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Dynamics of nonspherical compound capsules in simple
shear flow
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Xi’an 710049, China

(Received 22 April 2016; accepted 6 October 2016; published online 20 October 2016)

The dynamics of an initially ellipsoidal compound capsule in a simple shear flow
is investigated numerically using a three-dimensional front-tracking finite-difference
model. Membrane bending resistance is included based on Helfrich’s energy function
besides the resistances against shear deformation and area dilatation governed by
the constitutive law of Skalak et al. In this paper, we focus specifically on how
the presence of a spherical inner capsule and its size affects the characteristics and
transition of various dynamical states of nonspherical compound capsules (i.e., the
outer capsule). Significant differences in the dynamical characteristics are observed
between compound capsules and homogeneous capsules in both qualitative and
quantitative terms. We find the transition from swinging to tumbling can occur at
vanishing viscosity mismatch through increasing the inner capsule size alone to a
critical value regardless of the initial shape of the nonspherical compound capsule
(i.e., prolate or oblate). Besides, for compound capsules with viscosity mismatch, the
critical viscosity ratio for the swinging-to-tumbling transition remarkably decreases
by increasing the inner capsule size. It is thus concluded that the inner capsule
size is a key governing parameter of compound capsule dynamics apart from the
capillary number, aspect ratio, and viscosity ratio that have been long identified for
homogeneous capsules. Further, we discuss the mechanisms underlying the effects
of the inner capsule on the compound capsule dynamics from the viewpoint of the
effective viscosity of internal fluid and find that the effects of the inner capsule
on compound capsule dynamics are qualitatively similar to that of increasing the
internal viscosity on homogeneous capsule dynamics. However, in quantitative terms,
the compound capsule cannot be viewed as a homogeneous capsule with higher
viscosity as obvious inhomogeneity in fluid stress distribution is induced by the inner
membrane. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4965251]

. INTRODUCTION

Capsules are small liquid droplets surrounded by thin membranes possessing complex me-
chanics, such as shear elasticity and bending resistance. They have been widely used for numerous
applications in bioengineering, pharmaceutical, and cosmetic industries (e.g., encapsulation and
transport of active agents)'™ and have also been employed as models for biological cells (e.g., red
blood cells).' The release of substances from capsules by breaking or diffusion heavily depends
on the stress and strain states in the capsule membrane, which is affected by the dynamical
characteristics of whole capsules in shear flow. Further, flow rheology of capsule suspensions
(e.g., biological cell suspensions and artificial capsule suspensions) is also significantly influ-
enced by single object dynamics. Therefore, to study the dynamic motion of single capsules
in shear flow is helpful for technically controlling their functions and is also fundamental for
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understanding flow behaviors of capsule suspensions. Though studies on the dynamics of single
capsules in shear flow have attracted much research attention for decades, there remain many
unknown issues due to the complexities in membrane mechanics, fluid mechanics, and their
interactions.

Various types of dynamic motion have been observed for capsules suspended in simple shear
flow.>> Initially spherical capsules always exhibit a steady tank-treading motion.’ In this mode,
the capsule is deformed by the elongational part of the simple shear flow and maintains a sta-
tionary shape with a constant inclination to the flow direction, while its membrane rotates like
a tank-tread due to the rotational part of the simple shear flow. With higher surface-to-volume
ratio, initially non-spherical shapes are common in biological capsules (e.g., biconcave-shaped
red blood cells) and artificial capsules in engineering applications. The non-sphericity confers
shape memory effect®’ to the capsules owing to the shear elasticity of their membranes; as a
consequence, the capsules exhibit a swinging motion (i.e., a tank-treading motion accompanying
the periodically oscillatory inclination). When the flow shear rate decreases to very low values,
the swinging-to-tumbling transition occurs (i.e., tumbling is a rigid-body-like rotation),” as the
external flow cannot provide sufficient energy for the membrane tank-treading any longer. Extensive
studies have reported that the increase of the non-sphericity or the membrane shear elasticity pro-
motes the tumbling motion due to the pronounced shape memory effect.®”!! The dynamic motion
of capsules is also affected by the bending resistance of their membranes.'>”!3 It is noteworthy
that the swinging-to-tumbling transition can be induced by increasing the viscosity contrast of the
internal to external fluids or the membrane viscosity.!%!11%16-18 It is because the viscous dissipation
increases with the viscosity of the internal fluid and the capsule membrane; as a result, the effective
energy provided by the external flow to overcome the energy barrier from the shape memory effect
is reduced.

