents the graph 𝐺 by a feature 

 
Fig. 3.  The experiment protocol of acquisition of EEG and sEMG 
signal. A session contains four trials. 
 

 
 

Fig. 4. The setting of the acquisition system. 

TABLE I 
THE PARAMETERS OF THE FUSION AND PREDICTION MODEL 

Layer Input size  output size  Operation  

GCN layer 1 (𝑁𝑎 , 𝑘𝑤) (𝑁𝑎 , 512) 𝑅𝑒𝑙𝑢(𝑥) 

GCN layer 2 (𝑁𝑎 , 512) (𝑁𝑎 , 256) 𝐵𝑁(𝑅𝑒𝑙𝑢(𝑥)) 

Flatten layer (𝑁𝑎 , 256) (1,𝑁𝑎 × 256) None 

FC layer1 (1,𝑁𝑎 × 256) (1,1024) 𝐵𝑁(𝑅𝑒𝑙𝑢(𝑥)) 

FC layer2   (1,1024) (1,512) 𝐵𝑁(𝑅𝑒𝑙𝑢(𝑥)) 

FC layer3 (1,512) (1, 𝑐𝑙𝑎𝑠𝑠) 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝑙𝑢(𝑥)) 
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matrix 𝑃∈ℝ𝑁𝑎×kx, where 𝑘𝑥 is the number of features of the 

last GCN layer. Then, 𝑃 is flattened and directly input into the 

FC layers, instead of being pooled. For each layer, ReLU is the 

activation function, and batch normalization (BN) is used in the 

second GCN layer and every FC layer.  

For all the experiments, the dataset 𝐺𝑑𝑛
𝑖  was validated via 

five-fold cross-validation by fatigue level. Before training, all 

the layers were initialized by Xavier. In each fold, the ratio of 

the training and testing datasets was 8:2, the number of training 

epochs was 40, and the training batch size was set as 32. For all 

the models, cross entropy was set as the loss function, and the 

learning rate of Adam optimizer was set as 0.0001. 

III. EXPERIMENT AND RESULTS 

A. Acquisition Experiments of EEG and sEMG Signals  

Five male and three female subjects were recruited to collect 

their EEG and sEMG signals. They were all healthy 

postgraduate students with an average age of 23.8. Four motion 

classes were involved in the protocol, including wrist flexion 

(WF), wrist extension (WE), fist grip (FG), and five fingers 

open (FFO). During the experiments, each subject sat at a 

comfortable chair in a quiet room, and a computer screen was 

placed about 40 cm from the subject at a stable table. The 

recording system was initiated according to the criteria defined 

in Section Ⅱ.B, and the EEG and sEMG signals were 

simultaneously documented. This study was reviewed and 

approved by the Institutional Review Board of Xi’an Jiaotong 

University (Approval No. 2019-584).  

The acquisition protocol is shown in Fig. 3. For each subject, 

the experiment consisted of 40 repeated sessions, each session 

contained four trials, and one movement was presented in each 

trial. At the beginning of the experiment, the subject was 

instructed about the protocol and asked not to move their body 

during the recording. Before each trial, a sign of “ready to start” 

appeared on the screen and lasted for 1 second, and then a short 

text denoting “wrist flexion,” “wrist extension,” “fist grip,” or 

“fingers open” was displayed on the screen in random order. 

Each prompt lasted for 5 seconds, and the subject maintained the 

motion for the duration of the prompt. Between every two trials, 

there was a 5-second rest. After 10 consecutive sessions, the 

subjects could rest until they were not fatigued. In total, 40 

sessions × 4 movements × 5 seconds = 1760 seconds of 

activation data was acquired for each subject. Considering the 

signals from 1s to 4s after the prompt as the valid data, a 

window with a length of 200 recording points and a step of 200 

was employed to crop the data. Then dataset 𝐺𝑑𝑛
𝑖  was 

constructed. Under each fatigue level, 1,120 graph samples are 

included. 

B. Experiments on the Accuracy and Robustness of the 
Different Topologies and Standardization Methods 

In this section, the Pearson coefficient was assigned as the 

weight values for all the edges of the eight graph datasets 𝐺𝑑𝑛
𝑖 . 

