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The ultrasonic guided wave has emerged as a promising tool for structural health monitor-
ing (SHM) and nondestructive testing (NDT) due to their capability to propagate over long
distances with minimal loss and sensitivity to both surface and subsurface defects. The dis-
persion effect degrades the temporal and spatial resolution of guided waves. A novel ultra-
sonic guided wave processing method for both single mode and multi-mode guided waves
dispersion compensation is proposed in this work based on compressed sensing, in which a
dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave
modes in order to sparsely decompose the recorded dispersive guided waves.
Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal
dictionary and the results of sparse decomposition. Numerical simulations and experi-
ments are implemented to verify the effectiveness of the developed method for both single
mode and multi-mode guided waves.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Ultrasonic guided waves, such as Lamb waves, have received considerable attention because of their powerful proper-
ties, such as high sensitivity to various types of damage, and the capacity of monitoring a large area while a sparse sensor
array is used for damage detection. Therefore, guided waves appear to be very crucial in nondestructive testing (NDT) [1,2]
and structural health monitoring (SHM) [3–5]. In the past decades, many important applications of guided waves in
engineering are proposed in various fields. Some examples including aluminum structures [6,7], pipes/axles [8], and
carbon fiber reinforced composite laminates [9–11] have validated the effectiveness of the guided wave based method
for damage detection. In the field of guided wave based SHM, a common system configuration uses a sparse array of
mounted or embedded sensors in structures to excite or record guided waves. In most SHM damage detecting algorithms,
such as delay-and-sum (DAS) [12] method, minimum variance distortionless response (MVDR) [13] method, and
correlation-based [14,15] methods, the reference guided waves should be acquired to serve as the baseline for damage
detection. Therefore, only the residual signals, the results of subtracting the baseline signals from the recorded signals,
are used in those algorithms.

The guided waves registered from structures, for example, aluminium plates, are usually complicated. Except the portions
caused by the geometric characteristics, such as edge reflections, there exist at least two guided wave modes at any
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frequency in plate like structures, known as multi-mode characteristic. Furthermore, since the frequency dependence of
guided wave velocities, even in a plate of equal thickness, the recorded guided waves will disperse either in time or space,
which is referred to as dispersion. When the propagation distance increases, the dispersion effect will be more serious. As the
consequence of multi-mode and dispersion effect, the wave packets will overlap with each other degrading the temporal
resolution of the guided waves and making the signals hard to be interpreted. For multi-mode, dispersion effect can be com-
pensated or suppressed by selecting the special excitation center frequency [16] or using a mode selection technique [17–
19]. Therefore, the methods of dispersion compensation or dispersion removal should be developed.

The simplest method to suppress the dispersion is to use narrowband excitation [20], usually a windowed tone burst cen-
tered at a certain frequency. In such frequency bandwidth, the group velocity is small fluctuation with respect to frequency.
However, the time width and frequency bandwidth cannot be decreased simultaneously. When frequency bandwidth
decreases, the dispersion effect decreases, but the temporal resolution also decreases. Furthermore, the dispersion effect will
increase when propagation distance increases. Wilcox [21] proposed a rapid signal processing technique to compensate the
dispersion effect by making use of a priori knowledge of the dispersion curves of the structure, which is referred to as the
time-distance mapping method. It transforms the dispersive guided waves from time domain to frequency domain, then
interpolates to wavenumber domain and finally maps signals to distance domain. The method is based on the fact that
the dispersion compensated signals can be obtained by propagating backward the recorded signals to its source. Although
it is a popular dispersion compensation method, the waveform of each wave packet after compensated is deformed and not
identical with the original excitation. Liu and Yuan [22] proposed a linear mapping technique for dispersion removal based
on Taylor linear approximation of wavenumber. The linear mapping performed the dispersive signals in wavenumber
domain to transform the nonlinear dispersion relation into the linear one by truncating the Taylor expansion into linear term
which is nondispersive. Xu et al. [26] compared the above two methods, dispersion compensation(the time-distance map-
ping method) and dispersion removal, and drew a conclusion that the dispersion removal method outperformed the disper-
sion compensation method but the former was not able to directly get the spatial locations of the wave packets. De Marchi
et al. [23,24] presented a guide wave dispersion compensation method, referred to as the warped frequency transform
(WFT), which maps frequency domain into ‘‘frequency warped” domain by a warping function. However, the compensated
signal is still deformed compared with the excitation because of the nonlinearity of the warping function [25]. Recently, Luo
et al. [27] analyzed the reason of waveform deformation in the time-distance mapping method, and developed a reshaped
excitation dispersion compensation method by generating a reshaped excitation. The reshaped excitation was carefully
developed according to the original excitation and group velocity. However, the above methods only work efficiently under
the situation that only one mode exists in wave propagation. For multi-mode cases, the target mode guided waves can be
compensated completely, but the non-target modes will be compensated partly or become even more dispersive.