The above-mentioned previous studies mainly focus on the dynamics of homogeneous capsules
which consist of an elastic membrane enclosing a homogeneous fluid. Notably, there are cases
of compound capsules (i.e., capsules containing smaller inclusions), such as white blood cells,
circulating tumor cells, parasite-infected red blood cells, and artificial capsules fabricated from mul-
tiple emulsions.'® The presence of smaller inclusions induces additional complexity to the capsule
dynamics due to the hydrodynamic interaction between the capsule membrane and inclusions. Ev-
idently, in the case of liquid drops with compound structures, the inclusion significantly affects
their deformation and breakup.’** A limited number of studies have demonstrated that internal
structures cause more complex dynamical behaviors for vesicles (i.e., liquid drops surrounded by
membranes with bending and area-dilatation resistances but without shear elasticity). Experimen-
tal studies?’ show that compound vesicles exhibit much richer dynamics than homogeneous
vesicles, but neither the inclusion-induced transition nor a phase diagram of dynamical states is
obtained due to the complexities in fabricating compound vesicles and controlling a large number
of related parameters. By using small-deformation analysis and two-dimensional (2D) boundary
integral simulations, Veerapaneni et al.?® present the tank-treading-to-tumbling transition of com-
pound vesicles enclosing solid particles induced by increasing the particle size alone. The same
phenomenon is also observed for compound vesicles enclosing deformable vesicles in the 2D lattice
Boltzmann simulations by Kaoui et al.>® Nevertheless, the dynamics of compound capsules are
largely unexplored. For one thing, there are large differences between the dynamics of capsules and
vesicles due to their different membrane mechanics. For another, the 2D simulation or theoretical
analysis used in previous studies is not capable of quantitatively capturing the dynamical behavior
of capsules or vesicles with large deformations in the actual 3D environments.' Apparently, a
comprehensive investigation into the dynamics of compound capsules is still lacking, particularly
into the altered dynamical characteristics induced by the inner capsule, which is the main objective
of the present study.

Very recently, we developed a 3D model based on a front-tracking finite-difference method
and systematically investigated the deformation of spherical compound capsules in simple shear
flow.>" The present work is an extended one for a study on the dynamics of nonspherical compound
capsules, since previous studies on homogeneous capsules have shown that initially nonspherical
capsules exhibit dynamic motions quite different from spherical ones.>> In this study, of particular
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interest is how the presence of the inner capsule and its size affects the characteristics of various
dynamical states of compound capsules and the transition between these dynamical states. On the
basis of the front-tracking finite-difference model that we have developed in our previous study,
the bending resistance of membranes is included apart from the shear elasticity and area dilatation.
We find that compound capsules can exhibit both swinging and tumbling at vanishing viscosity
mismatch and the transition between these two dynamical states can be induced by changing the
inner capsule size alone. Further, the mechanisms underlying the effects of the inner capsule on the
compound capsule dynamics are discussed.

Il. PROBLEM STATEMENT AND NUMERICAL METHOD

We consider an initially ellipsoidal compound capsule suspended in a simple shear flow
u = [yz,0,0], where vy is the shear rate (Figure 1). The compound capsule consists of a spherical
capsule (i.e., the inner capsule) enclosed by an ellipsoidal capsule outside (i.e., the outer capsule).
The ellipsoidal shape of the outer capsule is denoted by the length of the revolution axis 2a and
the length of the two orthogonal axes 2b. The compound capsule is prolate with the aspect ratio
a/b > 1, unless stated otherwise. The fluids surrounding the compound capsule between the two
membranes and inside the inner capsule are all incompressible and Newtonian. Their viscosities
are u, Ay and 2™y, respectively, where A and A™ are viscosity contrasts. Both the inner and
outer membranes are considered as 2D elastic interfaces possessing resistances against the shear,
area-dilatation, and bending. For the shear and area-dilatation resistances, we use the SK constitu-
tive law>!

