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Acoustical siphon effect in membrane-type metamaterials for low-frequency broadband absorption is
proposed, whose physical mechanism is further investigated by the theoretical analysis and finite ele-
ment (FE) simulation. This kind of membrane-type metamaterials consists of multiple detuned units,
each of which is composed of two aluminum platelets fasten on a piece of silicone membrane above
an air cavity. For the multi-unit metamaterial illuminated by an incident plane wave with certain fre-
quency, there exists a certain unit at resonance with maximum acoustic absorption, and meanwhile other
units nearly keep static due to the narrow absorption peak of the resonant unit. Therefore, almost the
whole incident energy can be forced to flow to this resonant unit resulting in a much enhanced vibration
and a reduced acoustic impedance that could be more matchable to air medium, and thus much more
acoustic absorption appears without increasing the unit thickness, which is called acoustical siphon effect
of the unit. On this basis, by precisely designing the acoustical siphon effect of each unit, the broadband
absorption can be obtained by a subwavelength six-unit sample in the low-frequency range of 400–
650 Hz with the maximum absorption coefficient of almost 100% and the average absorption coefficient
of about 80%, which is then verified by the corresponding experiment. The results presented here would
offer a new approach for the metamaterials design for low-frequency broadband sound absorption and
could have potential applications in controlling vibration and noise.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have witnessed a rapid development of acoustic
metamaterials due to the excellent absorption performance for
the low-frequency sound. Compared with the traditional materials
[1–5], such as porous materials and perforated or micro-perforated
panels, the metamaterials gain smaller structural dimensions and
higher energy dissipation efficiency. Up to now, a series of novel
metamaterials has been obtained, most of which can achieve
100% absorption with subwavelength thicknesses, including
membrane-type metamaterials (MAMs) [6–13], acoustic metasur-
faces [14–17], coiling-up space metamaterials [18–21], slow-wave
metamaterials [22–25], and Helmholtz resonators [26,27]. Never-
theless, these metamaterials can only gain good sound absorption
performance in a narrow frequency range around the resonant fre-
quency, which has been a major obstacle in practical applications.
Thus, the achievement of low-frequency broadband absorption
performance with a subwavelength thickness becomes one of the
current research hotspots and scientific challenges.

To this date, some typical structures have been reported with
low-frequency broadband sound absorption achieved by introduc-
ing multiple detuned absorption units [28–37]. According to the
unit arrangements, these broadband absorption metamaterials
can be generally divided into two categories, series arrangements
or parallel arrangements. For the series arrangements [28–33],
the broadband absorption performance is easily obtainable by
placing the new units on the underside of the original structure,
but the structure’s thickness is sharply increased, which limits
the engineering applications. By contrast, the parallel arrange-
ments [34–37], in which the new units are mounted on the lateral
side of the original, can provide a better choice for the broadband
absorption because the thickness has a lower increase than that of
series arrangement. Among these parallel structures, Helmholtz
resonators or the perforated plates are usually adopted as the basic
absorption units. In fact, the surface acoustic impedance of the par-
allel structure can be expressed as Z0 ¼ Zi=g, where Zi is the surface
acoustic impedance of a certain unit and g is the absorption area
ratio of the absorption unit to the structure. With the acoustic
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impedance Zi maintained unchanged, the increased number of the
units can lead to a proportional enhancement of the acoustic impe-
dance Z0 of the structure and a decrease of the absorption coeffi-
cient accordingly. Thus, the most common way to achieve
satisfactory absorption performance is to increase the thickness
of the unit greatly, but which is not beneficial to the optimal struc-
ture design and the engineering applications.

Inspired by the previous works and discussions, a new kind of
membrane-type metamaterials with a subwavelength thickness
is proposed that obtains multiple low-frequency high absorption
peaks. The acoustic impedance of a certain membrane-type unit
in the multi-unit metamaterials can be further reduced without
increasing its thickness, while the peak frequency stays constant.
More specifically, the whole incident acoustic energy is forced to
flow to the certain unit from the surrounding units due to the sur-
face pressure difference, by which the vibration intensity of the
unit is raised and the acoustic impedance Zi is lowered conse-
quently. The acoustic impedance Z0 of the multi-unit membrane-
type metamaterials therefore does not have such drastic enhance-
ments, showing good robustness and great potential for the broad-
band absorption. This effect of energy concentration in the near
field is defined as the acoustical siphon effect here. The peak fre-
quency can be maintained constant since the natural vibration
characteristic of the unit is unchanged by the acoustical siphon
effect. It can be concluded that the wider band in low-frequency
range can be achieved by the MAMs with a thinner thickness,
which offers a new perspective for future works. In addition, by
thoroughly investigating the generating mechanism and the influ-
ences on the absorption properties, the acoustical siphon effect is
formally proposed as the basic physical mechanism of broadband
absorption in this paper and provides a better physical under-
standing for the structure design.