As a theory of having the capability to deal with signal sparse decomposition and reconstruction, compressed sensing (CS)
[28,29] has attracted great interest in the field of guided wave based signal processing. Based on the sparse prior of the
guided waves in a specified dictionary, some sparse reconstruction algorithms have been developed to process guided waves.
Mor et al. [30] proposed a support matching pursuit (SMP) method for approximating overlapping ultrasonic echoes based
on a Gabor dictionary. The results showed that the SMP method can separate overlapping echoes, and it can achieve superior
performance than matching pursuit (MP) and basis pursuit (BP) method. Tse and Wang [31] used MP for reconstruction of
defect reflection signals in pipes with an optimized dictionary based on two interfering reflection. Harley and Moura [32]
showed the capability of the orthogonal matching pursuit (OMP) in recovering dispersion curves from guided wave data.
Mesnil and Ruzzene [33] developed a CS technique through l1-minimization for the sparse reconstruction of guided wave-
fields. In [34], Perelli et al. proposed a WFT based CS method for guide wave damage localization. Through this method, the
sparse reflectivity function in distance domain can be recovered from the dispersive guided waves, which improves the accu-
racy of wave propagation distance estimation. In [35], Perelli et al. used the WFT and wavelet packet to generate the best
basis for a sparse representation of dispersive guided waves. In [36], De Marchi et al. used a BP algorithm combined with
a warped dictionary, which has the potential to match each mode guided waves, to extract the distance of guide wave prop-
agation. Through building different sparse representation models and constructing the corresponding dictionaries, different
results can be achieved for guided waves, such as feature extraction, wavefield reconstruction, and echo separation, as men-
tioned above.

To address the problem of dispersion compensation for both single mode and multi-mode guide waves, a new method
based on CS is presented in this paper. This method leverages the assumption of sparsity of the number of wave packets with
respect to the number of sampling points, and uses the powerful sparse decomposition and reconstruction techniques to
implement dispersion compensation. In order to implement sparse decomposition, the developed method builds a disper-
sion signal dictionary by utilizing the dispersion characteristic of the guided wave modes firstly. Each atom of the dispersion
signal dictionary corresponds to a dispersive guided wave which dispersively propagates a certain distance. Secondly, the
compensated guided waves are reconstructed using the results of sparse decomposition and a non-dispersion signal dic-
tionary, which is built by the non-dispersion relation of the inspected structure. Results show that the developed method
can compensate the dispersive guided waves for both single mode and multi-mode.

The following sections are organized as follows. In Section 2, the time-distance mapping method is reviewed and dis-
cussed. In Section 3, the methodology of the proposed dispersion compensation method is presented. The numerical simu-
lation and experimental verification are presented in Sections 4 and 5, respectively. In Section 6, conclusions are given.
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2. Review of the dispersion compensation method

In this section, the classical time-distance mapping dispersion compensation method is reviewed for the sake of com-
pleteness, and the phenomenon of waveform deformation is also presented and analyzed.

2.1. Dispersion effect on guided waves

An ideal plate with constant thickness is investigated here. The guided waves propagating in a plate, known as Lamb
waves, can be predicted neglecting amplitude change and scattering. Suppose only single Lambmode is excited, the response
Lamb wave uðx; tÞ between two points can be expressed as [21]
uðx; tÞ ¼ 1
2p

Z þ1

�1
FðxÞejxte�jkxdx; ð1Þ
where FðxÞ is the Fourier transform of the excitation f ðtÞ; x is the distance between the two points, k ¼ kðxÞ is the wavenum-
ber of the Lamb mode. If k andx are linear relationship, the envelope of response signal uðx; tÞ will have the same waveform
with the original excitation f ðtÞ. While in practice, the nonlinear property of kðxÞ will lead to dispersion.

2.2. Time-distance mapping method

For a special recorded signal y0ðtÞwith a propagating distance x0; y0ðtÞ can be predicted by the following equation neglect-
ing its amplitude change
y0ðtÞ ¼ uðx; tÞjx¼x0
¼ 1

2p

Z þ1

�1
FðxÞejðxt�kx0Þdx: ð2Þ
Eq. (2) suggests that one can simulate a dispersive Lamb wave after propagating a certain distance.
Based on the fact mentioned above, the time-distance mapping method is proposed in [21]. As its name suggests, the goal

of the time-distance mapping dispersion compensation method is to transform a signal from time domain into distance
domain and implement dispersion compensation simultaneously. The dispersion compensated signal yðxÞ can be obtained
by back propagating (which means that the propagation distance is equal to �x) the recorded signal y0ðtÞ to its excitation
source (where t ¼ 0). Thereafter, the distance domain signal yðxÞ can be written as
yðxÞ ¼ uðx; tÞjx¼�x
t¼0