_ES
T4

where A, and A, are the principal in-plane stretch ratios, and E and E, are the moduli of shear and
area-dilatation. For the bending resistance, we use Helfrich’s bending energy function3>33

E
W, (U + 42" =247 = 227 +2) + (472 - 1), 2.1)

E
W), = 7*’ / (2H — Cy)*dS. 2.2)
S

Here, E}, is the bending modulus, and H and Cj are the mean and spontaneous curvatures. Since
the effects of bending stiffness on capsule dynamics have been investigated fully in previous
studies;'>3*3% in this paper, we only add a constant bending resistance to avoid buckling insta-
bility. It is noteworthy that different choices of the constitutive model used for the membrane

FIG. 1. Schematic illustrating an initially ellipsoidal compound capsule in simple shear flow. The compound capsule consists
of a prolate/oblate capsule containing a smaller spherical capsule inside. The orientation angle 6 between the major axis L
and the X-axis (i.e., the flow direction) is used to characterize the orientation dynamics of the capsule. The deformation index
D =(L-B)/(L+ B) is used to characterize the shape deformation. The phase angle @ of a fixed point on the membrane is
used to characterize the rotation of the capsule membrane.
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mechanics may result in different findings regarding the whole-capsule dynamics.*® In the pres-
ent study, we employ the Skalak and Helfrich models since they have been widely used in pre-
vious studies on the dynamics of capsules, vesicles, and biological cells.>*” However, other
constitutive laws can be easily implemented into the present method as shown in our previous
work. >

In our earlier publications, we have developed a 3D numerical model to simulate the
dynamics of homogeneous capsules in shear flow and have extended it to study the deformation of
spherical compound capsules. We further develop the 3D model to study the dynamics of nonspher-
ical compound capsules in the present study. In the present model, a front-tracking finite-difference
method is used to solve the flow fields inside and outside the capsule and a finite-element method
is used to solve the elastic tensions in the capsule membrane. The numerical method is briefly
described in this section, and more details of the numerical procedure and model validation can be
found in the Refs. 30, 38, and 39.

In the front-tracking metho the flow field is obtained by solving the continuity and
Navier—Stokes (NS) equations on a structured Eulerian grid system

30,38,39

d,40_42

V-u=0,

. E?F;u) + V- (puu) = -Vp + uVu + /f'(S (x —x') dx’.
s

2.3)

Here, u is the velocity vector, p, t, and p are the fluid density, time, and pressure, respectively, f’ is
the elastic tension in the capsule membrane, ¢ is the 3D Dirac-Delta function, and x” and x are the
position vectors of points on the membrane and in the surrounding fluid, respectively. The capsule
membrane is tracked by a set of Lagrangian points and triangular elements, thus the elastic tension
f’ can be computed via the constitutive laws (e.g., Equations (2.1) and (2.2)) using a finite-element
method for curved elastic membranes.*> When the viscosities of the fluids inside and outside the
capsule are different, an indicator function /(x) is used to distinguish the three fluids. For example,
I =0, 1, and 2 represent the fluid surrounding the compound capsule between the two mem-
branes and inside the inner capsule, respectively. Accordingly, the fluid viscosity can be calculated
by
u+pu(d-101(x), forO0<I(x) <1,
H) = 24)
{/l,u+ Ap(A"=1) I (x)-1), forl<[I(x)<2.

The indicator function can be constructed from the Dirac-Delta function.

The compound capsule is placed in the center of the computational domain with a size of
LyxL,xL,=8RX5Rx8R, where R is the radius of a sphere having the same volume as the
outer capsule. The revolution axis is initially placed in the shear plane and it remains in this
position due to the symmetry of the whole flow system. The governing equations are recast into
dimensionless form through scaling lengths by R, time by y~!, and velocity by yR. The dimension-
less parameters governing the compound capsule dynamics mainly include the Reynolds number
Re = pyR*/u and the capillary number Ca = uyR/E,"" based on the parameters of the outer
capsule, the ratio of the shear moduli of the outer to the inner membrane « = E;°*/ E/™ the ratio
of the area-dilatation modulus and the bending modulus to the shear modulus (i.e., C = E,/E;
and E,* = E;,/R*E,), the viscosity ratios A and 1™, the aspect ratio of the compound capsule a/b
and the volume ratio of the inner to the outer capsule ¢. As presented in previous studies on
the dynamics of homogeneous capsules, Ca, a/b, and A are the key governing parameters that
have been studied most extensively; thus in this paper, we address the dynamics of compound
capsules under varying Ca, a/b, A and A (1 = A" = 1 unless stated otherwise), and volume ratio
¢. Re is set at 0.1 to neglect the effect of fluid inertia.***® C and E,* are set to 1 and 0.01 for
both the inner and outer membranes, which are used in previous studies on homogeneous cap-
sules.'®*45 Note that C has to be much higher than 1 when we apply the present model for red
blood cell membranes. The mechanical parameters are kept the same (i.e., « is held constant at 1)
for the inner and outer membranes for simplicity. However, we note that changes in C, E;", and
k can also induce quantitative variations in the dynamical characteristics of compound capsules.
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The shape deformation and orientation dynamics of the compound capsule are analyzed using the
Taylor parameters, i.e., the deformation index D and the orientation angle 6 (Figure 1). More
details of the problem setup, the parameters used, the numerical convergence tests, and the model
validation of membrane shear elasticity and area dilatation can be found in our previous study
on the deformation of spherical compound capsules.’® The validation of the bending resistance
modeling is also available in our earlier study on the dynamics of nonspherical homogeneous
capsules.*®