The paper is organized as follows: Section 2 introduces the
acoustical siphon effect in MAMs and explains the underlying
physical mechanism for broadband absorption theoretically. More-
over, the robustness of acoustic impedance under the acoustical
siphon effect is discussed; in Section 3, the specific absorption per-
formances of the MAMs with different absorption area ratios are
investigated and the effects of the key parameters analyzed in
details; in Section 4, a thin MAMs sample with low-frequency
broadband sound absorption is obtained, of which the simulation
results are verified by the corresponding experiment. Finally, sev-
eral conclusions are drawn in Section 5.
2. Description and theoretical analysis of the acoustical siphon
effect

2.1. The membrane-type metamaterials with the acoustical siphon
effect

To illustrate the acoustical siphon effect, Fig. 1 presents two
kinds of MAMs with air cavities, wherein MAM 1 consists of one
basic unit, and MAM 2 is comprised of two different units obtained
by tuning the parameters of the basic unit. The basic unit is com-
posed of three parts: a piece of rectangular silicone membrane,
two same semi-circular aluminum platelets and an acoustically
rigid frame that builds an air cavity for the unit. The materials
parameters used in the calculation are shown in Table 1. The two
platelets with a radius of r = 6 mm, a thickness of h = 0.4 mm and
a distance of d = 15 mm are fastened on the membrane with width
W = 21 mm, the length L = 36 mm and thickness t0 = 0.2 mm. The
membrane’s boundary is fixed on the frame with depth
H = 30 mm and wall thickness t = 1 mm. Moreover, the membrane
is applied with an initial stress rx ¼ ry ¼ 2:2e5Pa. The unit 1 in
MAM 2 is a full copy of the basic unit (MAM1). As for unit 2, the
platelets have a thickness of h = 2 mm and other parameters are
held the same to those of unit 1.

To obtain the acoustic absorption performance of the MAMs, a
FE simulation model is developed by using the commercial finite
element software, COMSOL MultiphysicsTM 5.2, in which the
acoustic-solid interaction with geometric nonlinearities is selected.
The membranes, platelets and frame are defined as solid domains,
while the air cavity is defined as an air domain. A plane incident
wave is applied perpendicularly on the surface of the MAMs along
the negative direction of the x axis. The fixed boundary conditions
are imposed on the outer edges of the membrane in each unit.
Material properties and geometrical dimensions are kept the same
as those parameters mentioned above. According to the test results
[7,8], the damping factor of the membrane is set to v0x with
v0 = 4.2e�4 s that can be expressed as an imaginary part of the
Young modulus in the model, i.e. E = 1.9 (1 + 4.2e�4xi) MPa.
Besides, the density and sound speed of the air are q0 = 1.29 kg/
m3 and c0 = 340 m/s, respectively.

The sound absorption of the MAMs is the result of the vibration
energy dissipation in the membrane with viscous damping, and the
maximum energy dissipation can be obtained at resonance. The
sound absorption coefficients and the resonance modes of two
MAMs are demonstrated in Fig. 2. It is found that MAM 1 has three
high absorption peaks caused by the three different resonance
modes: translational motion of the platelets, the strong vibration
of the membrane with the rotational motion of the platelets and
the vibration of the partial membrane in the center of the unit,
while MAM 2 obtains five absorption peaks due to the additional
resonance modes provided by unit 2. It is worth noting that, com-
pared with MAM 1, the peak absorption coefficient (about 99%) at
f = 470 Hz in MAM 2 remains nearly unchanged with the area ratio
g decreasing from 100% to 50%, which is attributed to the acousti-
cal siphon effect. Besides, the frequencies of the absorption peaks
resulting from unit 1 are not influenced by the new unit (unit 2)
in MAM 2.