Then, they were tested via 10 rounds of five-fold 

cross-validation. The experimental results are reported in Table 

Ⅱ. For each subject, the mean accuracies and standard 

deviations are listed by fatigue level. The bold numbers indicate 

the highest accuracy in each row.  

The results reveal four conclusions. First, the topology 

2EnMe obtained the highest accuracy among all the topological 

structures under three different fatigue levels. The highest 

accuracy was 98.66%, which was achieved by subject 5. Second, 

when the topology was the same, the group of using min-max 

standardization had higher accuracies than those of using 

Z-score standardization. Third, when the basic topology was the 

same, adding EMG-EMG connections would reduce the 

accuracy. For example, in min-max group, the average accuracy 

of 2EnMe was 93.86%, but that of 2EwMe was 92.86%. Fourth, 

when other parameters were the same, the graphs using 2 EEG 

nodes obtained better accuracies than those with 5 EEG nodes. 

TABLE III 
 P-VALUES BY K-W TEST AND M-W TEST FOR DIFFERENT TOPOLOGIES 

Subject 
P-values of 

K-W test 

P-values of Mann-Whitney test 

2EnMe with 

2EwMe 

2EnMe with 

5EnMe 

2EnMe with 

5EwMe 

S1 3.91E-05 1.83E-04 1.83E-04 1.83E-04 

S2 6.67E-01 3.45E-01 9.10E-01 1.00E+00 

S3 1.33E-05 1.83E-04 1.83E-04 1.83E-04 

S4 2.55E-05 1.83E-04 1.83E-04 1.83E-04 

S5 9.52E-01 9.70E-01 7.91E-01 8.50E-01 

S6 6.66E-05 1.83E-04 1.83E-04 1.83E-04 

S7 8.03E-02 6.23E-01 2.41E-01 1.73E-02 

S8 1.42E-04 7.69E-04 1.83E-04 2.46E-04 

 
TABLE IV 

COMPARISON ON THE ROBUSTNESS OF THE DIFFERENT TOPOLOGIES 

Topology 
Accuracy decreasing ratio (ADR) 

Min-max standardization Z-score standardization  

2EnMe 2.80 6.12 

2EwMe 3.23 9.11 
5EnMe 3.26 8.66 

5EwMe 3.97 16.94 

 

TABLE II 
COMPARISON ON THE ACCURACY OF THE DIFFERENT TOPOLOGIES AND STANDARDIZATION METHODS 

Subject Fatigue level 
Accuracy of Min-max standardization dataset % Accuracy of Z-score standardization dataset % 

2EnMe 2EwMe 5EnMe 5EwMe 2EnMe 2EwMe 5EnMe 5EwMe 

S1 0% 
 

96.80±0.23 94.62±0.29 96.34±0.33 94.12±0.36 95.03±0.53 92.17±0.79 91.72±0.37 81.70±0.65 

S2 0% 

 

87.26±0.38 87.10±0.11 84.79±0.38 82.10±0.26 85.59±0.99 86.31±0.31 83.87±0.58 74.02±0.80 

S3 0% 

 

98.14±0.11 97.57±0.36 97.69±0.20 97.08±0.28 97.12±0.40 95.72±0.26 95.35±0.26 91.93±0.40 

S4 0% 

 

91.31±0.27 91.00±0.32 89.78±0.17 89.94±0.92 89.84±0.05 89.77±1.14 82.93±0.98 77.26±1.03 

S5 0% 

 

98.66±0.15 98.51±0.21 98.22±0.21 97.39±0.36 97.84±0.33 97.44±0.18 92.48±0.60 84.04±0.52 

S6 0% 

 

85.50±0.52 81.85±0.58 83.56±0.66 81.87±0.53 83.04±0.77 78.62±0.77 78.43±0.69 69.56±1.11 

S7 0% 

 

98.24±0.21 97.84±0.11 96.84±0.32 97.23±0.21 97.72±0.24 96.36±0.25 93.94±0.41 91.14±0.54 

S8 0% 

 

95.00±0.78 94.39±0.21 94.00±0.46 93.58±0.49 91.70±0.52 82.52±0.13 81.82±0.68 61.95±1.21 

