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Abstract—Wind-blown sand flow is the basic phenomena that
have profound influences on the environment, and the
experimental study on the velocity distribution of the sand
particles is very important for the understanding of this
phenomena. Among the various experimental techniques,
particle tracking velocimetry (PTV for short) is one that
attracts more and more attentions. In this paper, an algorithm
based on the Self-Organizing Maps network is established for
PTV in a wind-blown sand flow, and the processing results by
the algorithm prove its ability to capture the characteristics of
the concerning flow field.
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L. INTRODUCTION

Desertification is a serious environmental problem
posing great threat to the health and lives of human beings.
Wind blown sand flow, which is a complicated phenomena
having close link to the sand transport and the formation of
desertification, has attracted the attentions of many
researchers since the pioneering work by Bagnold[1]. For the
experimental study of the wind blown sand flow, particle
tracking velocimetry (PTV for short) has been used
extensively in recent years [2-5] due to its ability to capture
the motion characteristics of each individual particle in the
whole flow field, which provides huge amount of useful
information.

In the PTV measurement, firstly a series of images
should be collected for the flow within certain time interval
in visualization experiments, and then the images are
processed carefully. The position for the same particle during
that interval will be identified through “matching”, from
which the particle velocity can be evaluated. Finally, the
instantaneous velocity of each individual particle can be
found and the particle flow field is reconstructed completely.
In the abovementioned steps, matching of the same physical
particles in consecutive images is of crucial importance, and
the procedure to do this is termed “algorithm”.

As summarized by Yang et al. [6] in a review paper,
several different types of algorithms have been proposed in
PTV technique. Among these algorithms, the artificial
neuron network (ANN) based ones show some interesting
advantages and receive many attentions. In this paper, a Self-
Organizing Maps (SOM) neuron network algorithm is
established and implemented using Matlab 7.0 software, and
the processing results are compared with those obtained
using conventional empirical algorithm to prove its
capability of matching numerous particles in a complicated
wind-blown sand flow.

I1. ALGORITHM DESCRIPTION AND IMPLEMENTATION

A.  SOM Network Fundamentals

SOM network is a typical neuron network working
through unsupervised learning, which is different from the
well-known Back Propagation (BP) neural network. SOM
network use competitive learning rule, in which the
connection weights of the winner neuron with its nearby
neuron are modified, making it more conducive towards the
direction of their competitive adjustment. If the modified
weights of the winner neurons and neighboring neurons are
close to the input values, the nearby neurons would be close
to each other after several iterations. The samples with
similar input mode automatically form a class, while the
samples with different input mode can be discriminated,
achieving the function of self-organized clustering. SOM
network has good selectivity, so it was usually applied to
query matching.

For the particle matching in PTV, SOM algorithm is an
attractive option because of its capability of dealing with
unpaired particles between two frames, moreover no a priori
knowledge on the flow field is needed for the working of this
algorithm, which is an important advantage in the general
application to various flow conditions.
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B.  Implementation of the Algorithm

Let x; (i=1, .., N) and y; (j=1, .., M) be the coordinate
vectors of the particles in the first and the second frames,
respectively. The neural network is composed of two similar

sub-networks, each one corresponds to one of the two frames.

The first network has N neurons (i.e. particles) located at x;
and the second one has M neurons located at y;. Since we
focus on the 2-D flow field here, each neuron has two weight
vectors, corresponding to the two components of the
coordinate vectors x; and y;. The weight vectors are denoted
by v; for the first sub-network and by wj for the second one.
These weight vectors are assigned the following initial
values:

v,=x,i=12,..,N
w,=y,j=12,..M

M
@)

The weight vectors are updated in the way that those of
one sub-network should work as stimuli for the other sub-
network. Concretely, the stimulus vector v; from the first
sub-network is presented to the second sub-network. Then, a
winner neuron is selected from the latter sub-network as the
one with the weight vector closest to v;. Let ¢ be the index of
this neuron and w, its weight vector, then each neuron of the
second sub-network is subjected to the following
displacement of weight vectors:

