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a b s t r a c t

The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow
theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic
field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel
transform, this governing equation is solved exactly and all the electromagnetic components inside and
outside the microcavity can be obtained accurately. According to the above theory, the near-field optical
diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and
numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and
the depolarization phenomenon of the near-field transmission in terms of the distance from the film
surface. This thin microcavity theory is verified by the good agreement between our results and those in
the previous literatures. The thin microcavity theory presented in the study should be useful in the
possible applications of the thin microcavities in near-field optics and thin-film optics.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Near-field scanning optical microscope (NSOM) is a type of
microscope in which a subwavelength aperture at the end of a
tapered and aluminum-coated optical fiber is most commonly
used as a scanning probe with resolution well beyond the usual
“diffraction limit”. The probe scans over a surface at a height of a
few nanometers above the surface. The understanding of the
nature and details of the tip-sample interaction is imperative for
quantitative evaluation of near-field images. Since the emergence
of NSOM, near-field optics has been developed recently [1–5]. As a
simple near-field modeling, the light scattering from a sub-
wavelength aperture is very important to be investigated.

Light transmission through a hole in an opaque screen has been
studied for centuries. The well-known theoretical model, Bethe–
Bouwkamp solution, has been proposed for analyzing the diffrac-
tion of electromagnetic radiation by a subwavelength circular hole
in an infinitely thin and perfectly conducting screen [6,7]. Al-
though a rigorous electromagnetic theory of diffraction by a cir-
cular aperture in a thick screen was developed, this method be-
comes numerically intractable for off-normal incidence [8]. In
addition, to explain the experimental observation for the optical
near-field of an aperture tip, another simple model was presented
.

based on the assumption that the electric field produced by the tip
is essentially static and is completely characterized by an assumed
electric charge distribution [9–11].

More recently, the presence of tiny holes in an opaque metal film
with sizes smaller than the wavelength of incident light has re-
ceived growing attentions [12–15]. Due to the interaction of the
light with electronic resonances on the surface of the metal film
[16,17], subwavelength apertures in metal films can make the en-
hancement of the transmission magnitude by at most a factor of 7
[18,19]. This intriguing effect can be controlled by adjusting the size
and geometry of the holes, as well as the thickness of the film [20].

For near-field optics, evanescent waves have to be taken into
account because the energy exchange between the vibration sur-
face and the electromagnetic wave at the near field prevents all
the near-field energy to be transferred totally to the far field. The
key concept of near-field optics involves evanescent electro-
magnetic waves, which makes it difficult to use any simple ap-
proximation in Maxwell's equations.

In this paper, near-field optical thin microcavity theory is pro-
posed by applying the power flow theorem and the variable the-
orem, the electromagnetic field distribution inside and outside the
thin microcacity can be obtained accurately and the thin micro-
cavity theory is verified by comparing our results with those in the
literatures. This paper is organized as follows: we derive the op-
tical thin microcavity theory in details in Section 2. In Section 3,
based on the thin microcavity theory, the near-field optical dif-
fraction from a subwavelength aperture embedded in a perfect
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electrical conducting (PEC) thin film is investigated theoretically,
and all the components are obtained accurately by using the
Hankel transform. Further, the thin microcavity theory is verified
in Section 4, followed by the conclusions in Section 5.
2. Thin microcavity theory

The governing equation of the electromagnetic field distribu-
tion in a thin microcavity under an external light incidence is
derived in details. For a thin microcavity, we think it satisfies the
condition that the thickness h is much less than the incident
wavelength λ, i.e. h 1/5 1/10 λ≤ ( ~ ) . Because of the small thickness
of the thin microcavity, we make the assumptions, as in Ref. [21],
that the magnetic field component H3 in the z direction, i.e.,
perpendicular to the symmetric plane of the microcavity with the
origin at the center, is constant along the z direction, and the
other components in x and y directions are H z H y/1 3= ∂ ∂ and
H z H x/2 3= − ∂ ∂ , respectively. The electromagnetic field compo-
nents have the forms as following

H x y z H x y z H x y z H x y, , , , , , , , , 11 2 3( ) = [ ( ) ( ) ( )] ( )

E x y z E x y E x y E x y z, , , , , , , , 21 2 3( ) = [ ( ) ( ) ( )] ( )

Then the electric field components in the microcavity can be
expressed as
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where the parameter ω is the circular frequency, ε is the per-
mittivity of the microcavity material and i is the imaginary unit. It
can be easily verified that H 0∇⋅ = and E 0∇⋅ = , thus all Maxwell's
equations are satisfied. Comparing Maxwell's equations

i E H y H z/ /1 3 2ωε− = ∂ ∂ − ∂ ∂ and i E H z H x/ /2 1 3ωε− = ∂ ∂ − ∂ ∂ with Eq. (1),
combining H z H y/1 3= ∂ ∂ and H z H x/2 3= − ∂ ∂ , we can confirm the
above assumptions, because H z H z/ /2 2∂ ∂ ≈ and H z H z/ /1 1∂ ∂ ≈ are
both correct for small thickness.