ll. PROLATE COMPOUND CAPSULES WITH A = A" = 1

We first present the dynamics of the compound capsules containing the inclusions with different
sizes and compare with the dynamics of the homogeneous capsules. The time evolutions of the
capsule shape, the orientation angle # and the phase angle o of a fixed membrane point are pre-
sented in Figure 2 for two compound capsules with ¢ = 0.05 and 0.2 (Ca = 0.1 and a/b = 1.32),
respectively. For the comparison purpose, corresponding parameters of a homogeneous capsule
with the same Ca and a/b are also presented. As shown in Figure 2(a), the homogeneous capsule
exhibits the swinging motion, as 8 oscillates over time about a positive value (Figure 2(d)) and the
membrane rotates like a tank-tread at the same time (Figure 2(e)). This swinging motion has also
been observed in previous simulations by other researchers.'*!34¢ Notably, the compound capsule
with ¢ = 0.05 also exhibits the swinging mode (Figures 2(b), 2(d), and 2(e)). However, at ¢ = 0.2,
the compound capsule exhibits the tumbling state (Figures 2(c)-2(e)). In this dynamical state, the
orientation angle periodically oscillates from 6 = +m/2 to 6 = —xt/2 (Figure 2(d)). Besides, the

yl=15 yt=18  yt=21  yt=24 yt=

FIG. 2. Orientation dynamics of initially prolate capsules containing inner capsules with different volume ratios. The shape
evolutions of capsules with Ca=0.1 and a/b =1.32 are presented at ¢ =(a) 0, (b) 0.05, and (c) 0.2. Arrows inside and
outside the capsule indicate the major-axis and the rotation direction, respectively. (d) and (e) are the time evolutions of the
orientation angle 6 and phase angle « for the three cases presented in (a)—(c). The capsule exhibits the swinging motion at
¢ =0 and 0.05 and exhibits the tumbling motion at ¢ =0.2.
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FIG. 3. Shape deformations of compound capsules (Ca=0.1 and a/b =1.32) containing inner capsules with different
volume ratios (¢ =0.05, 0.135, and 0.2). (a) Time evolutions of the semimajor axis L, the semiminor axis B and the half axis
length W in the vorticity direction. (b) Deformation index D versus time. (c) Side view and (d) top view of instantaneous
shapes of the compound capsule with ¢ =0.135.

membrane no longer rotates about the capsule center but oscillates back and forth about the capsule
major axis, which is indicated by the oscillation of the phase angle about @ = 0 with an amplitude
smaller than /2 (Figure 2(e)). Previous theoretical analysis and 2D simulations*®?° demonstrate
that compound vesicles present tumbling at high volume ratio of inclusions, but at low volume
ratios they present the tank-treading state.

The transient deformation is then analysed by presenting the time evolutions of the lengths of
three principal axes (i.e., the semimajor axis L and the semiminor axis B in the shear plane and
the half axis length W in the vorticity direction) and the deformation index D in Figure 3 for three
compound capsules with ¢ = 0.05, 0.135, and 0.2, respectively. The compound capsule either in
the swinging regime (¢ = 0.05) or in the tumbling regime (¢ = 0.2) shows significant deforma-
tion oscillating periodically, which is indicated by the oscillations of L, B, W, and D with large
amplitudes (Figures 3(a) and 3(b)). In each specific oscillation period, the capsule shape changes
continuously between a prolate shape and an oblate shape with the revolution axis in the shear plane
and in the vorticity direction (Figures 3(c) and 3(d)), respectively, particularly for the compound
capsule at the swinging-to-tumbling transition (¢ = 0.135). This deformation behaviour is similar
to that of the homogeneous capsules at the swinging-to-tumbling transition induced by changing
viscosity contrast.!®!? Notably, changing the inner capsule size significantly affects the deformation
of the compound capsule. For example, as ¢ increases from 0.05 to 0.2, the oscillation amplitude
of W decreases; the maximum value of L decreases but the minimum value of B increases leading
to a decrease of the maximum value of D (Figure 3(a) and 3(b)). Specifically, the minimum value
of D at ¢ = 0.135 is nearly zero when the compound capsule is nearly at the swinging-to-tumbling
transition (Figure 3(b)).