The distributions of the air particle velocities in MAM 2 at
f = 470 Hz are illustrated in Fig. 3(a), from which most of the inci-
dent energy is ‘‘attracted” to unit 1 from the surrounding area due
to the surface pressure difference between unit 1 and unit 2. There-
fore the translational motion of the platelets of unit 1 in MAM 2 is
enhanced with the acoustical siphon effect compared with that in
MAM 1. This can be verified in Fig. 2(b) and (c) when the displace-
ment amplitude of unit 1 is raised from 3e�3 mm to 4e�3 mm.
Particularly, the corresponding elastic curvature energy shown in
Fig. 3(b), which is proportional to the energy dissipated in unit 1,
is increased by about 2 times. It can be concluded that the acoustic
energy absorbed by MAM 2 is approximately doubled, and there-
fore the peak absorption coefficient (f = 470 Hz) can be kept
unchanged when the unit area ratio decreases by half. Though
the vibration intensity is enhanced by the acoustical siphon effect,
the natural vibration characteristic is not changed and the peak
frequencies can remain constant. In later sections, the specific dis-
cussions on the impedance characteristics of the MAMs will be
conducted.
2.2. Physical mechanism of the acoustical siphon effect

As mentioned above, the acoustical siphon effect is generated
by the surface pressure difference resulting from the inhomogene-
ity of the acoustic impedance. In this section, a simple theoretical
analysis is conducted to interpret the generating mechanism of
the acoustical siphon effect.

As shown in Fig. 4(a), the sound absorption structure is
assumed to consist of two units: unit A and unit B, of which the
surface acoustic impedances and the absorption peak frequencies
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Fig. 1. Schematic diagrams of the two MAMs. (a) MAM 1 is composed of a basic unit: the width and length of the membrane:W = 21 mm, L = 36 mm, the radius, the thickness
and the distance of the platelets: r = 6 mm, h = 0.4 mm and d = 15 mm, the depth of the frame (air cavity) H = 30 mm, and the frame’s wall thickness t = 1 mm; (b) MAM 2 is
composed of two units: unit 1 is a full copy of MAM 1 and unit 2 remains the same as unit 1 with the exception of the thickness of the platelets: h = 2 mm.

Table 1
Materials parameters used in the calculation.

Material Mass density
q(kg/m3)

Young modulus
E (MPa)

Poisson’s
ratio m

Silicone membrane 980 1.9 0.48
Aluminum platelet 2700 72,000 0.35
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are ZA, ZB, f A and f B, respectively. The acoustic impedances ZA and
ZB are expressed as

ZA ¼ RA þ jXA

ZB ¼ RB þ jXB

�
; ð1Þ

where RA, RB, XA and XB are the acoustic resistances and the acoustic
reactance of the two units, respectively.
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Fig. 2. (a) Sound absorption coefficients of MAM 1 and MAM 2; resonance modes and d
While a plane wave is applied perpendicularly on the structure
surface from the region x < 0, the incident sound pressure field Pi

and the reflected sound pressure field Pr can be written as

Pi ¼ piaexp j xt � kxð Þ½ �;
Pr ¼ cpiaexp j xt þ kxþ rpð Þ½ �;

�
ð2Þ

where pia is the amplitude of the incident sound pressure, j ¼
ffiffiffiffiffiffiffi
�1

p

is the imaginary unit, x is the angular frequency, k is the wave
number, c is the magnification coefficient of the amplitude of the
incident sound pressure and rp is the phase difference between
the incident wave and the reflected wave. The total sound pressure
field P is therefore given by

P ¼ piaexp jxtð Þ exp �jkxð Þ þ cexp jkxþ rpð Þ½ �; ð3Þ
t peak: f = 470 Hz

nd peak: f = 605 Hz

Third peak: f = 870 Hz

(b)

05 Hz Fourth peak: f = 745 Hz Fifth peak: f = 875 Hz

isplacement amplitudes of (b) MAM 1, (c) MAM 2 at absorption peak frequencies.
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Fig. 3. (a) Acoustical siphon effect in MAM 2 at f = 470 Hz expressed with the distribution of the air particle velocity; (b) elastic curvature energy of both MAM 1 and MAM 2
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and the air particle velocity is obtained as

v x; tð Þ ¼ piaexp jxtð Þ exp �jkxð Þ � cexp jkxþ rpð Þ½ �=q0c0; ð4Þ
where q0c0 is the characteristic impedance of the air. Using Eqs. (1),
(3) and (4), we have

cA;B ¼ sqrt
RA;B�1ð Þ2 þ XA;B

RA;Bþ1ð Þ2 þ XA;B

� �
;

rpð ÞA;B ¼ arctan 2XA;B

R2A;B þ X2
A;B�1

;

8>><
>>: ð5Þ

and the surface pressures of unit A and unit B are expressed as

PA x ¼ 0; tð Þ ¼ piaexp jxtð Þ 1þ cAexp rpð ÞA
� �� 	

:

PB x ¼ 0; tð Þ ¼ piaexp jxtð Þ 1þ cBexp rpð ÞB
� �� 	

:

(
ð6Þ

Finally, the surface sound pressure difference Dp between unit
A and unit B is attained as

Dp ¼ piaexp jxtð Þ cAexp rpð ÞA
� �� cBexp rpð ÞB

� �� 	
: ð7Þ

It is the surface pressure difference that leads to the air motion
and induces the acoustical siphon effect, as shown in Fig. 4(b).

