
Received April 19, 2019, accepted May 19, 2019, date of publication May 29, 2019, date of current version July 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919750

Simulation Research on Exploiting Electrostatic
Potential Difference Sensing for Shaft
Centerline Orbit Reconstruction
KAIHAO TANG 1, HONGLI HU 1, (Member, IEEE), LIN LI1, YONG QIN2, AND XIAOXIN WANG3
1State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
2State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
3Key Laboratory of Education Ministry for Photoelectric Logging and Detecting of Oil and Gas, Xi’an Shiyou University, Xi’an 710065, China

Corresponding author: Hongli Hu (hlhu@mail.xjtu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 51777151, in part by the National Key
R&D Program of China under Grant 2016YFB0901200, in part by the Open Research Fund of State Key Laboratory of Rail Traffic
Control and Safety under Grant RCS2017K006, in part by the Shaanxi Provincial Key Technologies R&D Programme under
Grant 2016GY-001, in part by the Scientific Research Program Funded by Shaanxi Provincial Education Department under
Grant 18JK0606, and in part by the Fundamental Research Funds for the Central Universities under Grant xzy022019046.

ABSTRACT To realize the non-contact measurement of the rotational shaft centerline orbit, a shaft centerline
orbit reconstruction method using a specifically designed electrostatic sensor in conjunction with the neural
network approximator is proposed in this paper. The sensing principle of the designed electrostatic sensor
is based on the partial capacitance theory. The proposed sensor consists of one electrostatic field excitation
electrode, two sensing electrodes, and a cylindrical metal shield covering the three electrodes. It directly
establishes the map from the sensor output (voltages between sensing electrodes and shield) to shaft center
position through the neural network approximator so that the shaft centerline orbit can be reconstructed. The
CAE software COMSOL Multiphysics is used for sensor modeling and simulation analysis. The simulation
reconstruction experiment is carried out to test the performance of the proposed sensor and to obtain training
data for the neural network. The experiment result shows that the RMS error of the proposed sensor is
within 0.4 µm, which has proved the feasibility of the novel sensor combined with the neural network fitting
algorithm for industrial applications.

INDEX TERMS Electrostatic sensor, neural network, rotational machinery, shaft centerline orbit.

I. INTRODUCTION
Rotor-bearing system is key component of rotational
machineries which are widely used in various industrial pro-
cess. Therefore, rotor-bearing condition monitoring and fault
diagnosis technology is significant to almost all industrial
areas. Shaft centerline orbit is usually adopted as a kind of
important data to analyze the state of a rotor-bearing system
because it involves abundant shaft condition information.
Generally, rotor faults include misalignment, unbalance, and
rub-impact, all of which can be figured out by properly
analyzing shaft centerline orbit [1], [2].

The most widely used method of shaft centerline measure-
ment is to synthesize the axial trajectory using two mutually
orthogonal vibration displacement signals in the same cross
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section of the shaft. To get the two vibration displacement
signals, a common method is to directly measure vibration
displacement signal through eddy current displacement sen-
sors [3], [4]. Using eddy current sensors to realize shaft cen-
terline orbit monitoring has high precision, but the equipment
is expensive and sensor setup is complex.

Electrostatic sensor is a kind of widely used low-cost and
non-contacting sensor [5], [6]. Recently, some researcher
begin to study how to use electrostatic sensor for rotational
machinery condition monitoring. Wang et al. [7] put forward
a novel application of electrostatic sensors of rotational speed
measurement conjunct with signals cross-correlation algo-
rithm. The main principle of this method is to estimate the
time-lag between the two sensors arranged angled surround-
ing the shaft by α in radians conjunct with cross-correlation
algorithm. Based on signals cross-correlation algorithm,
Li et al. [8] developed double correlation technique for
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rotational speedmeasurement, with improvement in accuracy
and robustness. Later, Hu et al. [9] proposed an application
of strip-shape-electrode electrostatic sensors array for belt
vibration measurement.

Inspired by electrostatic sensor’s being used for rotational
speed and vibration monitoring, a specifically designed elec-
trostatic sensor is proposed in this paper to realize shaft
centerline orbit reconstruction. The sensor consists of one
electrostatic field excitation electrode, two sensing elec-
trodes, and a cylindrical shield covering the three electrodes;
it directly establishes the map from sensor output (voltages
between sensing electrodes and shield) to shaft center posi-
tion through neural network approximator.

This paper aims to explore the novel usage of electrostatic
sensor for shaft centerline orbit measurement. The simulation
experiment has demonstrated good performance in shaft cen-
terline reconstruction.

FIGURE 1. Structure of the sensor.