A(w)j(c)zaj(v,. —WC),j=l,2,...,M 3)
o = a if neuron je Sc(r) @
71 0 otherwise

where a; is a scalar variable between 0 and 1, and Sc (r)
denotes a closed circle region centered on the point y. with a
radius of 7. Each time the weight vector v; is presented to the
second sub-network, the weight vectors of the latter sub-
network are updated following (5):

N
wjewj+Zij(cl.),]:l,2,...,M )
i=1

In the next step, by contrast, the stimulus vector w; from
the second sub-network is presented to the first sub-network.
A winner neuron is selected as the one closest to w;. Each
time the weight vector wj; is presented to the first sub-
network, the weight vectors of the latter sub-network are
updated as follows:

Avi(c):ai(wj —vc),i=1,2,...,N (6)
o = {0{ if neuronie Sc(r) @
0 otherwise
M
v, v, + ZAvi (cj ),l =12,.,.N (8)

J=1
At each step when all the weight vectors from either sub-
network are updated, the amplitude a of the weight
translation is decreased according to:

494

C,exp(—B,-t/t,) neuroni,je Sc(r)

o=
{ 0 otherwise

where C) is the initial learning rate ranging between 0
and 1 (here 0.5), B, is a constant greater than 1 (here 10), ¢ is
the iteration number, #,, is the maximum number of iterations
(here 100).

At the same time, the radius of the circle », within which
the neuron weights are changed, is decreased according to:

r=C,exp(-B,-t/t,) (10)
where C, is the initial winner neighborhood radius
(specified as twice the maximum displacement of particle),
B, is a constant greater than 1 (here 50), ¢ is the iteration
number, £, is the maximum number of iterations.
These steps are iterated until the radius of the circle r
reaches a given threshold value small enough to cover only
the winner neuron. Since the correspondence between a
weight vector and its matching neuron is not always
reciprocally identical for the two sub-networks, a final
nearest-neighbor check is conducted.

III. VALIDATION OF THE ALGORITHM

A.  Processing Results of Simulated Fluid Flow

It is common practice to test PTV matching algorithm
using the simulated flow field [7] precisely described by
known equations, here three typical flow fields were adopted
for test: rotating flow, Couette flow and explosive flow. The
corresponding velocity components are expressed as in
(11)~(13), respectively:

u, =-rasin@

11
u, =racosd an
u,==2-U-y/h
' (12)
u,=0
u,=rmcosé
(13)

u, = rmsin @

Where r and 6 are the polar coordinates, o is the angular
velocity of rotating flow, U is the moving velocity of plate in
a Couette flow and / is the distance between the two plates,
m is a constant characterizing the velocity magnitude of
explosive flow. A certain number (here 1000, which is
typical for such test) of pseudo “particles” are seeded at
random yet known positions of the field to follow the flow,
then the positions for them in the next frame after a certain
interval can be predicted using (11)~(13), with certain error
of Gaussian distribution added. These forms a pseudo image
data set and can be processed by PTV matching algorithm.
The reconstructed flow field is then compared with the
standard one given by (11)~(13) to test the validity of the
algorithm.



Figure 1. Reconstructed rotating flow from pseudo image by SOM

algorithm

For conciseness we only present the reconstructed flow
field for the rotating flow (11) by SOM algorithm in Fig.1,
while the qualitative results for the Couette flow and
explosive flow are largely similar to this one and skipped
from detailed presentation.

We can clearly find the characteristics of typical rotating
flow from the reconstructed flow field in Fig.1, although
there do exist a few mismatched particles marked by red
circles. The larger the particle velocity is, the more difficult
the correct matching will be, which is generally the case for
PTV technique.

