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In this paper, a novel multi-dimensional complex non-equilibrium phase transition model

is put forward to describe quantitatively the physical development process of turbulence

and develop the Kolmogorov turbulence theory from the catastrophe theory, in which the
well-known −5/3 power law is only a special case in this paper proving the accuracy of

our methods. Catastrophe theory is a highly generalized mathematical tool that summa-

rizes the laws of non-equilibrium phase transition. Every control variable in catastrophe
theory could be skillfully expanded into multi-parameter multiplication with different

indices and the relationship among these characteristic indices can be determined by

dimensionless analysis. Thus, the state variables can be expressed quantitatively with
multiple parameters, and the multi-dimensional non-equilibrium phase transition theory

is established. As an example, by adopting the folding catastrophe model, we strictly

derive out the quantitative relationship between energy and wave number with respect
to a new scale index α to quantitative study the whole process of the laminar flow to

turbulence, in which α varies from −2 to −6/5 corresponding to energy containing range

and α = −9/5 to energy containing scale where −10/9 power law is deduced, and at
α = −6/5 the −5/3 law of Kolmogorov turbulence theory is obtained, and fully de-
veloped turbulence phase starts at α = −2/3 giving −3 law. Furthermore, this theory
presented is verified by our wind tunnel experiments. This novel non-equilibrium phase
transition methods cannot only provide a new insight into the turbulence model, but

also be applied to other non-equilibrium phase transitions.

Keywords: Non-equilibrium phase transition; turbulence; power law; wind tunnel

experiment.
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1. Introduction

The non-equilibrium phase transition in all the applied sciences (e.g. Physics, Me-

chanics, Chemistry, etc.) is of great significance and importance. Turbulence defined

as the chaotic behavior of fluid flows is ubiquitous in the oceans, atmosphere and

the stares, and also occurs in a wide variety of engineering applications, from coffee

mixed with milk to the flow of air around rockets and airplanes.1–6 Up to date, the

turbulent fluids have not been really analyzed mathematically satisfactorily.7 The

one striking success in turbulence research is the phenomenological picture intro-

duced by Kolmogorov in 1941.8,9 The two hypotheses in Kolmogorov turbulence

theory are considered to be the most important contributions to predict the proper-

ties of fluid flow which indicate that the variables for the development of turbulence

are the viscosity v(m2/s), the mean dissipation rate ε(m2/s−3), and the scale l(m)

defined as the reciprocal of wave number k(m−1). By dimensionless argument, the

second hypothesis implies the universal form in the inertial subrange for large wave-

numbers as Ekk = Ckε
2/3k−5/3, where Ck is the Kolmogorov constant, and Ekk

means the energy spectrum density.9–11 It has been verified experimentally that the

energy spectrum density in the inertial sub-range obeys the −5/3 law.11–13

In order to quantitatively study the whole process of the laminar flow to turbu-

lence, the catastrophe theory with dimensionless analysis is applied in this paper.

The catastrophe is theory advanced by Thom who proved that all kinds of catas-

trophe defining as the transition of the equilibrium state of a system in nature

have only seven basic types.14,15 The specific form of catastrophe model depends

on the number of state variables and control parameters in the system. When the

state variable is only one, the simplest catastrophe model is fold, and the more

complicated models are known as cusp, swallow tail or butterfly.16,17

2. The Multi-Dimensional Complex Phase Transition Model

by the Quantitative Catastrophe Approach

Considering that the fluid flow process only has two phases of laminar flow and

fully developed turbulence, the simplest fold catastrophe model is adopted here,

whose potential function is

V (x) = x3 + tx (1)

where t denotes the control variable, x is the state variable. The corresponding

equilibrium curve is

V ′(x) = 3x2 + t (2)

and the set of degenerate critical points of V (i.e. the critical points or the singularity

set S) is given by

V ′′(x) = 6x = 0. (3)