II. SENSING PRINCIPLE AND MEASUREMENT
SYSTEM MODELING
A. SENSOR STRUCTURE
The sensor consists of a shield and three cylinder electrodes
of which one is used as ‘‘field excitation electrode’’ while the
others are used as ‘‘sensing electrodes’’. The three electrodes
are arranged surrounding the shaft to be measured, and their
spatial position is proposed in Fig. 1. The center distances
between shaft and electrodes equal to di (i = 1, 2, 3);
The radium of the shaft and the three electrodes equal to
Rs (15 mm) and Re (3 mm), respectively. The three electrodes
and the shaft are shielded in ametal can shaped into a cylinder
with radium Rc (48 mm) and without bottoms. The distances
between the electrodes and the shaft are d1, d2, d3, respec-
tively, whose initial values are d (5 mm). Due to the length of
the proposed structure is long enough, the influence of lack-
ing bottom conductor can be ignored; The three electrodes,
shaft, and the metal can constitute an electrostatic isolated
system, numbered 0-4, respectively. A DC bias (24 V) is
applied between conductor 0 (the shield) and conductor 1 (the
field excitation electrode). The key geometry parameters are
presented in Fig. 2.

FIGURE 2. Key geometry parameters of the sensor.

FIGURE 3. Coordinate system establishing.

B. PHYSICAL MODEL AND SENSING PRINCIPLE
1) FEM MODEL ESTABLISHING
A cylindrical coordinate system can be established whose
origin is located at the bottom surface center of the shaft
and the positive direction of z-axis is axially along the shaft,
as is shown in Fig. 3. � (the air) is the solution domain
with boundary ∂�i, i = 0, 1, · · · , 4 (surfaces of shield,
two electrodes, and shaft). Considering that there is no need
for solving potential function inside conductor for an elec-
trostatic problem, the solution domain does not include the
electrodes and shaft entities but their surfaces.

According to electrostatic theory [10], the physical model
of the measurement system can be described as following:

∇
2ϕ = 0, in�

ϕ|∂�0 = 0
ϕ|∂�1 = U1

−

∑
i

∫
∂�i

(ε0∇ϕ) · ndS = 0, i = 0, 1, 2, 3, 4

(1)

where U1 is the applied field excitation potential; n is the
outer normal vector of ∂�i. It is obviously that formula (1) is a
typical Laplacian function with Dirichlet boundary condition.

Fig. 4 shows the geometry model built in COMSOL Mul-
tiphysics. According to aforementioned analysis, potential of
excitation electrode is set to 24 V and the two sensing elec-
trodes are set to floating potential condition; the shield is set
to grounded condition as it works as zero potential reference
of the electrostatic isolated system. The main physical field
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FIGURE 4. FEM model. a) Front view; b) Top view.

TABLE 1. Units for magnetic properties.

TABLE 2. Key geometry parameters of the FEM model.

interface setups is illustrated in Table 1, and the key geometry
parameters of the FEM model is illustrated in Table 2.

It is notable that the motion of free charge on conductor
surface was constrained by formula (1), which is usually used
in FEM modeling but hard to obtain an analytical solution.
Hence, an electrical circuit model will be put forward and
used to discuss the sensor characters in the next section.

2) ELECTRIC CIRCUIT MODEL AND SENSING PRINCIPLE
According to electrostatic theory, the circuit model of the
proposed measurement system can be described as a capaci-
tance network, as is presented in Fig. 5. Uij is the potential
difference between the i-th and the j-th conductor, and Cij
is the partial capacitance between conductor i and j in the
system.

The relation between charge quantity qi of the ith conduc-
tor, Cij, and Uij is

qi =
∑
j6=i

CijUij (2)

or

q = CU (3)

FIGURE 5. Capacitance network model of the measurement system.

where

q =
[
q1 q2 q3 q4

]T (4)

C =


C10 C12 C13 C14
C20 C21 C23 C24
C30 C31 C32 C34
C40 C41 C42 C43

 (5)

U =


U10 U12 U13 U14
U20 U21 U23 U24
U30 U31 U32 U34
U40 U41 U42 U44

 (6)

Denote the equivalent capacitance of the sensor, viz., the
equivalent capacitance between the shield and the field exci-
tation electrode, as Ceq. According to Fig. 5, it is obviously
that Cij = Cji, Uij = Uji. Once the shaft moves eccentrically,
Ceq will change correspondently due to the changed relative
position of conductors; then, the total charge of the conductor
system will change when the new electrostatic equilibrium
state is establishedwhich further affect the charge distribution
of every conductor. And eventually, Uij changes. Therefore,
if Uij is measured simultaneously during rotating, the shaft
center orbit can be reconstructed. Actually, to determine one
point of the shaft centerline orbit only needs 2 elements ofU:
U20 and U30, which are the only measurable quantities. This
will be illustrated in the next. For convenience, denote U20
as U2, and U30 as U3.
It is worth mentioning that the time consumpt τ of estab-

lishing a new electrostatic equilibrium state can be ignored
due to the conductors of the measurement system satisfy
perfect electrical conductor condition:{