To account for the performance of the SOM based
matching algorithm quantitatively, a new index called
matching ratio is defined as below, which can be taken as the
combination of the conventional recovery ratio and error
ratio indices:

Matching Ratio = Number of correctly matche‘d particles x100% (14)
Total number of particles

The matching ratio of the reconstructed flow fields by
SOM algorithm for (11)~(13) are evaluated by averaging the
processing results of 5 pseudo data sets, and the values
obtained are given in Table I . From the table we can find
that in most cases the matching ratio is higher than 97%,
which implies that the minimum recovery ratio is 97% and
the maximum error ratio is 3%, considering that for such
pseudo image data it is unlikely to introduce more “particles”
for matching than those seeded. Such performance is
comparable with that of other advanced algorithms in the
literature reports[7].

TABLE 1. THE MATCHING RATIO OF PROCESSING RESULTS BY SOM
ALGORITHM FOR DIFFERENT FLOW FIELDS
Flow fields Matching rate
Rotating flow 97.8%
Couette flow 96.8%
Expansion flow 97.2%
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B. Processing Results of Realistic Wind-blown Sand

The wind tunnel apparatus used for the measurement of
wind-blown sand flow is shown in Fig. 2, and for the details
the readers are referred to [5].

Biower and recufication part D ‘"iLs:ma feeding section 1000 mm
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Figure 2. Experimental set-up for the measurment of wind-blown sand

In the experiment, the so-called GL particles (its density
is 2500kg/m® and median diameter is 111pm) were fed
continuously and blown by the turbulent air flow into the
view region(112 X 112mm?), where a thin laser sheet was
shed for the collection of image data by a CCD camera. In
the view region, a small rigid fence of 20mm height was
installed in the middle, and the concerning turbulent flow
field around it could be observed. 600 sets of image data
were collected in the experiment, and each one include the
positions of the sand particles in two consecutive frames
with a time interval of 50ps.

Relaxation method [7] based PTV (RM-PTV) is a
popular method to measure the complex flow field (e.g. local
vortex flow, shear flow) in recent years. Therefore, we
processed the experimental data using both SOM network
algorithm and relaxation algorithm for comparison. For
generality three data sets with low, moderate and high
density of particles were chosen for discussion, and similar
conclusion could be drawn. Here we only give the
reconstructed flow field with the high particle density by the
two algorithms, see Fig. 3 and 4.
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Figure 3. The reconstructed flow field by relaxation algorithm



Figure 4. The reconstructed flow field by SOM algorithm

We can see in Fig.3 and 4 that the two flow fields look
quite similar, from which the so-called saltation behavior of
sand particles can be recognized. Most particles are blocked
by the fence, while a few ones flying with relatively high
velocity are able to cross the fence to the downstream on the
left side. The expected function of decreasing sand transport
rate was realized by the fence. The above comparison shows
that the SOM network algorithm is able to reconstruct such a
complicated flow field as the relaxation algorithm does.

In order to further compare the performance of relaxation
algorithm and SOM algorithm quantitatively, we introduce
the definition of vector ratio expressed as below:

Number of vectors by matching

Vector Ralio(,u) = x100%

. (15)
Total number of particles

We choose 10 sets of data randomly for processing by
using the two algorithms respectively, and the vector ratio
for the results are calculated and shown in Table II (y, is the
vector ratio by SOM network algorithms, p, is the vector
ratio by relaxation algorithms).

The results indicate that the vector ratio of processing
results by SOM algorithm is always higher than that by
relaxation algorithm, this may be due to the removal of
spurious vectors by relaxation algorithm. However, such
comparison still proves the ability of SOM algorithm in
reproducing the practical flow field.

TABLE II. COMPARISON OF VECTOR RATIOS FOR THE TWO
ALGORITHMS
Data set No. I 153

10 95.4% | 91.6%

53 94.0% | 89.3%
101 92.0% | 91.3%
176 94.7% | 90.8%
245 97.9% | 94.7%
300 96.8% | 92.0%
366 96.5% | 94.4%
423 96.8% | 93.9%
499 93.6% | 90.5%
567 95.2% | 94.7%
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Iv.

In conclusion, the SOM network algorithm proposed in
this paper is an effective algorithm for particle matching in
PTV. Compared with conventional relaxation algorithm, the
new algorithm is able to generate similar or even superior
processing results in a complex flow like the wind blown
sand over a rigid fence.

CONCLUSION
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