Average 
of all 

subjects 

0% 

 
93.86±5.22 92.86±5.88 92.65±5.88 91.66±6.47 92.24±5.71 89.86±6.89 87.57±6.48 78.95±10.38 

10% 

 
93.21±5.38 92.45±6.00 92.22±6.08 91.15±6.42 91.23±6.28 89.03±6.66 86.87±6.43 77.34±10.08 

30% 91.23±5.11 89.87±6.06 89.66±6.35 88.04±6.51 86.66±7.13 81.71±7.47 80.02±7.17 65.56±8.93 
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For instance, the average accuracy of 2EnMe group at three 

fatigue levels was 92.77%, and that of 5EnMe group was 

91.73%.  

To investigate the significance of the difference between the 

accuracies of various topologies, the Shapiro-Wilk test was first 

used to test whether the accuracies conformed to normal 

distribution. The result reveals that the distribution of accuracies 

was not a normal distribution, so the Kruskal-Wallis test was 

employed for the accuracies of 2EnMe, 2EwMe, 5EnMe, and 

5EwMe under min-max standardization to test the significance 

of the overall difference. Then, the Mann-Whitney test was 

completed for the accuracies of 2EnMe and those of the other 

three topologies. As shown in Table Ⅲ, the P-values are listed 

by subject. A P-value less than 0.05 indicates a significant 

difference. Except for subjects 2, 5, and 7, the topologies were 

found to have significant effects on the performance of 

accuracies. Furthermore, the performance of 2EnMe was 

considerably better than those of the other topologies. 

In Table Ⅳ, the average accuracy decrease ratios (ADRs) of 

the four topologies under max-min standardization are 

demonstrated to show the robustness of these models. ADR is 

defined as (𝐴𝐶0.3 − 𝐴𝐶0)/𝐴𝐶0, where 𝐴𝐶0  is the accuracy of 

the original data 𝐺𝑑𝑛=0
𝑖 , and 𝐴𝐶0.3 is the accuracy of the 30% 

fatigue data 𝐺𝑑𝑛=0.3
𝑖 . The Kruskal-Wallis test was conducted to 

investigate the significance of the differences between the 

ADRs of 2EnMe, 2EwMe, 5EnMe, and 5EwMe. The P-values 

of all subjects were found to be greater than 0.05, so it is 

assumed that the robustness of the four topologies was not 

considerably different. In summation, the topology of the graph 

was found to have a significant effect on the accuracy of 

recognition, while it does not affect the robustness of the fusion 

model. 

C. Experiments on the Accuracy and Robustness of 
Different Functional Connectivity 

In this section, the datasets 𝐺𝑑𝑛
𝑖  were copied to two groups, 

namely the mutual information group and coherence group. In 

each group, the values of the two functional connectivity 

approaches were employed as the weights of edges for 2EnMe 

to build fusion graphs. Then, 10 rounds of five-fold 

cross-validation were completed for all the fusion graphs. The 

accuracies and robustness of the graphs achieved using these 

two connectivity methods were compared with those achieved 

using Pearson coefficient.  

The average accuracies of the four fatigue levels of all the 

subjects are illustrated in Fig. 5. Among the three functional 

connectivity approaches, the group using Pearson coefficient 

achieved the highest accuracy and lowest ADR (4.4%). The 

graphs weighted by mutual information achieved a performance 

slightly lower than those for which Pearson coefficient was used. 

The coherence of the alpha band achieved the lowest accuracy, 

which was 75.4% for non-fatigue data, and its ADR was the 

highest (14.1%). Therefore, from the perspective of both 

accuracy and robustness, Pearson coefficient is the best 

functional connection for this fusion graph.  

D. Comparison of the Accuracy and Robustness of 
Different Fusion Models 

To validate the effectiveness of the multi-modal fusion 

approach proposed in this paper, the accuracy and robustness of 

the fusion graph were contrasted to those of other methods, 

including those obtained by only using sEMG signals and using 

the parallel fusion of sEMG and EEG signals. The contrasting 

classifiers were the CNN and back-propagation (BP) network. 