¼ 1
2p

Z þ1

�1
Y0ðxÞejkxdx; ð3Þ
where Y0ðxÞ is the Fourier transform of the recorded time domain signal y0ðtÞ. It is not efficient to implement Eq. (3) directly.
Note that the variables of distance x and wavenumber k hold as a Fourier transform pair, just like the variables of time and
frequency. Therefore, one can transform the variable of frequency x into wavenumber k by the definition of group velocity
cgðxÞ
dx ¼ cgðxÞdk: ð4Þ

Substitute Eq. (4) into Eq. (3), the dispersion compensated signal yðxÞ is equal to
yðxÞ ¼ 1
2p

Z þ1

�1
Y0ðxÞcgðxÞejkxdk ¼ 1

2p

Z þ1

�1
GðkÞejkxdk; ð5Þ
where GðkÞ ¼ GðxðkÞÞ ¼ Y0ðxÞcgðxÞ uses the relationship of dispersion characteristic ðx; kÞ, and it can be obtained by inter-
polating. Eq. (5) can be implemented by the inverse fast Fourier transform (IFFT).

2.3. Wave packet deformation

In order to investigate the waveform of the dispersion compensated wave packet with respect to the original excitation,
rewrite Eq. (2) in frequency domain as
Y0ðxÞ ¼ FðxÞHðxÞ; ð6Þ

where HðxÞ ¼ e�jkx0 is the system response from the transmitter location to the receiver location. Using Fourier transform,
one can get the system response in distance domain as
hðxÞ ¼ 1
2p

Z þ1

�1
HðkÞejkxdk ¼ 1

2p

Z þ1

�1
e�jkx0ejkxdk ¼ dðx� x0Þ; ð7Þ
where HðkÞ can be obtained from HðxÞ by interpolation using the ðx; kÞ relation. Eq. (7) suggests that the system response
hðxÞ does not change the waveform of a wave packet with respect to the excitation in distance domain. Substitute Eq. (6) into
Eq. (5), one can get
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yðxÞ ¼ 1
2p

Z þ1

�1
FðxÞcgðxÞHðxÞejkxdk ¼ 1

2p

Z þ1

�1
F1ðkÞHðkÞejkxdk; ð8Þ
and
yðxÞ ¼ f 1ðxÞ � hðxÞ; ð9Þ
where F1ðkÞ ¼ FðxÞcgðxÞ;HðkÞ ¼ HðxÞ;x ¼ xðkÞ, and f 1ðxÞ is the inverse Fourier transform of F1ðkÞ. Substitute Eq. (7) into
Eq. (9), one can get
yðxÞ ¼ f 1ðxÞ � dðx� x0Þ ¼ f 1ðx� x0Þ: ð10Þ
Eq. (10) suggests that the dispersion compensated signal yðxÞ is a constant distance shifting with respect to f 1ðxÞ. However,
f 1ðxÞ is not identical with f ðxÞ. f 1ðxÞ is deformed with respect to the original excitation f ðxÞ because of the relation
F1ðkÞ ¼ FðxÞcgðxÞ. In other words, there is nonlinear scaling in the process of interpolating F1ðxÞ ¼ FðxÞcgðxÞ into F1ðkÞ
and amplitude modulation by the nonlinear function cgðxÞ. Fortunately, the deformation after the time-distance mapping
is only related to the dispersion characteristic kðxÞ and group velocity cgðxÞ, but independence of propagation distance.
As an example, Fig. 1(b) shows a simulated A0 mode dispersive Lamb wave in an aluminum plate with three wave packets,
with propagation distances of 200 mm, 280 mm, and 500 mm, respectively. Their amplitudes are 1, 0.5, and 0.2, respectively.
Fig. 1(c) shows the result using the time-distance mapping method. The excitation is a Hanning-windowed tone burst with 3
cycles and 80 kHz center frequency, as shown in Fig. 1(a). The compensated results of the time-distance mapping method for
the three wave packets hold the same waveform but are not identical with the original excitation. As analyzed above, the
dispersion compensated signal after time-distance mapping is deformed and independent of propagation distance.
Numerical simulation of dispersion compensation of 80 kHz A0 mode on a 2-mm aluminum plate: (a) 3-cycle Hanning-windowed tone burst
on centered at 80 kHz; (b) the simulated recorded signal containing three wave packets with the propagation distances of 200 mm, 280 mm, and
; (c) compensated result using the time-distance mapping method; (d) compensated result using the developed method; (e) result transformed into

e domain from (d); (f) the non-dispersive signal (ground truth) in time domain.
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3. Methodology of the developed method

In order to address the problem illustrated above, a novel guided wave dispersion compensation method is proposed. The
developed method performs well for single-mode or multi-mode cases as the effect of CS theory introduced in the presented
methodology. This section is organized in a progressive manner. The dispersive guided wave is decomposed in a carefully
built dictionary based on the compressed sensing theory, which is also known as the sparse decomposition. The dispersion
compensated guided wave can be obtained by the non-dispersion dictionary and the result of sparse decomposition. The
similar procedure is finally extended to the multi-mode cases using the multi-mode dictionaries.