The potential function V (x) of the fold catastrophe theory (t < 0) defined as the

migration of equilibrium state is shown in Fig. 1(a), with P1 (unstable equilibrium
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Fig. 1. (Color online) The fold catastrophe model (a) potential function (t < 0) and (b) the

equilibrium curve of one-dimensional control variable.

state) and P2 (stable equilibrium state), which correspond to the upper branch

and lower branch of the equilibrium curve V ′(x) in Fig. 1(b), respectively. The P1

point is an unstable equilibrium state. When external factors change at P1, the

equilibrium state of the system will be broken, and it is difficult for the system to

return to equilibrium state. The P2 is the stable equilibrium state of the system. As

an example, the fluid flow includes unstable equilibrium state (laminar flow) and

stable equilibrium state (fully developed turbulence). The laminar flow is easily

broken under the influence of active factors such as velocity, external driving force

at the point of P1. The fully developed turbulence is at the point of P2. The whole

process of the laminar flow to turbulence is from the unstable equilibrium state to

the stable by the external control variables.

As shown in Fig. 1(b), the bifurcation point set (t = 0) obtained by combining

V ′′ = 0 with V ′ = 0 divides the control variable into (t > 0) and (t ≤ 0) regions.

When control variable t > 0, there is no real solution of Eq. (2), and the V (x) has

no critical points with the stable state transition (A–A’). In this process, the phase

transition will not occur. When t ≤ 0, Eq. (2) has real solutions, and V (x) has

two critical branches in Fig. 1(b), where the upper branch represents the unstable

equilibrium state of the system (corresponding to the point P1 in Fig. 1(a)) and the

lower branch represents the stable equilibrium state (corresponding to the point P2

in Fig. 1(a)). When the system moves from the lower branch crossing the upper

branch (B–C–B’) in the region of t < 0, there is a sudden accumulation and release

of energy, the system state will suddenly change. On the other hand, when the

system moves continuously (B–O–B’), the system passes through the bifurcation

point set (t = 0) and the system gradually finishes the migration of equilibrium

state.
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Therefore, the folding catastrophe model can describe the two-phase transfor-

mation process by considering only one parameter t. In general, this two-phase

transition process may be affected by many factors such as input energy, temper-

ature, pressure and so on. Thus, according to the form of the well-known turbu-

lence −5/3 power law (Ekk = Ckε
2/3k−5/3), the control variable is proposed in

the form of t = Atα1
1 tα2

2 tα3
3 . . . tαnn , where t1, t2, . . . and tn are the related different

active parameters, and α1, α2, . . . and αn are the corresponding scaling indices. The

multi-dimensional fold catastrophe model combining with fold catastrophe model

Eq. (1) can be expressed as

x2 +Atα1
1 tα2

2 tα3
3 . . . tαnn = 0 , (4)

where A is a constant less than 0, and the relationship among the indices α1, α2, . . .

and αn can be further determined by the non-dimensional analysis in the following.

In which, the n dimensions of the exponents of tα1
1 tα2

2 tα3
3 , . . . , tαnn can be reduced to

the (n−m+ 1) dimension with t
α1(αm,...,αn)
1 t

α2(αm,...,αn)
2 t

α3(αm,...,αn)
3 . . . tαmm . . . tαnn

by the m related unit dimensions of parameters t1, t2, . . . , tn. Then, the quantita-

tive relationship between the phases of the system can be obtained by equilibrium

curve or surface equation (V ′ = 0) and the singularity set S or critical points equa-

tion (V ′′ = 0). Finally, we can get different indexes αi (i = 1, 2, . . . , n) values by

solving the extremum of the potential function, which can describe the quantitative

relationship of each phase in the system.

For a simple, multi-dimensional model with two control variables t1 and t2, the

equilibrium surface and bifurcation point set are shown in Fig. 2 when A < 0.

The equilibrium surface with two-dimensional control variables also includes the

bifurcation point set and the equilibrium state point set as the equilibrium curve of

Fig. 2. (Color online) The equilibrium surface of two-dimensional control variables.
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one-dimensional control variable mentioned above. So, by extending the dimension

number of parameters of the control variable t to t = f(t1, t2), it can be obtained

how the two parameters affect the phase transition of the system.