The three single-modality groups were CNN-EMG, GCN-EMG, 

and BP-EMG, which respectively employed the CNN, GCN, 

and BP to classify the EMG signals. It should be noted that all 

the EMG nodes in the GCN-EMG group were connected to each 

other by values of the Pearson coefficient. In contrast, the three 

 
Fig. 5.  The average accuracies of graphs using three different 
functional connectivity methods. 
 

 
Fig. 6.  The average accuracies of different fusion methods. 
BP-EMG and BP-dual correspond to the axis of Accuracy2, and 
the other groups correspond to the axis of Accuracy1. 
 

TABLE V 
 P-VALUES BY K-W TEST AND M-W TEST FOR DIFFERENT MODELS 

Subject 

P-values 

of K-W 

test 

P-values of Mann-Whitney test 

2EnMe with 

CNN-dual 

2EnMe with 

GCN-EMG 

2EnMe with 

CNN-EMG 

S1 5.63E-08 1.83E-04 1.83E-04 1.83E-04 

S2 5.63E-08 1.83E-04 1.83E-04 1.83E-04 

S3 5.63E-08 1.83E-04 1.83E-04 1.83E-04 

S4 5.63E-08 1.83E-04 1.83E-04 1.83E-04 

S5 2.84E-07 1.83E-04 2.73E-01 1.83E-04 

S6 2.37E-07 1.04E-01 1.83E-04 1.83E-04 

S7 6.48E-08 1.83E-04 3.30E-04 1.83E-04 

S8 1.91E-07 1.83E-04 1.83E-04 1.83E-04 
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dual-modality groups were CNN-dual, GCN-dual, and BP-dual, 

among which GCN-dual used 2EnMe and 2EwMe to fuse the 

EEG and sEMG signals, while the other two employed the 

parallel fusion method. To reduce the number of variables, the 

CNN classifier used in this experiment had two convolutional 

layers and three FC layers. Its FC layers had identical 

parameters to those of the GCN model. The BP network 

consisted of three FC layers, and its parameters were the same as 

those in the CNN model.  
The average accuracies of different models for all subjects 

are shown in Fig. 6. All the dual-modality methods achieved 
higher accuracies than the corresponding single-modality 
methods when dealing with data at the same fatigue level. The 
CNN-dual model achieved the highest accuracy improvement as 
compared to CNN-EMG at the 30% fatigue level, which was 
4.95%. However, the improvement of the BP network was not 
significant, and its average accuracies were the lowest. 
Compared to GCN-EMG and CNN-EMG, the fusion graph 
2EnMe achieved average accuracy improvements of the four 
fatigue levels of 1.45% and 4.16%, respectively. Nevertheless, 
the highest accuracy was achieved by the CNN-dual model at 
the fatigue level of 0%, and the robustness of 2EnMe was much 
better than that of CNN-dual. Moreover, the ADRs for 
CNN-dual and CNN-EMG were 7.87% and 11.15%, 
respectively, while that of 2EnMe was 2.80%. When the fatigue 
level exceeded 20%, the graph-based models achieved higher 
accuracies.  

To investigate the significance, the accuracies of 
CCN-2EnMe, CNN-dual, CCN-EMG, and GCN-EMG at 
various fatigue levels were tested by the Kruskal-Wallis test. 
The P-values are shown in Table Ⅴ; all of them are less than 
0.05, which means that the graph fusion method exhibited a 
significant difference in accuracy as compared to the parallel 
fusion and single-modality methods. Then Mann-Whitney test 
was conducted to demonstrate the significance between 
GCN-2EnMe and other models. Except for the GCN-EMG 
model for subject 5 and the CNN-dual model for subject 6, the 
accuracies of GCN-2EnMe exhibited a significant difference 
from those of the other models for all the other subjects. This 
experiment proves two results. First, the fusion of EEG and 
sEMG can improve the recognition accuracy of hand motions. 
Second, compared with parallel fusion, the graph fusion method 
can achieve better robustness when dealing with fatigue data. 