3.1. Signal sparse decomposition in a dispersion dictionary

Considering the amplitude factor and multi-source scattering, which results in multi-wave packets problem, the recorded
signal in Eq. (2) can be modified as
s0ðtÞ ¼
X
j

Aj

2p

Z þ1

�1
FðxÞejðxt�kxjÞdx ¼

X
j

Ajuðxj; tÞ; ð11Þ
where xj is the propagation distance of the jth wave packet, and Aj is the corresponding amplitude factor. In vector notation,
Eq. (11) can be written as
s0 ¼ ½u1; u2; . . . ; uj; . . .�½A1; A2; . . . ; Aj; . . .�T; ð12Þ

where uj is the vector notation of uðxj; tÞ. In Eq. (12), the amplitude factor vector ½A1; A2; . . . ; Aj; . . .�T represents the weight of
each wave packet but does not localize the time of flight (TOF) of the wave packet in time domain. Therefore, we modify the
matrix ½u1; u2; . . . ; uj; . . .� in the following part so as to make the amplitude factor vector ½A1; A2; . . . ; Aj; . . .�T have the infor-
mation of TOF.

Suppose that ui is of lengthM, then the propagation distance is discretized to N values with the same sampling frequency
of ui. The ith value can be written as
xi ¼ cgðf cÞti ¼ cgðf cÞ
i
f s
; i 2 ½0; N � 1�; ð13Þ
where cgðf cÞ is the group velocity at center frequency f c; f s is the sampling frequency of the recorded signal s0ðtÞ, and i is a
integer. So the recorded signal ui corresponding to the propagation distance xi can be written as
ui ¼ uðxi; tÞ ¼ 1
2p

Z þ1

�1
FðxÞejxte�jkxi dx: ð14Þ
Thereafter, a dictionary can be built using ui in a linear combination
U ¼ ½u0; u2; . . . ; ui; . . .uN�1�D�1; ð15Þ

where D 2 RN�N is a diagonal matrix with elements Di;i ¼ uik k2, which normalizes the columns of U to unit 2-norm. The U is
an M � N matrix, which is referred to as dispersion dictionary in this paper. The corresponding amplitude factor vector can
be written as
a ¼ ½A0;A1; . . . ; Ai; . . . ; AN�1�T: ð16Þ

We can represent the actual recorded signal s0 using the dispersion dictionary U and the corresponding amplitude factor
vector a
s0 ¼ Ua: ð17Þ

Note that the amplitude factors in Eq. (16) and in Eq. (12) are not identical. In Eq. (16), most of the amplitude factors are
zeros because the number of wave packets is far less than the recording length in usual, which means that the a in Eq.
(16) is sparse. If the element Ai in a is nonzero, then it mean that s0 has a component of signal ui with an amplitude of Ai

and a TOF of ti ¼ i=f s. Therefore, the nonzero values in a not only represent the amplitude factors, but also carry the TOF
information of the corresponding wave packets.

Considering additive noise w in Eq. (17), we have
s0 ¼ Uaþw: ð18Þ

Because of the sparsity of a, the solution of Eq. (18) can be found using l1-optimization method [28]. The problem in Eq. (18)
can be treated as a basis pursuit denoising (BPD) problem [37], which can be written as a constrained optimization problem
arg min
a

jjajj1 subject to jjs0 � Uajj22 6 r2; ð19Þ
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or a unconstrained optimization problem
arg min
a

1
2
jjs0 � Uajj22 þ kjjajj1; ð20Þ
where jjajj1 ¼ PN�1
i¼0 jAij;0 6 r 6 jjs0jj2, and k 2 ð0; max jUTs0j� is a regularization parameter that balances 2-norm term (accu-

racy) and 1-norm term (sparsity). In this paper, k is set to be kmax=10 ¼ max jUTs0j=10. The problem of Eq. (20) can be solved
by many algorithms for convex optimization, e.g. spectral projected-gradient (SPG) algorithm [38,39], and split variable aug-
mented Lagrangian shrinkage algorithm (SALSA) [40,41].