3. Improved Kolmogorov’s Turbulence Theory by the

Multi-Dimensional Complex Phase Transition Model

As described in Kolmogorov’s turbulence theory, in the inertial subrange, η �
1/k � L, the viscous effect is not important, and the motion of fluid is mainly

determined by the inertial force. It is only related to its scale 1/k and energy dissi-

pation rate ε (According to Kolmogorov’s second universality assumption). Within

the Kolmogorov scales and Taylor scales, the viscous dissipation is approximately

equivalent to the kinematic viscosity (According to Kolmogorov’s first universality

assumption). In addition, the physicists use the wave number k(L−1) to study the

turbulent phenomenology, which became the main tool for Kolmogorov’s energy

cascade chain.1,9,18–20 Therefore, the k can be selected to be the state variable,

and the viscosity v(L2T−1), the mean energy dissipation rate ε(L2T−3), and en-

ergy spectrum density Ek(L3T−2) are selected as control variables.9,10,21–23 The t

is in the multidimensional function form based on non-equilibrium phase transition

theory2,9–13

t = 3Aεα1να2Eα , (5)

where A is a constant less than 0, and α1, α2, α denote time scaling indices. As a

new physical phenomenon, α has been the dimension of time describing the forma-

tion process of turbulence. Meanwhile, the kinematic viscosity v can describe the

Reynolds number defined as R = LV/ν.9 Moreover, the dimension of Eqs. (5) and

(6) is shown in Table 1.

Table 1. The power exponents

relation.

α1 α2(ε) α(Ek) t

L 2 2 3 −2
T −1 −3 −2 0

By the dimensionless analysis, the dimension satisfies the relation{
2α1 + 2α2 + 3α = −2
−α1 − 3α2 − 2α = 0 and Eq. (6) is derived by Eqs. (2) and (5).

k2 +Aν
−6−5α

4 ε
2−α
4 Eαk = 0. (6)

The dimensions of identities of Eq. (6) are always balanced and established for

any wave numbers k in the turbulence formation process analyzed by the theory

which can quantitatively describe the Kolmogorov energy cascade described by

any k(n). Furthermore, the formula of energy spectrum Ek is solved by Eq. (6):

Ek = −A− 1
α ε

α−2
4α ν

5α+6
4α k

2
α . (7)
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(a)

(b)

Fig. 3. (Color online) (a) Energy spectrum density Ek as a function of the index α and the k

and (b) energy spectrum density Ek as a function of the index α.

Thus, we derive the quantitative expression between energy Ek and Kolmogorov

cascade k theoretically and physically, which can quantitatively calculate the energy

difference dissipated by viscous motion between the k(n+ 1) and k(n), where n is

the level of turbulent energy cascade chain.

Figure 3 shows the energy spectrum density Ek by Eqs. (6) and (7) with index

α and k. The turbulent development process includes five special stages from Fig. 3,

which are α = −2, α = −9/5, α = −6/5 (obtained from ∂2E
∂ν2 = 0 described as the

set of degenerate critical points), α = −2/3 (obtained from ∂2E
∂ε2 = 0 described as

the set of degenerate critical points), and α = 0. α = −2 is the starting point of the
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change in turbulent kinetic energy. The range near α = −9/5 is energy containing

range in which the range −2 ≤ α ≤ −9/5 is laminar-turbulence transition stage

for low Reynolds. In this region, fluid energy increases rapidly, mainly affected by

the continuous input of external kinetic energy or the increasing Reynolds number.