Next, we perform a systematic analysis of the effects of the inner capsule on the dynamical
characteristics of the compound capsules in the swinging or tumbling regime. To study the effects
of the inner capsule on the orientation dynamics of the compound capsules, the time-average value
6,, and the minimum value 8,,;, of the orientation angle are plotted as functions of the volume
ratio ¢ of the inner capsule in Figure 4 for different values of Ca and a/b. When the compound
capsule is in the swinging regime (e.g., Ca = 0.2 in Figure 4(a) and a/b = 1.3 in Figure 4(b)),
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FIG. 4. The effect of the inner capsule on the orientation dynamics of compound capsules. The time-average value 6,, and
the minimum value 6,,;, of the orientation angle are plotted as functions of ¢. (a) and (c) are for capsules with a/b =1.5 at
different Ca. (b) and (d) are for capsules with Ca =0.15 at different a/b. 6,, = fTHdt/T, where T is the oscillation period.

6,, first decreases and then increases as ¢ increases. At the swinging-to-tumbling transition, 6,,
shows a sharp decrease tendency (e.g., Ca = 0.15 in Figure 4(a) and a/b = 1.4—1.5 in Figure 4(b)).
Note that 6, is not zero even though the compound capsule is in the tumbling regime (e.g.,
Ca = 0.1 in Figure 4(a)). It is because the significant deformation induces an asymmetry in 6 about
zero, which is also observed for homogeneous capsules.'” In previous theoretical analyses and
2D simulations,”®?’ the transition from tank-treading to tumbling for compound vesicles occurs
when 6 = 0. However, in our 3D simulations, the swinging-to-tumbling transition for compound
capsules occurs when 6,, > 0 and 6,,, < 0. As ¢ increases, 6,,;, decreases in most cases of Ca
and a/b (Figures 4(c) and 4(d)). It is worthy of mention that 6,,,, may decrease to be lower than
zero near the swinging-to-tumbling transition (Figures 4(c) and 4(d)), which means that the orien-
tation angle alternates between positive and negative periodically. Bagchi and Kalluri'? demonstrate
numerically that 6,,;,, of the homogeneous capsules can also decrease to be negative with increasing
viscosity ratio and they categorize this motion as a vacillating-breathing motion. Our present work
shows that by increasing the inner capsule size alone, the dynamical state of compound capsules
can also change from swinging to tumbling through vacillating-breathing at a vanishing viscosity
ratio.

To study the effects of the inner capsule on the shape deformation of the compound capsule,
the time-average value D,, and the minimum value D,,;,, of the deformation index are plotted as
functions of the volume ratio ¢ in Figure 5. As ¢ increases, D,, decreases monotonically in all
the cases shown in Figures 5(a) and 5(b), regardless of the regime that the compound capsule
is in the swinging or tumbling regime. This tendency of D,, versus ¢ is similar to that of the
spherical compound capsules demonstrated in our previous work, which results from the increasing
hydrodynamic interaction between the two membranes.>® The influence of the inner capsule on the
minimum deformation is more complex (Figures 5(c) and 5(d)). As ¢ increases, D,,;, decreases
in the swinging regime (e.g., Ca = 0.2-0.3 in Figure 5(c)) but increases in the tumbling regime
(e.g., Ca = 0.1 in Figure 5(c)). Particularly, when the capsule approaches the swinging-to-tumbling
transition, as ¢ increases, D,,;, linearly decreases to zero in the swinging regime and then linearly
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FIG. 5. The effect of the inner capsule on the shape deformation of compound capsules. The time-average value D, and the
minimum value D, of the deformation index are plotted as functions of ¢. (a) and (c) are for capsules with a/b =1.5 at
different Ca. (b) and (d) are for capsules with Ca =0.15 at different a /b.

increases from zero in the tumbling regime (Figure 5(d) and Ca = 0.15 in Figure 5(c)). It means that
the swinging-to-tumbling transition induced by increasing the inner capsule size occurs when the
compound capsule shape in the shear plane is circular. Walter et al.'> observe that the homogeneous
capsules at the swinging-to-tumbling transition induced by increasing the viscosity ratio present
a circular shape in the shear plane. Our 3D simulations show that the compound capsule in 3D
is ellipsoidal at the transition with a circular shape in the shear plane. For example, the capsule
is an oblate ellipsoid with the revolution axis in the vorticity direction as shown in Figures 3(c)
and 3(d).