3.2. Signal reconstruction in a non-dispersion dictionary

In order to get the non-dispersive signal, the wavenumber k is linearized to k0
k0ðxÞ ¼ 1
cgð2pf cÞ

x: ð21Þ
Then we can get the corresponding phase velocity cpðxÞ and the group velocity cgðxÞ
cpðxÞ ¼ x
k0

¼ cgð2pf cÞ; ð22Þ

cgðxÞ ¼ dx
dk0

¼ cgð2pf cÞ: ð23Þ
Substitute Eqs. (22) and (13) into Eq. (2), the recorded M � 1 non-dispersive signal yiðtÞ can be written as
yiðtÞ ¼
1
2p

Z þ1

�1
FðxÞejðxt�k0xiÞdx ¼ 1

2p

Z þ1

�1
FðxÞejxðt�tiÞdx ¼ f ðt � tiÞ: ð24Þ
Eq. (24) shows that the non-dispersive signal is equal to a time-shifted excitation. A non-dispersion dictionary U0 can be built
using yiðtÞ in a linear combination
U0 ¼ ½y0ðtÞ; y1ðtÞ; . . . ; yiðtÞ; . . . ; yN�1ðtÞ�D0�1
; ð25Þ
where U0 2 RM�N , and D0 2 RM�N is a diagonal matrix with elements D0
i;i ¼ yiðtÞk k2, which normalizes the columns of U0 to unit

2-norm. Fig. 2 shows an intuitive explanation of the dispersion and non-dispersion dictionaries, namely U and U0.
Finally, the dispersion compensation signal ŝ0 can be obtained by
ŝ0 ¼ U0â; ð26Þ

where â is the solution of Eq. (20). To sum up, the following two main steps are implemented in order to obtain the com-
pensated signal:

Step 1: Signal sparse decomposition based on the dispersion dictionary
arg min
a

1
2
jjs0 � Uajj22 þ kjjajj1: ð27Þ
Fig. 2. An intuitive explanation of the two dictionaries. (a) The dispersion dictionary, (b) the non-dispersion dictionary.
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Step 2: Signal reconstruction based on the non-dispersion dictionary
ŝ0 ¼ U0â: ð28Þ
3.3. Dispersion compensation for multi-mode guided waves

The above contents in this section present the procedures for single mode guided waves dispersion compensation. To
extent the method to multi-mode cases, we combine the corresponding single mode dictionary one by one to build a
multi-mode dictionary. For example, if the recorded signal contains two Lamb modes, A0 and S0, we should combine the
A0 and S0 mode dictionaries together. As a result, the dispersion and non-dispersion dictionaries for A0 and S0 modes
are written as
U ¼ ½UA0;US0�; ð29Þ

U0 ¼ ½U0
A0;U

0
S0�; ð30Þ
where the columns of UA0;US0;U
0
A0, and U0

S0 have been normalized to unit 2-norm. Then implement the above two steps, the
multi-mode compensated signal can be obtained. The developed method can be described by the flowchart illustrated in
Fig. 3.

4. Numerical simulation

Numerical simulations for single mode and multi-mode guided wave dispersion compensation are implemented in this
section to validate the effectiveness of the developed method. Serving as the baseline and benchmark, the compensation
results given by the time-distance mapping method are also presented for comparison. The numerical simulations are imple-
mented on a 2-mm aluminum plate (q ¼ 2690 kg=m3; E ¼ 68:9 GPa;r ¼ 0:33) containing two wave modes (A0 and S0). The
group velocity and phase velocity dispersion curves are calculated by the Global Matrix Method (GMM) algorithm [42], as
shown in Fig. 4. It should be noticed that the presented conclusion can be easily extended to more complicated cases.

4.1. Dispersion compensation for single mode guided waves

To highlight the dispersion effect according to the dispersion curves, the excitation is selected to be a 3-cycle Hanning-
windowed tone burst centered at 80 kHz for A0 mode and at 1 MHz for S0 mode.

Simulation results of the A0 mode are shown in Fig. 1. Fig. 1(c) and (d) shows the compensated results of the time-
distance mapping and the developed methods, respectively. For a direct visual comparison, the result in Fig. 1(d) is trans-
formed into distance domain, as shown in Fig. 1(e), using the group velocity at center frequency cgðf cÞ. The non-
dispersive wave packets after propagation are shown in Fig. 1(f), which can be used as the ground truth. The non-
dispersive wave packets are obtained by taking the group velocity as a constant cgðf cÞ. Both of the two methods can recover
the signal interfered by dispersion effect. The result of the developed method performs better as the recovered waveform of
every wave packet is closer to the original excitation, while the time-distance mapping method deforms the waveform of the
corresponding wave packet.

Simulation results of the S0 mode are shown in Fig. 5. The results are similar with the case of the A0 mode, and the similar
conclusions can be obtained. The main difference between Figs. 1 and 5 is that the resolution of the compensated signal in
Fig. 5 is improved in both time and distance domain because higher excitation frequency leads to shorter wavelength.