The maximum energy is generated at α = −9/5 reaching its peak after numerical

calculation corresponding to the energy-containing scale l0, and its reciprocal is

the energy-containing wave number k0 = 1/l0 from Fig. 3. The maximum energy

peak is the maximum value of spectrum density in the turbulence formation process

in which turbulence pulsation takes up almost all turbulent kinetic energy, which

transfers energy through inertia, and the dissipation of turbulent kinetic energy can

be ignored. Then, these large eddies are unstable and easily break up, and transfer

their energy to some small eddies. In the range −9/5 ≤ α ≤ −6/5, energy is trans-

ferred through inertia. Then, the range near α = −6/5 is the inertial subrange,

where the vortex receives the energy from the large-scale pulsation without dissi-

pating, and then passes the energy to the smaller-scale vortex. In this range, Kol-

mogorov’s −5/3 law is obtained and analyzed in Eq. (10). When −1 ≤ α ≤ −2/3,

these small eddies undergoing a similar break-up, transfer their pulsation energy to

yet smaller ones. Finally, the pulsation energy is completely dissipated by viscous

motion at α = −2/3, where turbulence develops into fully developed turbulence, at

the same time, the fluid system reaches dynamic and statistical equilibrium. The

α = −2/3 is the second partial derivative of E with respect ε is zero (∂
2E
∂ε2 = 0 de-

scribed as singularity set or critical points in the catastrophe theory) where only the

turbulent kinetic energy is dissipated, and the energy transmission is almost zero.

So, α = −2 is the unstable equilibrium state in which the state of the system can

easily be broken. α = −2/3 is the stable equilibrium state. According to Kolmogorov

cascade theory, the energy of the n stage vortexes obtained from the (n− 1) stage

and passed to the (n+1) stage vortexes can be quantified in almost all scales at the

entire phase transition. The description of turbulence variation in Fig. 3 is consistent

with Poisson distributions in document,27 and the lognormal scale distributions of

turbulence in Fig. 4 will be verified in experiments.

Thus, the range near α = −9/5 is energy containing range in which α = −9/5 is

the maximum energy peak corresponding to the energy-containing scale l0, the area

near α = −6/5 is the turbulence development range (transition region), and the

area near α = −2/3 is the fully developed turbulence stage. Therefore, the energy

spectrum density for some special transition stages, α = −2, α = −9/5, α = −6/5,

α = −2/3 can be obtained by solving Eq.(7).

Ek(α=−2) = −A1/2ε1/2ν1/2k−1 , (8)

Ek(α=−9/5) = −A5/9ε19/36ν5/12k−10/9 , (9)

Ek(α=−6/5) = −A5/6ε2/3k−5/3 , (10)

Ek(α=−2/3) = −A3/2ε1ν−1k−3 . (11)
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(a)

(b)

(b)

Fig. 4. (Color online) (a) Three-dimensional energy spectrum density with the wave number and

scaling indices, (b) three-dimensional logarithmic map of energy spectrum density in the turbulent
development stage and (c) two-dimensional logarithmic map of energy spectrum density with wave

number.
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Equation (8) shows that the energy begins to accumulate from α = −2 so that

the unstable equilibrium phase is broken, and the flow line begins to be confused.

Equation (9) shows that the cumulative pulsation energy attains the maximum

value at α = −5/9 in the energy containing range, as the turbulence-onset, where

the energy spectrum density Ek is in direct proportion to the −10/9 of k(k−10/9).

Importantly, Eq. (10) is exactly the same as Ekk = Ckε
2/3k−5/3 for Kolmogorov’s

second universality assumption. So, the fact that the energy spectrum density Ek is

in direct proportion to the −5/3 power law of the k corresponding to Kolmogorov’s

turbulence theory just as a special case in the multi-dimensional complex phase

transition theory, verifies the multi-dimensional complex phase transition theory

presented in this paper. Equation (11) is the fluid flow for the dissipation and the

fully developed turbulence range near α = −2/3, while viscous motion completely

converts turbulent energy into heat energy. The energy spectrum density Ek is in

direct proportion to the −3 of k(k−3). Equation (11) corresponds to Kolmogorov’s

first universality assumption, and gives the expression of parameters and the index

of the k for the fully developed turbulence.