The electric field energy U and the magnetic field energy T can
be expressed as
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where μ is the permeability and h is the thickness of the
microcavity.

With an incident light, time-harmonic electromagnetic field of
the thin microcavity satisfies the power flow theorem, the com-
plex form of the power flow theorem can be expressed as

E H B H E D E JdS i dV dV 6s V V
∮ ∫ ∫( ) ( )ω− × * ⋅ = ⋅ * − ⋅ * + ⋅ *
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where H D J, ,* * * are the conjugate complex vectors of H D J, , ,
respectively. Considering Eqs. (4) and (5), Eq. (6) can be written as
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Due to the small thickness of the microcavity, we can ignore the
surface integral term parallel to z direction. Thus, we can obtain
that
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where S1 and S2 indicate the upper and lower interface of the thin
microcavity. It can be noticed that
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Then Eq. (8) can be expressed as
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According to the variation of Eq. (7), and considering the arbi-
trariness of H3δ , the following governing equation for the time-
harmonic magnetic field of the thin microcavity can be obtained
that
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where x x y y/ 2 / /4 4 4 4 2 2 4 4∇ = ∂ ∂ + ∂ (∂ ∂ ) + ∂ ∂ , k h4 2 2μεω= ( h12 /2 2μεω− )
, k is the propagation constant in the microcavity. E x y z, ,U3 ( ) and
E x y z, ,D3 ( ) are the electric field components in the z direction on
both sides of the microcavity, the subscripts U and D denote the
upper and lower spaces, respectively.This derived equation has an
obvious physical meaning that the magnetic field distribution inside
the microcavity is determined by the difference between the electric
field gradients at the interfaces.

In the following, a special case will be further discussed.
Without the incident light, Eq. (12) is then changed into the fol-
lowing equation for analyzing the resonant modes.
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4
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In polar coordinates, the solution of Eq. (13) can be expressed
as
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where Jn and Yn are the Bessel functions of the first and second
kind, In and Kn are the modified Bessel functions of the first and
second kind, respectively; the coefficients A B C, ,n n n and Dn can be
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determined by the boundary conditions. Due to the properties of
Yn and Kn, there must be B 0n = and D 0n = , because H3 and H r/3∂ ∂
at the center of the microcavity should be finite. Thus, we can
obtain that
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15n

n n n n3
0

∑θ θ( ) = ( ) + ( ) ( )
( )=

∞

For a solid microdisk with the radius r a= , the boundary
conditions are H 0r a3 == and H r/ 0r a3∂ ∂ == , from which, we can
obtain the following frequency equation

J ka I ka

J ka I ka
det 0

16

n n

n n

( ) ( )
′ ( ) ′ ( )

=
( )

For a rectangular microcavity with the sides of length a and b,
H3 can be expressed in Cartesian coordinates as

⎡
⎣⎢

⎤
⎦⎥H r A J k x y C I k x y

n y x

, cos

tan / 17

n
n n n n3

0

2 2 2 2

1

( ) ( )∑θ( ) = + + +

( ( )) ( )
=

∞

−

which should accordingly satisfy the following boundary condi-
tions

H
H
x

H
H
y

0, 0,

0, 0.
18

x a
x a

y b
y b

3 0,
3

0,

3 0,
3

0,

= ∂
∂

=

= ∂
∂

=
( )

=
=

=
=

Considering the monotonically increasing property of I xn ( ) for
any real number x, and I xlim

n
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→∞
, we have to impose C 0n =

for all resonant frequencies. In this case, Eq. (17) is the same as the
exact solution of the 2D rectangular microcavity in appearance
[22], but with a different wavenumber, because of the finite
height. The resonant mode function for different orders n m,( ) can
be constructed as
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From the exact solutions of the governing equation and fre-
quency equations, the resonant patterns of a thin microdisk and a
thin rectangular microcavity can be obtained easily.