4.2. Sensitivity

The accurate dispersion curves are hard to access in practice due to the uncertainties of the inspected structures. There-
fore, the sensitivity of the compensation methods to inaccurate dispersion curves is crucial, and thus it is analyzed in this
section. Two different cases with the vertical axis data (group or phase velocity) perturbation and horizontal axis data (fre-
quency) perturbation are investigated for further validation. The sensitivity analysis is based on the S0 mode waves centered
at 1 MHz, in which the dispersion curves change rapidly. The corresponding results of the time-distance method can be
found in [21].

Case 1: Vertical axis data perturbation in dispersion curves.
In this case, the vertical axis data is perturbed with respect to the accurate vertical data. Taking group velocity as an

example, the perturbed data can be written as
c0gðf Þ ¼ ð1þ aÞcgðf Þ; ð31Þ

where c0gðf Þ and cgðf Þ are the perturbed and the accurate group velocities, ais a constant factor, which controls the degree of
perturbation. When the group velocity changes, the corresponding phase velocity and wavenumber also change



Fig. 3. Schematic of the process of the developed method for dispersion compensation.
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c0pðf Þ ¼ ð1þ aÞcpðf Þ; ð32Þ

k0ðf Þ ¼ ð1þ aÞkðf Þ: ð33Þ

In this case, the waveforms of the dispersion curves do not change but shift along vertical axis, as shown in Fig. 4. The

perturbation of vertical data may happen in the case of using inaccurate parameters of material properties to calculate
the dispersion curves. The compensated results for a dispersive signal containing two wave packets with propagation dis-
tances of 100 mm and 200 mm, are presented in Fig. 6(b)–(d). As the results show, the compensated waveforms in Fig. 6
(b)–(d) are almost identical, which means that the proposed method is robust to the vertical axis perturbation. The non-
dispersive wave packets after propagation are shown in Fig. 7(a), which can be used as the ground truth. Note that, the com-
pensated signals in Fig. 6(b)–(d) are corresponding to three different group velocities, which means that they are correspond-
ing to three different propagation distances.

Case 2: Horizontal axis data perturbation in dispersion curves.
In this case, the frequency data perturbation is investigated. Assuming frequency changes with a perturbation factor b in

frequency axis, namely f 0 ¼ ð1þ bÞf , one can write the dispersion characteristic as
k0ðf Þ ¼ kðð1þ bÞf Þ; ð34Þ



Fig. 4. Dispersion characteristic of a 2-mm aluminum plate: (a) group velocity, and (b) phase velocity, showing the perturbations applied to the S0 mode.
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c0gðf Þ ¼ cgðð1þ bÞf Þ; ð35Þ
c0pðf Þ ¼ cpðð1þ bÞf Þ: ð36Þ

In this case, the outlines of the dispersion curves are changed, as shown in Fig. 4. This perturbation may happen in the

case of inaccurate physical thickness of the plate [21]. The corresponding compensated results for Fig. 6(a) are shown in
Fig. 7(b)–(d). As displayed in Fig. 7(b)–(d), the frequency perturbation has a great influence on the compensated results.
Compared with the uncompensated signal, as shown in Fig. 6(a), the compensated signals can suppress the dispersion effect
even with perturbation factor b ¼ �0:2 to some extent.
4.3. Dispersion compensation for multi-mode guided waves

Dispersion compensation for multi-mode guided waves is validated in this part. A simulated modes (A0 and S0)
dispersive signals are generated to test the developed method, as shown in Fig. 8(a). The original excitation is a 3-
cycle Hanning-windowed tone burst centered at 300 kHz. As shown in Fig. 8(a), the dispersive signal contains two
mode components with different propagation distances, 300 mm for A0 mode and 600 mm for S0 mode, and the
two wave packets overlap together. The corresponding compensated results by the time-distance mapping method
using the S0 and A0 mode dispersion curves are presented in Fig. 8(b) and (c), respectively. In the case of multi-
mode, one mode can be compensated completely but the other mode can be incompletely compensated or even more
dispersive when the time-distance mapping method is employed for compensation. As the compensated results show,
the time-distance mapping method cannot deal with the cases of multi-mode dispersive signals. However, the devel-
oped method can completely compensate every mode component to the original excitation well, as shown in Fig. 8(d).
The corresponding non-dispersive signals (ground truth) in distance domain and in time domain are shown in Fig. 8(e)
and (f), respectively.