As can be seen from Fig. 1, the potential function has two different equilibrium

states, representing the laminar and turbulent states. Then, every control variable in

catastrophe theory could be skillfully expanded into multi-parameter multiplication

with different indices α defined as a time scale factor. In the process of fluid flow,

the energy increases with the wave number and time in Fig. 4(a). Thus, taking

the logarithm of the energy spectral density, the power law corresponding to the

energy can be obtained from Figs. 4(b) and 4(c). The energy spectrum density for

large-scale wave corresponds to −10/9 power law in energy containing range. The

energy spectrum density corresponds to −5/3 power law in the inertial subrange.

The energy spectrum density for small scale wave corresponds to −3 power law in

the fully developed turbulence range.

Although Kolmogorov only gives the quantitative expression of energy in the

inertial range, his qualitative analysis of the flow based on three important as-

sumptions still provides a guideline to study the quantitative question for fluid

flow. This multi-dimensional phase transition theory cannot only explain and de-

velop the Kolmogorov theory theoretically, but also can describe the whole phase

transition process of fluid movement and study the quantitative relationship of each

parameter.

4. The Analysis and Feasibility Verification Using T -Tube

Wind Tunnel

To verify the variation for the energy spectrum of this new method in the turbu-

lence phase transition, we have conducted experiments in the T -tube connection

system which are very common in mechanical power system, such as gas and oil

transmission systems, high-speed train ventilation systems, etc. Figure 5 shows were
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simplified experimental wind tunnel platform constructed in the Xi’an Jiao Tong

University.

The T channel is made of plexiglass, whose main passageway and branch are

connected with the wind tunnel and small fan, respectively. We can control the flow

of the main road by adjusting the frequency of the fan. The length of the T -shaped

tube channel is 143.3 × 161.7 mm2, and the length of the rectangular section is

35.5D. The branch tube with a cross-section D = 110 mm is 14.2 D. In order to

ensure that fluid is more likely to form turbulence in the T -wind tunnel, a 2.0 mm

rod is fixed to the tunnel side at the main inlet in Fig. 5(a).

The coordinate origin is situated on the center of main interface and branch

interface in Fig. 5(b). In the (x, y) plane, the ratio R = ub/uc of the branching

velocity of the bulk to the cross-velocity at the horizontal axis center is shown

in Table 2. Measure the velocity component of the sum with an X-type hot wire

(a)

(b)

Fig. 5. Schematic diagram of the T -tube wind tunnel measurement (a) Experimental devices

1 — Entrance, 2 — Settling chamber, 3 — Contraction section; 4 — Cross duct, 5 — Connect
section, 6 — Fan, 7 — Branch tube, 8 — Valve, 9 — Rotameter, 10 — Fan and (b) sketch of

measurement points.
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Table 2. Velocity design condition.

ub (m/s) uc (m/s) R

1 30 3.9 0.13

Table 3. Design of measuring points.

Distance from Distance from T
Position wall surface (mm) tube center (mm)

P1 71.6 −2D

P2 71.6 0

probe −TSI 1240−20. The uncertainty of average cross-velocity measured by using

hot wire probe method and the branching velocity measured by using glass rotor

method are 1% and 4.3%, respectively. In consideration of the repeated testing,

measurement points are determined as shown in Table 3. Then the P1, P2 velocities

are collected for the time of 40.6 s in Table 3. The accuracy and procedures of the

test method and data processing methods refer to document by Gessner, Elazhary

and Soliman.24–26

The statistics for instantaneous velocity u(t) is expressed as:

〈um〉 =

∫ ∞
−∞

ump(u)du =
1

N

N∑
i=1

m ≥ 1 , (12)

where p(u) represents the PDF for the instantaneous state of velocity u(t), 〈·〉 is

the time-average velocity.