IV. DISCUSSION 

A. Comparison with the Contemporary Fusion Methods 

The proposed GFSEs method is also compared with the other 
contemporary fusion methods for EEG and sEMG signals 
introduced in [5], [10], [38]. As shown in Table Ⅵ, the average 
accuracy of GFSEs is higher than [38] and [10], but slightly less 
than research [5]. It may due to the number of category and 

difference between muscles that used in recognition. Our 
method uses a non-overlap and much shorter window to crop the 
data. While generally, larger window size and more overlapping 
contributes to higher accuracy but longer time expenditure. That 
indicates the proposed method may have a greater ability in 
fusion and extraction of features. 

The core advantage of GFSEs is it can maintain a higher 
accuracy during the increasing of muscle fatigue. When fatigue 
level increases from 0% to 30%, the accuracy just slightly drop 
to 91.23% from 93.89%. In research [9], the accuracy of fusion 
method falls to 73% when EMG decreases to 10% of the 
original amplitude. In reference [5], the accuracy of fusing 
acquired fatigue sEMG is not significantly less than that of 
non-fatigue sEMG. In terms of fatigue data, the average 
accuracy falls to 77.48% from 86.81% in reference [38]. 
Compared with the existing research, GFSEs has a better 
robustness in handling increasing fatigue or abnormal sEMG 
data. Here our proposed method is only compared with other 
fusion methods applied for EEG and sEMG signals. Other 
methods used for fusing EMG with inertial motor unit data or 
fusing EEG with fMRI signals can be explored in the future. 

The central contribution of this method is to construct a 
model represents the real state of human’s motion intention 
through graph theory. Functional connectivity manifests the 
synchronization between brain nerves and the neural path of 
nerves to muscles. In this paper, GCN is employed to process 
the graph data. However, the other GNNs are worth to be tested 
in the future, such as Graph Attention Network (GAT) etc. 

B. Standardization Methods for the EEG and sEMG 
Signals in the Fusion Graph 

In the proposed GFSEs, the EEG and sEMG signals are 

directly input as the node features of the fusion graph. Because 

the original signals are only filtered, rather than 

 
Fig. 7.  The density distribution of different motions: (a) motion 1, (b) 
motion 2, (c) motion 3, and (d) motion 4. 
 

TABLE Ⅵ 
COMPARISON WITH THE OTHER FUSION MODELS 

Research Window size Category Accuracy of raw data Accuracy of fatigue data Fusion methods Classifier  

[5] 
500 samples 

(non-overlap) 
2 movements 

Average at 96.6±4.48% on all 
subjects 

95.45±5.33% for the acquired 
fatigue data 

DCA fusion LDA 

[10] 
150 samples 

(33% overlap) 
4 movements 80.7-94.2% on single subject / Linear combination LDA 

[38] / 2 movements 
Average of 86.81 ± 3.98% on all 

subjects 
Falls to 77.48 ± 8.73% 

AND,  

Weighted Average 
SVM 

GFSEs 
200 samples 

(non-overlap) 
4 movements 

Average at 93.86±5.22% on all 
subjects 

 Remain 91.23±5.11% when 
fatigue level reaches 30% 

Graph theory GNN 
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feature-extracted, the standardization of sEMG and EEG plays a 

vital role in the pre-processing. The results of the experiments 

show that min-max standardization achieved better performance 

in almost all the subjects in terms of accuracy and robustness. 

To explore the possible reason for this phenomenon, the data of 

one session of subject 1 was analyzed as an instance. 

The density distributions of C3, C4, and EMG1 to EMG4 

were respectively drawn for the four motions. As shown in Fig. 

7, when performing different motions, the density distributions 

of the EEG and sEMG signals varied significantly. For instance, 

for motion 1, the amplitude distribution of EMG1 was wider 

and more skewed to the left. For action 4, the amplitude 

distribution of EMG1 was narrower, and the distribution of 

EMG4 was wider and shifted toward the left. In all the motions, 

the distribution of the EEG signals was concentrated around 0. 

Therefore, the distributions of the signals are also a 

characteristic of different actions. It is possible that Z-score 

standardization changed the distributions; thus, it reduced the 

number of features that could be identified, and the 

classification accuracy was less than that when using min-max 

standardization. 