ω � τ

τ ,
ε

σ

(7)

where ω is the shaft motion frequency; ε and σ are the per-
mittivity and conductivity of the applied conductor material,
respectively. Generally τ is of themagnitude of 10−17 s which
is far less than the shaft motion period, so that a new elec-
trostatic equilibrium state can be regarded as instantaneously
established.

Partial capacitance matrix C are only concerned with the
dielectric distribution, conductor geometry and the relevant
position between conductors. Assume the coordinate of shaft
center is x = (x, y). Since the conductor geometry are
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invariable, and the variable spatial parameters are di, C can
be presented as following equations:

C = F(x) (8)

F =


f10 (x) f12 (x) f13 (x) f14 (x)
f20 (x) f21 (x) f23 (x) f24 (x)
f30 (x) f31 (x) f32 (x) f34 (x)
f40 (x) f41 (x) f42 (x) f43 (x)

 (9)

q = CU = F(x)U (10)

where F is the transfer function matrix of the electrostatic
isolated system whose elements can be calculated by FEM.
F is a bijection between C and x; it is proven by means of
numerical experiment and is demonstrated in the next. So far
the sensing mechanism can be presented as is shown in Fig. 6.

FIGURE 6. Flowchart of sensing mechanism.

FIGURE 7. Flowchart of sensing mechanism.

According to aforementioned analysis, the sensing system
can be treated as grey systems (bijection between inputs and
outputs) mapping (d1, d2, d3) to u = (U2, U3), or should say
mapping x to u. Hence, the sensing system can be abstracted
to block diagram, as is shown in Fig. 7. In Fig. 7, the unknown
transfer function matrix can be approach by neural network
owning to the bijection relationship between x and u.

III. SIMULATION ANALYSIS IGNORING MEASUREMENT
CIRCUIT-INTRODUCED ERROR
Due to it is hard to generate a precisely controlled stationary
centerline orbit, a simulation experiment coupling electro-
static field and object moving together that simulates the real-
ity is carried out to validate the effectiveness of the proposed
method.

FIGURE 8. Shaft center position selection for neural network training.
a) The selected shaft center positions; b) The corresponding sensor
outputs.

A. SENSOR STRUCTURE
Assume the motion range of the shaft center is limited in
a circular area whose boundary is 1 mm away from the
electrode. Select 3101 points in such circular area, as is shown
in Fig. 8-a), and the corresponding sensor output of each
selected shaft center position is shown in Fig. 8-b). It is
obviously that the relationship between sensor outputs and
inputs is bijection. These chosen input-output pairs will be
next applied to neural network training. Actually, the above
conclusion can be easily proved by comparing the inputs x
and outputs u using MATLAB.

B. NEURAL NETWORK FITTING AND CENTER
ORBIT RECONSTRUCTION
A single-hidden layer feedforward neural network is cho-
sen to be sensing system approximator in this paper, which
includes one input layer of 2 neurons, one hidden layer
of 10 neurons, and one output layer with 2 neurons. Bayesian
regularization is adopted as the network training algorithm.
The detailed introduction of Bayesian regularization can be
found in [11], [12]. The neuron excitation function is chosen
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FIGURE 9. Structure of the applied neural network.

FIGURE 10. Neural network training performance. a) Error histogram of
neural network training; b) Training performance vs. epoch.

to be Sigmoid function:

f (x) =
1

1− e−x
(11)

The number of hidden layer neurons is determined by the
following empirical formula:

l <
√
(m+ n)+ a (12)

where l is the number of hidden layer neurons; m = 2,
n = 2 represents the number of input layer neurons and
output layer, respectively; a = 8 is an arbitrary positive
constant that less than 10. The structure of the proposed
neural network is shown in Fig. 9.

Take the 3101 input-output pairs chosen in section 3.1 for
neural network training: 2326 instances of which are used for
training, 620 for validation, and 155 for testing.

The training effect, as is shown in Fig. 10, is evaluated
with absolute error and mean squared error (MSE) of neural
network output and target data:

ERRabs = |xi − xNi| (13)

where xNi represents neural network’s output and xi repre-
sents neural network’s output;

MSE =
1
L

L∑
i=1

|xi − xNi| (14)

where L represents instance number of every training
epoch. The best performance is obtained at epoch 1000
(MSE = 3.1981× 10−8µm).