The PDF can be expressed as Eq. (13) when the random variable u′ complies

with probability distribution

p(u′) =
1√

2πσ2
exp

(
− (u′ − µ)2

2σ2

)
, (13)

where σ denotes scale parameter and µ is position parameter. Furthermore, Eq. (14)

is well known as the standard normal distribution or the Gaussian distribution if

σ = 1, µ = 0

p(u′) =
1√
2π

exp

(
−u
′2

2

)
. (14)

Other parameters are defined as follows: fluctuation velocity is u′ = u− ū, time-

average velocity is defined as that ū = 1
N

∑N
i=1 ui, Reynolds number is that Rea =

uah
v , friction Reynolds number or Kármán number is defined as that Reτ = uτh

v ,

velocity ratio is that R = ub
uc

and bulk velocity is defined as that ua = 1
h

∫ h
0
ū(y)dy.

Turbulent flow can be seen as a superposition of vortexes for different scales.

Since the instantaneous velocity can be regarded as the superimposition of the
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average and pulsation velocity, the power spectrum density is defined as follows:∫ ∞
0

P (f)df = (ū′)2 , (15)

where sampling frequency is that f = n
N∆t , n = 0, 1, 2, . . . , N−1, so power spectrum

density is P (w) = 1
N |x(w)|2 = 1

N |
∑N−1
n=0 x(n)e−jwn|2, the relationship between

power spectrum density P (w) and the energy spectrum density E is:

E =
1

2π

∫ +∞

−∞
P (w)dw . (16)

Using Welch method27,28 and MATLAB software to calculate the power spec-

trum of the pulse velocity signal, and then study the law in logarithmic form.

Figure 6 shows the relation between the Ek and α for the T -tube wind tunnel

experimental data at two positions where (a) x/D = 0, y/L = 1/2 (b) x/D = −2,

y/L = 1/2 in the form of logarithm in ordinate and f = kv/2π, where k is the wave

number, and v is the volume velocity of the fluid.

Fig. 6. (Color online) T -tube wind tunnel experimental data relationship between E and α in

the form of logarithmic. (a) x/D = 0, y/L = 1/2 and (b) x/D = −2, y/L = 1/2.

2050159-12
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The T -tube wind tunnel experimental data for low-frequency describe the

change rules of small wave number — large-scale vortexes when turbulence starts,

where energy spectrum density Ek is in direct proportion to the −10/9 of k(k−10/9)

(blue line in Fig. 6). The T -tube wind tunnel experimental data for medium fre-

quency describe the law of variation of medium scale vortexes when turbulence

develops, where Ek is proportional to the −5/3 of k(k−5/3) (red line in Fig. 6). The

T -tube wind tunnel experimental data for high frequency describe the change rules

of large wave number-small scale vortexes in statistical equilibrium range, where

the Ek is in direct proportion to the −3 of k(k−3) (green line in Fig. 6).

This theory successfully predicts and indicates the quantitative relationship be-

tween the turbulence just occurring (−10/9 power law) and the energy dissipated

completely by fluids’ viscous occurring (−3 power law), respectively. Meanwhile,

Kolmogorov’s −5/3 power law is also found and is just a special case in our results.

Furthermore, we theoretically and mathematically derive this turbulence model

that can explain the whole phase transition process of turbulence quantitatively.

The fact that Kolmogorov’ −5/3 law for energy spectrum in the inertial range in

our theory verifies our theory presented in this paper.

5. Conclusions

The multi-dimensional complex phase transition theory is proposed to develop the

Kolmogorov turbulence theory. Through this multi-dimensional method, we quanti-

tatively study the whole process of the laminar flow to turbulence. We conclude that

the energy spectrum density Ek is in direct proportion to the −10/9 of k(k−10/9) in

the energy-containing range and α = −9/5 corresponds to energy-containing scale

l0. In the inertial subrange, the Ek is in direct proportion to the −5/3 of k(k−5/3),

in the final period of isotropic turbulence, the Ek is in direct proportion to the −3

of k(k−3).

Importantly, the fact that the Ek is in direct proportion to the −5/3 of k(k−5/3)

in the inertial subrange is only a special case in the whole process also verifying the

correctness of multi-dimensional complex phase transition theory.
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