As indicated in Figures 4 and 5, the inner capsule has significant influences on the dynam-
ical characteristics of both the swinging and tumbling motions of compound capsules. Next, we
present how the inner capsule size affects the swinging-to-tumbling transition. The phase dia-
gram for the occurrence of various dynamical states is presented in the Ca—¢ and a/b—¢ planes
(Figure 6). The tank-treading motion with stationary orientation angles is not observed in both
phase diagrams, while it is predicted in previous theoretical analyses and 2D simulations for com-
pound vesicles.?®?” Instead, we observe the swinging motion with oscillating orientation angles
and the vacillating-breathing motion (i.e., swinging with 6,,;, < 0) at relatively low values of ¢.
Apart from Figures 2 and 4, the phase diagrams in Figure 6 again indicate that the dynamical
state of compound capsules can be altered at vanishing viscosity mismatch from swinging to
tumbling by only increasing ¢. Certainly, the swinging-to-tumbling transition can be also induced
by decreasing Ca or increasing a/b alone, which is similar to the case for homogeneous cap-
sules. /017 Ag ¢ increases, the critical Ca for the transition increases but the critical a/b decreases
both in an approximately linear tendency. Notably, the linear tendencies are observed in the pres-
ent range of the volume ratio considered in this study, but there is high possibility to observe
non-linear tendencies at higher values of the volume ratio, which needs to be studied in future
works.

In Figure 7, the critical value of the inner capsule volume ratio ¢, for the swinging-to-tumbling
transition of compound capsules is plotted versus the reduced volume v for different values of Ca.
The prediction of small deformation theory by Veerapaneni et al.”® for compound vesicles enclosing
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FIG. 6. Phase diagrams for the occurrence of different dynamical states (a) as a function of ¢ and Ca at a/b = 1.5 and (b) as
a function of ¢ and a/b at Ca=0.1. The vacillating-breathing motion is characterized as the swinging motion with 8,,;, < 0.

a rigid particle is also presented. The reduced volume represents the ratio of the capsule volume to
that of a sphere having the same surface area as the capsule, which is widely used to describe the
shape effect in the study on homogeneous capsules/vesicles.’**’ The increase of ¢, with increas-
ing v is observed in both previous theoretical and our numerical results. Note that in theory the
dynamical state transition (i.e., ¢.) is considered to be independent of the capillary number, but our
numerical simulations demonstrate strong dependence of ¢. on Ca. It is found that ¢, significantly
increases with Ca increasing. Previous studies on homogeneous capsules indicate that the influence
of the shape deformation on the capsule dynamics is significant at high Ca.*!*!* The variations of
¢ with Ca and v indicates that it is more difficult for compound capsules with higher deformability
or sphericity to exhibit tumbling, which is similar with the observation for homogeneous cap-
sules.>> Notably, when v deviates from unity to lower values (i.e., the initial shape of the compound
capsule is more discrepant from the sphere), ¢. obtained by our numerical simulations is much
lower than that from the small deformation theory. It is because the capsule shape is considered as
quasi-spherical in the small deformation theory that underestimates the effect of the non-sphericity
of the shape. These results further suggest that small deformation theories compared to numerical
simulations are only applicable for the study on the dynamics of quasi-spherical capsules with
negligible deformation.