By taking MAM 2 for example, while the sound wave at
f = 470 Hz is incident to the surface, unit 1 nearly meets the impe-
dance match condition with R1 � 1 and X1 � 0, and unit 2 can be
regarded as a rigid wall with R2 � 1 and X2 � 1 since the incident
wave is nearly completely reflected. The surface pressure differ-
ence between unit 1 and unit 2 can be obtained accordingly from
Eqs. (5) and (7), as

Dp ¼ �piaexp jxtð Þ: ð8Þ
Owing to this pressure difference, the incident energy is forced

to flow to unit 1 in MAM 2 from the surrounding area and more
energy is absorbed by the enhanced vibration.

It can be concluded that, only with the phenomenon of energy
flow in the acoustical siphon effect, the incident wave can be fully
absorbed without generating a reflected wave and the excellent
absorption performance can be achieved in multi-unit structures
consequently. Therefore, the acoustical siphon effect can be used
as the basic physical mechanism for broadband absorption.

2.3. The robustness of acoustic impedance under the acoustical siphon
effect

The robustness of acoustic impedance is that the acoustic impe-
dance Z0 of the multi-unit MAMs is not sensitive to the variation of
the absorption area ratio g and does not have a proportional
enhancement due to the acoustical siphon effect when the absorp-
tion area ratio is reduced. The analysis of the robustness is con-
ducted as follows.

The theoretical model of a single unit impedance is analyzed
with a simplified schematic diagram shown in Fig. 5. The surface
acoustic impedance of the unit is ZA ¼ ZM þ Zc , where ZM , Zc are
the acoustic impedances of the membrane-platelets system and
the air cavity, respectively. The membrane-platelets system can
be equivalent to a mass-spring system [38], of which the acoustic
impedance is given by
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ZM ¼ Rþ j xM � K
x


 �� �,
2; ð9Þ

where R is the equivalent viscous damping of the membrane deter-
mined by the vibration intensity, M is the mass of the platelets and
membrane, and K is the stiffness depending on the membrane’s ten-
sion. Since the cavity depth is much smaller than the wavelength,
the acoustic impedance of the air cavity can be expressed as

Zc ¼ �iq0c0cot kHð Þ � �jq0c0=kH: ð10Þ
The surface acoustic impedance is therefore written as

ZA ¼ Rþ j xM � K þ 2q0c
2
0=H

x


 �� �,
2: ð11Þ

Then the acoustic impedance of the multi-unit MAMs can be
accordingly calculated as Z0 ¼ Z0

A=g; where Z0
A is the acoustic impe-

dance of a certain unit in the MAMs. In fact, the vibration velocities
of the platelets and membrane of the unit in the multi-unit MAMs
are enhanced by the acoustical siphon effect while the incident
sound pressure is kept constant. Thus, it is established that the unit
impedance is jZ0

Aj < jZAj from the definition of the acoustic impe-

dance (i.e. jZj ¼ j p� j=jv� j; where j p� j and jv� j are the amplitudes of
the incident sound pressure and the mean vibration velocity of
the structure surface, respectively). This can be further verified
by the theory of a single-degree-of-freedom system in which a
stronger vibration of the system implies a lower equivalent damp-
ing, i.e. R0 < R. Therefore, the surface acoustic impedance of the
multi-unit MAMs can be obtained as

Z0 ¼ R0 þ j xM � K þ 2q0c
2
0=H

x


 �� �,
2g; ð12Þ

and the sound absorption coefficient is given by

a ¼ 4q0c0Zre

Zre þ q0c0ð Þ2 þ Z2
im

; ð13Þ

where Zre and Zim are the real and imaginary parts of Z0, respec-
tively. It is known that 100% absorption can be achieved only with
Zre ¼ q0c0 and Zim ¼ 0.