Fig. 5. Numerical simulation of dispersion compensation of 1 MHz S0 mode on a 2-mm aluminum plate: (a) 3-cycle Hanning-windowed tone burst
excitation centered at 1 MHz; (b) the simulated recorded signal containing two wave packets with the propagation distances of 200 mm and 400 mm; (c)
compensated result using the time-distance mapping method; (d) compensated result using the developed method; (e) the non-dispersive signal (ground
truth) in distance domain; (f) the non-dispersive signal (ground truth) in time domain.

Fig. 6. Dispersion compensated results for a dispersive signal containing two wave packets with propagation distances of 100 mm and 200 mm. (a) The
uncompensated signal; the results using the developed method with perturbation factor a equal to (b) �0.2, (c) 0, (d) 0.2.
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Fig. 7. Dispersion compensated results for Fig. 6(a). (a) The non-dispersive signal (ground truth); the results using the developed method with perturbation
factor b equal to (b) �0.2, (c) 0, (d) 0.2.

Fig. 8. Numerical simulation of dispersion compensation of 300 kHz two modes, A0 and S0, on a 2-mm aluminum plate: (a) the simulated dispersive signal
which contains A0 and S0 mode components with the propagation distance of 300 mm and 600 mm, respectively; (b) compensated result of the time-
distance mapping method using the S0 mode dispersion curves; (c) compensated result of the time-distance mapping method using the A0 mode dispersion
curves; (d) compensated result of the developed method; (e) the non-dispersive signal (ground truth) in distance domain; (f) the non-dispersive signal
(ground truth) in time domain.
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4.4. Discussion

In the case of dispersion compensation for multi-mode guided waves, sparse decomposition for the dispersive signal in
Eq. (27) is based on the corresponding multi-mode dispersion dictionary. In order to completely compensate all the disper-
sive modes, the dispersion dictionary must contain all the corresponding modes. Otherwise, the dispersive signal will be
incompletely compensated, or even more dispersive. To test performance of the proposed method in the case of incomplete
dispersion dictionary, a case study is implemented here for a simulated dispersive signal containing A0 and S0 mode com-
ponents, as shown in Fig. 9(a). The compensated results using only A0 or S0 mode dispersion dictionary are shown in Fig. 9
(b) and (c), respectively. In Fig. 9(b), the dispersive signal of the S0 mode component is compensated, while the A0 mode
component is almost uncompensated. In Fig. 9(c), the dispersive signal of the A0 mode component is compensated, while
the S0 mode component is more dispersive than the original. For a comparison, the compensated result using multi-
mode (A0 and S0) dispersion dictionary is also presented, as shown in Fig. 9(d). In conclusion, the proposed CS based disper-
sive compensation model cannot handle the case of incomplete dispersion dictionary. But usually in practice, one can know
in advance the components contained in the dispersive signal and then construct the dispersion dictionary according to the
components.

In the proposed method, the regularization parameter in Eq. (27) is specified to be k ¼ kmax=10. The dispersive signal con-
taining three wave packets, as shown in Fig. 1(b), are added SNR = 10 dB Gaussian noise and then used to test the influence of
the regularization parameter k on the amplitude after dispersive compensation. The three wave packets from left to right in
Fig. 1(b) are denoted as s1, s2, s3. The value of k has a significant influence on the compensated results, especially the envel-
ope amplitudes of the compensated wave packets, as shown in Fig. 10. The actual envelope amplitudes of the three wave
packets after dispersion compensation mainly decrease as the regularization parameter k increases. The smaller value of
the regularization parameter k, the more iterations and computing time it takes. The more noise, the lager of k should be
specified. In this paper, we specify k ¼ kmax=10 as taking into account noise.
5. Experimental verification

In this section, dispersion compensation is implemented by the developed method for the actual dispersive signals
recorded on a 2-mm aluminum plate. The mechanical parameters of the aluminum plate are the same with that used
in numerical simulation. The experimental setup and transducers arrangements are shown in Fig. 11. The transducers
are PZT disks with 0.5 mm thickness and 8 mm diameter. The single mode and multi-mode cases are investigated inde-
pendently. In the case of single mode, the center frequency of the excitation can be changed to obtain a dominant guided
wave mode according to the wavelength tuning effect [43]. All the other modes except the dominant mode are treated as
noise in single mode case. The corresponding results by the time-distance mapping method are also presented for
comparison.
Fig. 9. Performance of incomplete dispersion dictionary. (a) the simulated dispersive signal which contains A0 and S0 mode components with the
propagation distances of 300 mm and 1000 mm, respectively; (b) compensated result of the proposed method using only S0 dictionary; (c) compensated
result of the proposed method using only A0 dictionary; (d) the compensated result of the proposed method using multi-mode (A0 and S0) dispersion
dictionary.



Fig. 10. Envelope amplitudes of the three compensated wave packets as a function of the regularization parameter for the proposed method. s1, s2, s3
represent the compensated wave packets for the three wave packets in Fig. 1(b), from left to right, respectively.