Based on the thin microcavity theory presented above, we
further theoretically analyze near-field optical diffraction from a
subwavelength aperture in a thin conducting film in the following.
Fig. 1. Sketch of a thin film with a subwavelength aperture.
3. Near-field optical diffraction from a subwavelength aper-
ture in a thin conducting film

In this section, a near-field optical diffraction system that con-
siders a perfect electrical conducting (PEC) thin film with a sub-
wavelength aperture embedded will be investigated based on the
thin microcavity theory. The sketch of the system is shown in Fig.1.
A plane wave vector k kk 2 /0 00 π λ( = = ) illuminates the system

along the z axis. For simplicity the theory will be described for an
E-polarized field incident upon the perfectly conducting metallic
film. The incident electric field is given by E y yE ik zexp0 0 0= = ( ) ,
with the use of a time dependence in i texp ω( − ). In Fig. 1, the
reflected and transmitted field components in the upper (region I)
and lower (region III) space can be expressed, respectively, as
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Here rΦ represents for E E H, ,U U U1 2 1 and H U2 , and tΦ does for
E E H, ,D D D1 2 1 and H D2 . Eqs. (21) and (22) both satisfy the Helmholtz
equation and include all the evanescent waves reflected and
transmitted, respectively.

The magnetic field component H3 in region II (vacuum) can be
solved from Eq. (12) in a simple way as
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is shown later. The other electromagnetic components in the
aperture, such as E ,d

1 E ,d
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3 H ,d
1 and Hd

2 , can be also obtained from
Eq. (23), which could solve the main drawback of the Bethe–
Bouwkamp solution.

Because of the infinite PEC screen, the necessarily produced
surface-current and charge densities are confined to the z h/2= ±
planes. According to the reflection symmetries of the scattered
fields [23], there are the following associated boundary conditions
on surface of the film at z h/2= ±



Fig. 2. Resonant patterns of a thin microdisk. (a) n 12= and ka 42.22777= , (b) n 22= and ka 51.7045= .

Fig. 3. Resonant patterns of mode numbers n m,( ) of a square thin microcaivty. (a) n m0, 0= = and ka 38.47477= , (b) n m4, 2= = and ka 38.42265= .

Fig. 4. Transmitted distance-dependent electric field magnitude along the axis of
symmetry.
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Then the reflected and transmitted fields in region I and III can
be obtained from (Eqs. (21) and 22) by use of the Hankel transform



Fig. 5. Intensity maps for the electric field ( E and the components E1 , E2 , and E3 ) created by the model presented at different cross sections; (a) z 14nm0 = − , (b)
z 18nm0 = − . All image in each row share the same color bar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. Total electric field magnitude at the different observation points in the
longitudinal section y 0= .
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and continuous conditions of the tangential components at the
interfaces.

In order to determine the coefficient Fn, we transform the right
expression of Eq. (12) into the following by using the Maxwell's
equation H i Eωε∇ × =
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According to Eqs. (21) and (22), all the right items of Eq. (25)
can be expressed as
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Then, substituting Eq. (26) into Eq. (25), after some manipula-
tion, we can obtain that
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Here note that the relation i e n1 1/ 1 1 /n
n inπ= ( ) ∑ [ − ( − ) ] θ

=−∞
∞ is

used when the Eq. (28) is derived. Thus, we can yield
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Substituting Eq. (29) into Eq. (27), the governing equation be-
comes
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For a function u r en in= θ , we have
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By this formula, it can be found that u4∇ is identically equal to
zero for any n. Thus, H 04

3∇ = is always correct for the particular
solution. Then Eq. (30) can be changed into
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4. Results and verification

According to the thin microcavity theory, we calculate the re-
sonant patterns of a thin microdisk and a thin rectangular mi-
crocavity, and the transmitted field distribution of a sub-
wavelength aperture embedded in a thin film under an incident
light in the following.

Figs. 2 and 3 show the resonant patterns of a thin microdisk
and a thin rectangular microcavity, respectively. The parameters of
microdisk are: thickness h 0.2 m= μ , radius a 2.5 m= μ , and re-
fractive index n 3.4e = . In Fig. 2, the resonant pattern of the thin
microdisk for the magnetic field component H3 is axially sym-
metric, and is becoming more intensive when the mode order
is increased from n¼12 to n¼22. The parameters of the rect-
angular microcavity are: thickness h 0.2 m= μ , length and width
a b 2.5 m= = μ , and refractive index n 3.4e = . In Fig. 3, the resonant
pattern of mode numbers n m,( ) of a square thin microcaivty for
the magnetic field component H3 is also symmetric, and is be-
coming more intensive when the mode numbers are increased
from (0, 0) to (4, 2).