Five typical shaft center orbit curves that represent five
kinds of mechanical fault states (donated as Ci(x, y)) are
artificially set to COMSOL Multiphysics as parameter lists
to simulating sensor’s practical output curves (donated as
Si(U2,U3)). Then take every point of Si as inputs of the
trained neural network to approximate the shaft center posi-
tion. The output curves of the neural network is donated
as Ni(x, y). The five presupposed orbit expressions are
presented in Table 3.

TABLE 3. Presupposed orbits applied to test the trained neural network.

In Table 3, parameter f equals to 50 Hz, representing the
rotational frequency of the shaft, and time parameter t varies
from 0 to 1/f with step length of which is 4×10−4 s; v =
3 mm/s represents radial velocity of the shaft; h = 30 µm
represents the maximum radial displacement of the shaft;
a = 10 µm and b = 25 µm represent the major and
short semi-axis parameters of the presupposed ellipse orbits,
respectively. The curves of each presupposed orbit and the
corresponding sensor outputs are shown in Fig. 11.

In Fig. 11, the absolute error can be calculated by for-
mula (15):

erri =
√
D(xi, xNi)× 100% (15)

where D(xi, xNi) represents the distance between the i-th
points of Ci and Ni:

D(xi, xNi) , (xi − xNi)2 + (yi − yNi)2 (16)

The root mean square error (RMSE) and the maximum
quoting error (MQE) of the neural network fitting is shown
in Table 4. They are calculated by formula (17) and (18):

RMSE =

√√√√1
n

n∑
i=1

D(xi, xNi) (17)
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FIGURE 11. Shaft centerline orbit reconstruction performance. a) Adopt C1 as the presupposed orbit; b) Adopt C2 as the
presupposed orbit; c) Adopt C3 as the presupposed orbit; d) Adopt C4 as the presupposed orbit; e) Adopt C5 as the presupposed
orbit.
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TABLE 4. Total RMSE and MQE of the 5 tests.

where n is the number of data points of (xi, yi) and (xNi, yNi).

MQE =
max{erri}

FS
× 100% (18)

where FS presents the full scale of the sensor. Here, FS is set
to 45 µm.
Fig. 11 and Table 4 have demonstrated the good per-

formance of the proposed neural network. It is noticeable
that the spatial position selection for neural network training
is sparse compared with the presupposed orbits applied to
reconstruction experiment; but the trained neural network
shows good performance in mapping sensor output (U2, U3)
to shaft center position (x,y), which has proved the conclusion
put forward in Section II-2) that F is a bijection between C
and x once again.
So far, the simulation experiments have proved the

effectiveness of the proposed theoretically. It can be read
from Table 4 that the RMSE of the proposed method is
within 0.4µm in ideal situation, which is potential qualified
to shaft centerline reconstruction.

IV. CONCLUSION
The main purpose of this paper is to provide researchers with
a new idea and an non-contact way to easily and quickly
obtain shaft centerline orbit. This paper aims at the theoretical
analysis of the proposed sensor as well as its corresponding
measurement method.

According to the above analysis, the proposed sensing
principle has been proven to be correct and qualified to
shaft center orbit monitoring. The proposed sensor is actually
a kind of ‘‘coordinate sensor’’ rather than a displacement
sensor, because the sensor’s input is shaft center position x.
The relationship between x and sensor output (u) is directly
established by a neural network approximator.

In the further study, we are to aim at the following aspects:
1) According to electrostatic field theory, some parame-

ters of the sensor (mainly include electrode length, electrode
width, and the field excitation voltage) that influence the
sensor performance (such as frequency response and sensor
resolution) should be optimized; it is better if the analytical
expression between sensor parameter and sensor performance
should be derived which has significant meaning to sensor
design.

2) The corresponding neural network structure and param-
eters need to be further optimized to obtain a more accurate
approximation.

3) To measure the potential difference between reference
ground and floating conductor, which differs from tradi-
tional voltage measurement, is a challenging work. It is
because once measurement circuit or instrument is intro-
duced, the established electrostatic equilibrium will be bro-
ken and the sensing system’s structure is changed, too.
Thus an electromagnetic transient behaviour will happen to
the measurement system that cannot be described only by
electrostatic equations; the sensing system will turn to an
electrodynamic object. Therefore, the physical realization
of floating measurement circuit needs to be further stud-
ied, which requires very high input impedance and ultra-
low leakage current. Meantime, the realization details, for
example, weather use the sensor shield (the ground point of
the applied field excitation DC source) as the ground point
of measurement circuit or not and how to overcome the
noise introduced by an extreme large resistance, need to be
studied.
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