Compared with non-MAMs structures (such as Helmholtz res-
onators and perforated plates), the robustness of the acoustic
impedance in MAMs can help to gain lower acoustic impedance
without increasing the unit thickness, which is of great value to
the design of compact structures for broadband absorption. The
specific acoustic impedance characteristics and the sound absorp-
tion coefficients are further studied using the FE simulation.

3. Investigation of sound absorption performances with the
acoustical siphon effect

In this section, the sound absorption performances of MAMs
with the acoustical siphon effect are investigated in detail to offer
guidance for the following structure design for broadband
absorption.

3.1. Specific sound absorption performances with different absorption
area ratios

The investigation is conducted in the FE simulation by changing
the frame thickness t in MAM 1. The absorption area ratio to the
whole incident area is defined as g ¼ WL= W þ 2tð Þ Lþ 2tð Þ½ �, which
is selected to vary as 1/2, 1/4, 1/6 and 1/8. The area ratio of MAM 1
is about g ¼ 1 while the wall thickness is kept unchanged.

Fig. 6(a) and (b) present the absorption coefficients with varied
area ratios. It can be seen that the first peak can still be maintained
at about 75% as the area ratio is decreased to 1/6, which implies
good robustness under the acoustical siphon effect and is of great
value to the achievement of the broadband absorption. Besides, the
absorption performances of other two peaks are not as efficient as
that of the first peak, especially, the third peak that is reduced dra-
matically and nearly loses absorption ability. Thus, the first absorp-
tion peak is the primary option to be adopted for the broadband
absorption.

Fig. 6(c) demonstrates the comparison of the absorption perfor-
mances between the first peak in MAM 1 and the non-MAMs struc-
tures in which the unit impedance Zi cannot be changed by the
acoustical siphon effect. The relative impedance Z0r ¼ Z0=q0c0 of
MAM 1 is extracted from the FE model according to the definition
of the acoustic impedance, meanwhile, the relative reactance of the
first peak is supposed to Im Z0rð Þ � 0 since the membrane-platelet
system is in resonance state. For comparison, the absorption coef-
ficient of the non-MAMs structure is first assumed to be equal to
that of MAM1 (about 99%) when the absorption area ratio is
g = 1. The non-MAMs structure therefore should have the same rel-
ative impedance as MAM1, i.e. Znon�MAMs ¼ Z0r(Re Znon�MAMsð Þ ¼ 0:8,
Im Znon�MAMsð Þ ¼ 0). The relative impedance of the non-MAMs struc-
ture with varied absorption area ratios can be then understood as
Re Znon�MAMsð Þ ¼ 0:8=g, and Im Znon�MAMsð Þ ¼ 0. The corresponding
absorption coefficients are derived from Eq. (13). It can be easily
found that the MAMs performance has a better robustness than
that of the non-MAMs structures as the area ratio is reduced.
Due to the acoustical siphon effect, the acoustic impedance in
MAMs has a 36% lower amplification than that in the non-MAMs
structure as the area ratio is decreased from 1 to 1/8. As a result,
the reduction of the sound absorption coefficient in the MAMs
structure is about 30% less than that in non-MAMs structure. It
can be concluded that the robustness of the absorption perfor-
mance in the MAMs can help to decrease the thickness of the struc-
ture to a certain degree, which is very beneficial to practical
applications. In addition, the acoustic impedance of MAM 1 with
g ¼ 1 (the basic unit) should be further reduced to gain lower
impedances and better absorption performances when the absorp-
tion area ration g is 1/6 or lower.
3.2. Effects of the key parameters on the sound absorption
performances

The effects of the key parameters on the sound absorption per-
formances and the impedance characteristics are investigated by
the FE model of MAM 1 with the absorption area ratio g ¼ 1=6,
including the depth H of the air cavity, the thickness h of the plate-
lets and the initial stress r of the membrane.

Fig. 7(a) illustrates the effects of the air cavity depth H on the
sound absorption performance of MAM 1, and H is varied sequen-
tially as 20 mm, 30 mm, 40 mm and 50 mm. It can be observed that
the air cavity depth has a greater influence on the first absorption
peak that is enhanced from 40% to 95% as H increases from 20 mm
to 50 mm. This is because the unit impedance is reduced with the
increasing depth, which can be verified in Fig. 7(b). The relative
acoustic resistance Re Z0=Zairð Þ of MAM1 with the area ratio
g ¼ 1=6 is approximately decreased from 3 to 1.55 while H
increases from 30 mm to 50 mm, and the absorption coefficient
is enhanced to 95% accordingly. Noticeably, the absorption coeffi-
cient with a lower area ratio can be raised by the larger depth. Fur-
thermore, the sound absorption coefficient of MAM1 with
H = 50 mm remains above 80% as the area ratio is reduced from 1
to 1/8, showing better robustness than that with H = 30 mm.