Fig. 11. Experimental setup and schematic diagram of the plate. (a) experimental setup; (b) schematic of the aluminum plate dimensions and transducers
arrangements.

Fig. 12. Experimental results of dispersion compensation of 50 kHz A0 mode on a 2-mm 6061 aluminum plate: (a) 3-cycle Hanning-windowed tone burst
excitation centered at 50 kHz; (b) the actual recorded dispersive signal; (c) compensated result using the time-distance mapping method; (d) compensated
result using the developed method.
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5.1. Dispersion compensation for single mode guided waves

Fig. 12 shows the dispersive signal recorded from the aluminum plate and the dispersion compensation results using the
time-distance mapping and the developed methods. Fig. 12(a) shows the excitation, which is a 3-cycle Hanning-windowed
tone burst centered at 50 kHz. From the recorded dispersive signal, the reflections from the boundaries overlap with each
other, as shown in Fig. 12(b). The compensated results obtained by the time-distance mapping and the developed methods
are presented in Fig. 12(c) and (d), respectively. The developed method can compensate each wave packet to 3 cycles, the
same with the excitation. Although the time-distance mapping method can compensate the signal so that the reflections
are separated in distance domain, the compensated wave packets are changed and contain higher frequency components
with respect to the excitation. The results indicate that the developed method has the capability to deal with the case of sin-
gle mode for dispersion compensation, and achieves better performance compared with the time-distance mapping method.

5.2. Dispersion compensation for multi-mode guided waves

In order to validate the capability of the developedmethod to deal with multi-mode signals, a 3-cycle Hanning-windowed
tone burst excitation centered at 150 kHz, as shown in Fig. 13(a), is excited on the aluminum plate. The recorded signal con-
tains A0 and S0 modes guided waves, as shown in Fig. 13(b). The compensated results using the time-distance mapping
method with A0 and S0 dispersion curves are shown in Fig. 13(c) and (d), respectively. The compensated results of the S0
mode components are more dispersive than the original recorded signal when used the A0 mode dispersion curves for
compensation. When used the S0 mode dispersion curves for compensation, the A0 mode component cannot be
compensated completely. What is worse, there is disturbance near x ¼ 0, as shown in Fig. 13(d). Fig. 13(e) shows the result
using the developed method. All wave packets are compensated completely including components of the S0 mode direct
arrival, S0 mode reflections from right/left boundary, A0 mode direct arrival, and S0 mode reflections from top/bottom
Fig. 13. Experimental results of dispersion compensation of 150 kHz A0/S0 modes on a 2-mm 6061 aluminum plate: (a) 3-cycle Hanning-windowed tone
burst excitation centered at 150 kHz; (b) the actual recorded dispersive signal; (c) compensated result using the time-distance mapping method with A0
mode dispersion curves; (d) compensated result using the time-distance mapping method with S0 mode dispersion curves; (e) compensated result of the
developed method using multi-mode (A0 and S0) dispersion dictionary; (f) the compensated result of the developed method using only S0 dispersion
dictionary.
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boundary(corresponding to the four wave packets in Fig. 13(e) from left to right). All components are compensated to 3
cycles, the same with the excitation, using the developed method. The result validates that the developed method has the
capability to deal with multi-mode cases for guided wave dispersion compensation.

The dispersive signal will not be completely compensated when a dispersive signal is not completely covered by the dis-
persion dictionary. As an example, the dispersion compensation performance is shown in the case of that the dispersive sig-
nal is not completely covered by the dispersion dictionary with experimental data. The multi-mode dispersive signal used
here is the same as the above one, as shown in Fig. 13(b). The compensated result is shown in Fig. 13(f) when only the S0
mode component is covered in the dispersion dictionary. As the result shows, the dispersive effect is hardly improved
because that only the S0 mode component in the dispersive signal is compensated while the A0 mode component is not.
Therefore, in the case of dispersion compensation for multi-mode guided wave, all mode components of the dispersive signal
should be covered by the dispersion dictionary.

6. Conclusions

A dispersion compensation method for both single mode and multi-mode guided waves has been presented in this paper.
The results of both numerical simulation and experimental verification verify the effectiveness of the developed method. The
corresponding results by the time-distance mapping method are also presented as comparisons. Several conclusions can be
obtained as follows.

1) The developed method can compensate both single mode and multi-mode dispersive guided waves effectively based
on the accurate dispersion curves.

2) The developed method, as well as the time-distance mapping method, is sensitive to the perturbation of the dispersive
curves, especially the frequency perturbation.

3) The developed method can compensate every dispersive wave packet to the waveform of the excitation well, and
achieve better performance compared with the time-distance mapping method.
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