The results are in close agreement with the previous results in
Ref. [24], in which the equivalent index, resonant wavelength and
two-dimensional mode field distribution were approximately
calculated by simultaneously solving guided-wave equation and
axially symmetric wave equation with boundary conditions at disk
center, edge and infinite distance. In compared with this method,
our method is much simpler and more directly, but with the
limitation of thin disks.

For the incident E-polarized plane wave
E y yE ik z i texp0 0 0 ω= = ( − ) , by using the Hankel transform and
boundary conditions at the interfaces presented above, we calcu-
late the transmitted electric fields at different observation points
r z, ,0 0 0θ( ) with the following parameters: film thickness h 20nm= ,
radius of the aperture a 40nm= , and wavelength of the polarized
incident plane wave 633nmλ = .

Fig. 4 displays the transmitted distance-dependent electric field
magnitude along the axis of symmetry. Below the aperture, the
electric field magnitude is polarization-dependent. E D2 is parallel to
the incident field (p polarization), and there is a maximum value of
E D2 at z 15nm0 = − with monotonically decreasing there after. E D3

is vertical to the incident field ( s polarization), and the field mag-
nitude E D3 is abrupt at the port interface z 10nm0 = − also with
monotonically decreasing after a peak value at z 14nm0 = − . These
polarization-dependent results are in very similar forms with the
microwave measurement results in Ref. [25].

Fig. 5 shows the intensity distribution of the transmitted

electric field, the total magnitude E E E E1
2

2
2

3
2= + + and the

components E1 , E2 and E3 at different cross sections, (a)
z 14nm0 = − , (b) z 18nm0 = − . Due to the polarized incident
wave, two intensity lobes along the aperture edge for the total
electric field are produced. It can be observed that E is entirely
dominated by the y component E2 and the z component E3 , and
the x component E1 can be ignored. E2 is the highest in the image
center where E3 is negligible, while E3 is the highest in the lobe
centers where E2 is very weak. The calculation results by the
proposed thin microcavity theory are in good agreement with the
experimental and simulation results for a near-field aperture tip in
Ref. [9], which confirms that the thin microcavity theory can de-
scribe the near-field properties of NSOM. It also shows that the
polarized incident light losts its polarization property after pene-
trating into the circular aperture, which is called the depolariza-
tion phenomenon. Because the polarized incident wave along the
y direction is perpendicular to the hole edge, the abrupt change of
the boundary conditions results in the discontinuity of the mag-
nitude E at the port interfaces and the depolarization of the
electric field. Therefore, the depolarization phenomenon is a kind
of edge effect, and the transmitted electric field shows a huge
enhancement along the hole edge.

Fig. 6 shows the electric field magnitude E at different dis-
tances z 10 nm0 = − , 14nm− , 18nm− , 30nm− , respectively, in the
longitudinal section y 0= . At the near field, the field magnitude is
decreasing from the center to the hole edge, but abruptly increases
when approaching the hole edge and to a huge maximum at the
edge. On the other hand, this huge enhancement at the edge only
exists in a certain range from the lower interface, since it is not
obvious at z 30nm0 = − , Additionally, because E3 is not con-
tinuous at the port interfaces, it is extremely small at z 10nm0 = −
but much bigger at z 14nm0 = − , and then with the increase of
the distance, the peak of the transmission through the sub-
wavelength hole decreases rapidly, i.e. from 1.8 at z 14nm0 = − to
0.2 at z 30nm0 = − . The discontinuity of the field magnitude E at
the interfaces is due to the fact that the polarized incident wave
along the y direction is perpendicular to the hole edge, and the
abrupt change of the boundary conditions results in the depolar-
ization of the electric field components and also the huge en-
hancement of the transmitted electric field along the hole edge. In
addition, it is noted that the field magnitude has a sharp decrease
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at the central point, which could be thought of as another kind of
Poisson's spot. This phenomenon is very interesting and would be
useful in trapping and manipulating photons, which will be in-
vestigated in detail later.
5. Conclusions

Near-field optical thin microcavity theory is presented here by
applying the power flow theorem and the variable theorem, which
is verified by the comparison between our results and those in the
previous literatures. In the thin microcavity theory, the biharmonic
differential governing equation of electromagnetic field can be
solved exactly for a thin microcavity, and all the electromagnetic
components, both inside and outside the microcavity, can be ob-
tained accurately by using the Hankel transform. Moreover, based
on the thin microcavity theory, the near-field optical diffraction
from the subwavelength aperture embedded in the thin con-
ducting film is investigated, in which the edge effect by an en-
hancement factor of 1.8 and the depolarization phenomenon of
the transmission in terms of the distance from the film surface are
discussed in details. These conclusions are interesting, and could
find possible realistic applications in the future.
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