The effects of the thickness h of the platelets on the sound
absorption performance of MAM 1 are shown in Fig. 7(c), with h
selected as 0.2 mm, 0.4 mm, 0.8 mm and 1 mm. The cavity depth
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different absorption area ratios between the depth of H = 50 mm and H = 30 mm.
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is set to H = 50 mm. It can be found that the platelet thickness (i.e.
weight) has a stronger effect on the peak frequencies. The three
peaks are shifted to lower frequencies markedly as h is increased,
which is beneficial for the low-frequency sound absorption. The
research is still focused on the first peak that just decreases a little
with the increase in thickness.

Fig. 7(d) shows the effects of the initial stress r of the mem-
brane on the sound absorption performance of MAM 1, with r
varying from 2.8e5 Pa to 1.6e5 Pa and H = 50 mm. It can be
observed that the three peaks shift to lower frequencies as r is
reduced. More importantly, the absorption coefficient of the first
peak, basically, remains unchanged and the other two peaks are
enhanced. Thus, the appropriate decrease of the initial stress is of
great benefit to the low-frequency absorption.

According to the analysis of the key parameters on the sound
absorption performances, the optimal parameters of the structure
can be obtained for the low-frequency broadband absorption in
practical applications.
4. The low-frequency broadband absorption with the acoustical
siphon effect

For low-frequency broadband absorption, a MAMs sample is
designed with six critically coupled units, as shown in Fig. 8(a).
The diameter and thickness of the sample are 99 mm and
50 mm, respectively. The parameters of each unit are kept the
same with those of the basic unit except for the platelet thickness
h and the air cavity depth H. The specific parameters of the units
are displayed in Table 2. The sample frame is fabricated by the
3D technique with ABS plastics and has a wall thickness of
t = 1.5 mm between the units that is acoustically rigid and can sep-
arate the adjacent units. To verify the results of the FE simulations,
the experimental measurements of the sound absorption coeffi-
cient are performed by employing the B&K type�4206 impedance
tube system. The test sample is installed at the end of the measure-
ment tube and measured with the two-microphone transfer func-
tion method [39]. By analyzing the signals of the microphones, the

absorption coefficient can be obtained by a ¼ 1� jrj2 with r repre-
(a)

Fig. 8. (a) The MAMs sample with the diameter of 100 mm; (b) comparison of the samp
results.

Table 2
Specific parameters of the sample.

Unit 1# 2# 3

h (mm) 0.3 0.2 0
H (mm) 38 38 4
senting the reflection coefficient. The sound absorption coefficients
between the experimental and simulation results are compared in
Fig. 8(b).

Fig. 8(b) shows a continuous broad absorption band in the low-
frequency range of 400–650 Hz with the maximum absorption
coefficient of almost 100% and the average absorption coefficient
of about 80%. The absorption band is actually comprised of seven
high absorption peaks contributed by the six units, in which the
seventh peak in frequency results from the second vibration mode
of each unit. There is a slight difference between the FE simulations
and experimental results, mainly because the membrane initial
stress is difficult to control accurately by hand. Moreover, the man-
ufacturing errors of the frame and the platelets can also affect the
absorption performance. Therefore, it can still be concluded that
the MAMs sample has the excellent broadband absorption ability
for low-frequency sound. The MAMs with a wider and higher
absorption band can be achieved by adopting more units of larger
thickness without regard for the limits of structural size caused by
the experimental equipment.
5. Conclusions

In this study, the acoustical siphon effect in multi-unit MAMs is
proposed and investigated in details, in which almost the whole
incident energy is forced to flow to a certain unit from the sur-
rounding area resulting in a much enhanced unit vibration and a
decreased unit impedance. Therefore much more absorption can
be obtained without increasing the unit thickness. By precisely
designing the acoustical siphon effect of each unit, excellent low-
frequency broadband absorption is achieved in a 50 mm-thick
six-unit sample in the low-frequency range of 400–650 Hz with
the maximum absorption coefficient of almost 100% and the aver-
age absorption coefficient of about 80%. The absorption perfor-
mance can be enhanced further with more units and larger
thickness without the restrictions of test conditions. Overall, this
study would offer an effective guidance for the design of low-
frequency broadband sound absorption structures and shows great
potential for noise control.
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