Recent studies have shown that off-plane motion is also important for non-spherical cap-
sules; 404 thus we examine the effects of the compound structure on the dynamics of non-
spherical capsules with the revolution axis initially off the shear plane. Within the parameter range

— Analytical results by Veerapaneni et al (2011)
0.4 Our numerical results Tumbling
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FIG. 7. Critical value of the inner capsule volume ratio (¢.) versus the reduced volume v for the swinging-to-tumbling
transition of compound capsules. The solid line is the analytical result from the small-deformation theory by Veerapaneni
et al. for compound vesicles enclosing a rigid particle. Here, the compound capsules are initially prolate.
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FIG. 8. Effects of the inner capsule on the dynamics of non-spherical compound capsules with the revolution axis initially
off the shear plane. 6 is the angle between the revolution axis and its projection in the shear plane (i.e., x-z plane). Time
evolutions of 0. are presented for oblate capsules with a/b =0.7 (a) and prolate capsules with a/b =1.32 (b), in which
Ca is 0.1 and the initial value of 6 is /4.

as shown in Figure 8, the homogeneous capsule with initially oblate shape presents the kayaking
motion, in which the revolution axis oscillates back and forth symmetrically about the shear plane,
while the prolate capsule presents the precession dynamics, in which the revolution axis makes
a precessing motion about the vorticity axis (i.e., y axis) as it slowly drifts towards the vorticity
axis. These specific motions have been revealed in previous numerical studies on homogeneous
capsules.*>#64% Ag seen in Figure 8(a), with the volume ratio increasing to 0.1, the oblate compound
capsule exhibits the kayaking motion, but the oscillating amplitude of the angle 6,, between the
revolution axis and its projection in the shear plane increases. As the volume ratio further increases
to 0.2, the dynamical state of the oblate compound capsule changes to the stable precession dy-
namics, in which the revolution axis makes a stable precessing motion about the vorticity axis
without drifting and hence 6, varies periodically about a constant mean. In Figure 8(b), with the
volume ratio increasing, the prolate compound capsule initially presents the precession dynamics
with drifting (its drifting speed is decreasing), and eventually the dynamical state changes to the
kayaking motion. Previous studies on homogeneous capsules have demonstrated that many param-
eters, including the aspect ratio, capillary number, and viscosity ratio, can govern the off-plane
motion of capsules.*#***3 The present study is limited to the cases of the fixed values of these
parameters. Still it is noteworthy that the dynamical characteristics or rather the dynamical state of
the oftf-plane motions can alternate by including an inner capsule and increasing its size.

IV. OBLATE COMPOUND CAPSULES WITH VISCOSITY MISMATCH

We first compare the dynamics of the prolate and oblate compound capsules. As shown in
Figure 9, a significant difference in the dynamical characteristics is observed for the prolate and
oblate compound capsules, even though they have the same reduced volume. In previous 3D simu-
lations by Yazdani and Bagchi,** the same final shape of the homogeneous vesicles is presented
for the same reduced volume, regardless of the initial shape of the vesicle (prolate or oblate).
Our simulations indicate that the homogeneous capsules with the same reduced volume but with
different initial shapes present much different dynamical characteristics (e.g., ¢ = 0 in Figures 8(c)
and 8(d)). Notably, Sui et al. reveal that the bending stiffness in the membrane is a key factor for the
aforementioned phenomenon.* However, the differences in the dynamical characteristics are still
observed in this study with the bending stiffness excluded (data not shown). Thus, we believe that
the shear elasticity which is heavily dependent on the initial shape of capsules is another key factor.
Regarding the compound capsules, at a given value of the inner capsule size, the oblate and prolate
capsules also exhibit quite different behaviors. For example, the time evolutions of the lengths of
the three principle axes are altered (Figure 8(a)) and the minimum values of both the deformation
index and orientation angle are lower for the prolate capsules (Figures 9(c) and 9(d)). Besides,
the critical inner capsule size for the swinging-to-tumbling transition is also lower for the prolate
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FIG. 9. Dynamics of ellipsoidal compound capsules: prolate versus oblate initial shapes. (a) Time evolutions of the three
principal axes (thick lines for the prolate shape and thin lines for the oblate shape) and (b) the initial shape (black solid lines
for the prolate shape and red dash lines for the oblate shape) of compound capsules at v =0.972, Ca=0.15, and ¢ =0.1.
The minimum deformation index and the minimum orientation angle are plotted as functions of the volume ratio of the inner
capsule in (c) and (d), respectively.

capsules. We believe that the presence of the spherical inner capsule is the reason for the differ-
ences in the dynamics between the prolate and oblate capsules apart from the shear elasticity of
membranes. The inner and outer membranes are closer in the shear plane for the oblate compound
capsules (Figure 9(b)), which may induce stronger hydrodynamic interactions.’® In summary, the
reduced volume, the only parameter used to define the shape effect in 2D simulations, is no longer
sufficient in 3D situations. Therefore, a more native-mimicking 3D model is needed for studying
the dynamics of non-spherical compound capsules, as the additional freedom in the third dimension
brings more complex behaviors.