Batch normalization is used in various neural networks and 

has achieved great performance in promoting both the accuracy 

and training speed [19], [22]. Although the function of Z-score 

standardization is also to normalize the data into the normal 

distribution, it is not suitable for the fusion graphs. As 

explained previously, the application of Z-score 

standardization to the whole dataset may eliminate the 

distribution characteristics. Thus, Z-score standardization can 

be applied within the batch, which may reserve the distribution 

characteristics and attain better performance. However, more 

standardization methods should be investigated in the future to 

find the optimal method for EEG and sEMG signals.  

C. The Effect of Different Topologies on the 
Performance of the Fusion Graphs 

In this study, four fusion graphs with specific topologies 

were constructed. These graphs can be categorized into two 

groups, namely those with and without EMG-EMG 

connections, e.g., 5EnMe and 5EwMe. According to 

experiment II.B, when the number of EEG channels was equal, 

the groups without EMG-EMG connections achieved higher 

accuracy than the groups with EMG-EMG connections. This 

may be because when the EMG noise gets stronger, the 

EMG-EMG connections amplify the effect of the abnormal 

signals.  
Nevertheless, the addition of EEG signals can increase the 

recognition accuracy, but more EEG channels cannot 
necessarily contribute to higher accuracy. When the 
EMG-EMG connection was the same, the graphs with 2 EEG 
channels achieved higher accuracy than the graphs with 5 EEG 
channels. For example, 2EnMe performed better than 5EnMe, 
and the accuracy of 2EwMe was greater than that of 5EwMe. 
There may be two reasons for this phenomenon. The first is that 
the selected EEG channels were not matched with the sEMG 
electrodes, so it was necessary to optimize the selection of the 
EEG channel to find the optimal combination. The second is 
that the noise of the EEG signals was too strong, which was not 
helpful for representing the motion intention. It may be more 
effective to extract features of EEG signals and feed the 
extracted features into the nodes of the graph.  

 
Fig. 8. The average intensity of PLI connectivity of all motions of all the 
subjects. The percentage after the subject number is the average 
improvement in accuracy of three fatigue levels. 

 
(a) 

 
(b) 

Fig. 9. The Pearson coefficient matrix of two subjects: (a) subject 5 
and (b) subject 4. 
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D. The Effect of Functional Connectivity on the 
Performance of the Fusion Graphs  

Taking GCN-EMG as the baseline, the two models 
(GCN-2EwMe, GCN-2EnMe) with added EEG-EMG 
connections were found to have an increased average accuracy 
and robustness. Except for subject 4, the average accuracies of 
all the subjects increased when using GCN-2EnMe. While 
compared with CNN-EMG, among the eight subjects, the three 
subjects with the smallest improvement in average accuracy 
were S4, S2, and S8, which were -1.05%, 0.81%, and 4.78%, 
respectively. 

To explore the reasons why the addition of EEG signals can 

improve the recognition accuracy, and the reasons for the 

differences in the accuracy improvement of different subjects, 

the Phase Lag Index (PLI) [37] was introduced as the indicator 

of the functional connectivity for all the channels. The 

MNE-connectivity toolbox was employed to draw the figures 

for all the subjects. In Fig. 8, the figures of S1 to S4 are shown, 

in which each curve illustrates the average PLI strength of all 

epochs between each channel, and the selected range was 10–25 

Hz. Only the strongest 12 connections were visualized, so the 

intensity of the displayed connections were approximately at the 

same level. It can be seen that all subjects have EEG-EMG 

couplings, and EEG channels CZ, C3, and C4 have the strongest 

connections to the muscles for the majority of subjects. This 

may be the reason why only adding C3 and C4 channels can 

considerably improve the recognition accuracy. In the figure of 

S1, apart from the EEG-EMG connections, the connections of 

CPZ with C4, CZ, C3, FZ are visible. For S3, both the 

connections of EEG-EMG and EEG-EEG are visualized. On the 

contrary, only EEG-EMG connections are visible in the figures 

of S2 and S4. This phenomenon was also found in the analysis 

of other subjects. Therefore, it is assumed that the subjects with 

comparable EEG-EMG connections and EEG-EEG connections 

will get greater benefits from the graph fusion method. For 

further investigation, the average Pearson coefficient matrices 

of all epochs for each subject were calculated. It was found that 

for the subjects with lower accuracy improvement, the Pearson 

coefficient of EEG-EMG was especially low. On the contrary, 

for the subjects with higher accuracy improvement, the values 

of the Pearson coefficient of both the EEG-EMG connections 

and EEG-EEG connections were relatively significant. Taking 

subjects 4 and 5 as examples, their Pearson coefficient matrices 

are visualized in Fig. 9.  

The results of experiment II.C also suggest the essential 

difference of functional connectivity in the time and frequency 

domains. The average accuracies of the time-domain group 

(Pearson coefficient and mutual information) were higher than 

those of the frequency-domain group (coherence). Moreover, 

the Pearson coefficient and coherence are linear descriptions 

[30], while mutual information presents the coupling in a 

nonlinear way [31]. It seems that whether the connectivity is 

linear or nonlinear does not affect the performance significantly, 

but the domain of connectivity has an effect. 

The aim of this paper is to find a connectivity that suitable 

for both of the connections. When computing the functional 

connectivity, the window length is 400ms, that is enough to 

include the segments of EEG and sEMG signals those have 

causation, as well as the synchronization of EEG-EEG signals. 

Therefore, this method can represent the real intention model of 

human’s movement. However, the distance and interactions of 

EEG-EEG connections and EEG-sEMG connections are 

different. Using only one connectivity method to describe all the 

connections may not be completely justified. In the future, 

different connectivity approaches should be investigated for 

different edges. 

E. The Future of Using Graphs to Fuse EEG and sEMG 
Signals 

Multi-modal fusion is a promising direction in signal 

processing [12], and graph neural networks are also a novel 

research direction [23]. This paper is only a preliminary attempt 

to use graph neural networks to fuse EEG and sEMG signals, 

and there is much room for further improvement. First, only four 

topologies of fusion graphs were tested in this work, as the main 

objective was to study the effects of the number of EEG 

channels and the EMG-EMG connections. There likely exist 

other topologies that can provide better accuracy and robustness. 

Second, the node features of the fusion graph are segments of 

temporal signals, which retain the highest degree of intrinsic 

information but also may cause the problems of over-fitting and 

excessive computation. In the future, the use of the extracted 

features of EEG and sEMG as the node features should be 

investigated. Third, the Pearson coefficient is employed as the 

weights for all the edges, which may not be the best setting. 

Because of the objective differences between EEG and sEMG 

signals, employing customized connectivity for EEG-EMG and 

EEG-EEG edges may contribute to better performance. Finally, 

the improvement fluctuates from subject to subject, which 

indicates the challenge of subject dependency of this method. 

This is due to the EEG signals of some subjects are naturally 

weak, and cannot provide valuable information. Next, this 

problem may be studied by using more proper connectivity or 

modifying the neural network or preprocessing the EEG signals 

before fusing to reduce variance. In addition, there are many 

approaches by which to manifest functional connectivity, such 

as the phase-locking value (PLV), transfer entropy, partial 

directed coherence (PDC), etc. It is therefore worth studying 

different connectivity methods to improve the performance of 

fusion graphs. 

V. CONCLUSION 

In this work, a novel end-to-end multi-modal fusion 

approach of EEG and sEMG signals using the GCN was 

proposed. In terms of this fusion graph, topologies, 

standardization methods, and functional connectivity were 

investigated. The 2EnMe topology with min-max 

standardization for node features and the Pearson coefficient as 

the weights of edges was found to be the best model. It achieved 

average accuracies of eight subjects of 93.86% and 91.23% at 

the fatigue levels of 0% and 30%, respectively. The accuracy 

decrease ratio (ADR) was employed to quantify the robustness. 

The ADR of 2EnMe-Pearson was 2.80%, which was found to be 

considerably better than those of the CNN with parallel fusion 

(7.87%) and the CNN with single-modality EMG (11.15%). 

Based on the experimental results, it can be concluded that the 

use of graphs to fuse EEG and sEMG signals can improve the 

robustness to resist abnormal data or fatigue data, and it can 

achieve higher accuracy as compared with the single-modality 

method. The proposed graph fusion method has the potential to 
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improve the reliability of active rehabilitation for stroke patients. 

In the future, its topological structure and connections can be 

studied to achieve better performance. 
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