It is well known that the deformation and dynamics of homogeneous capsules are significantly
affected by the viscosity mismatch between the internal and external fluids.*'®° In our present
work, we investigate the effects of the viscosity ratios (i.e., 4 and A™) on the dynamics of compound
capsules (Figure 10). With A increasing at a given value of ¢, the dynamical state of the compound
capsules can change from swinging to tumbling, which is similar to the case for homogeneous
capsules.'®!3 At the swinging-to-tumbling transition induced by increasing A, the minimum value
of the deformation index D,,;, becomes very close to zero (Figure 10(a)). For each group of A and
A" D,ix decreases with ¢ in the swinging regime (Figure 10(b)). Notably, D,,;, decreases signif-
icantly as A increases with 1" maintained constant at 1, whereas insignificant change is observed
in D,,;, as A™ increases from 1 to 3 with 1 maintained constant at 1. In our previous work, it is
observed that the deformation of spherical compound capsules also depends on the outer viscosity
ratio more than on the inner viscosity ratio.’* In Figure 9(c), the oscillation amplitude AD of the
deformation index is found to increase first and then decrease with increasing A in both the cases
of the homogeneous and compound capsules. AD reaches its maximum at an intermediate value of
A when the swinging-to-tumbling transition occurs, and this intermediate value of A decreases with
¢. It is known that the swinging-to-tumbling transition occurs once the viscosity ratio exceeds a
critical value. In Figure 10(d), the effects of the inner capsule size on the critical viscosity ratio are
examined by presenting the phase diagram as a function of A and ¢. The critical viscosity ratio for
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FIG. 10. Influences of the viscosity ratios 2 and 1 on the dynamics of compound capsules. (a) Time evolutions of the
deformation index D and orientation angle 6 for different 2 at a/b =0.7, Ca=0.1, and ¢ =0.1. (b) The minimum value of
the deformation index is plotted as a function of ¢ at different 1. (c) Oscillation amplitude D,,;qx— D,in of the deformation
index is plotted as a function of A at different ¢. (d) Phase diagram as a function of ¢ and A for a/b =0.7 and Ca=0.1.

the swinging-to-tumbling transition decreases significantly with the increasing ¢, which means that
the tumbling motion is facilitated by the presence of the inner capsule and the increase of its size.
From this point of view, increasing the volume ratio of the inner capsule has a similar effect on the
capsule dynamics as increasing the viscosity ratio.

V. DISCUSSIONS

In previous studies on the dynamics of compound vesicles, including the small deformation
theory analysis for vesicles enclosing rigid particles”® and 2D simulations for vesicles enclosing
deformable vesicles,? the increase of the effective internal fluid viscosity induced by the presence
of inclusions is proposed to explain the inclusion-induced tank-treading-to-tumbling transition. Our
present study presents a discussion about the influences of the inner capsule on the effective viscos-
ity of the inhomogeneous fluid inside the compound capsule to explore the mechanism of the effects
of the inner capsule on the compound capsule dynamics.

With the calculation method for the effective viscosity of a dilute suspension of liquid-filled
capsules modelled with the front-tracking method,’! the effective viscosity of the inhomogeneous
fluid inside the compound capsule (i.e., the outer capsule) is computed as follows:

o
W= Au+ ==, (5.1)
Sxz
Here, S, is the average shear rate in the compound capsule and o, is the excess shear stress

accounting for the contribution of the inner capsule. S, is calculated as follows:

1%

where V and A are the volume and surface area of the outer capsule, respectively, u, and u, are the
X- and Z-component of the velocity vector, respectively, and n, and n, are the X- and Z-component

1
Sxz == / (uxng + uzny) dA, (5.2)
A
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FIG. 11. (a) Time evolutions of the deformation index D, the orientation angle 0, the average shear rate S, inside the
compound capsule, the excess shear stress o« induced by the inner capsule, and the effective internal fluid viscosity u™* for
a tumbling compound capsule (a/b =1.32, ¢ =0.2, and Ca =0.1). (b) Time evolutions of D, Sy;, 0 xz, and u* at different
¢ when a/b =1.32 and Ca=0.1. The capsules with ¢ =0.05 and 0.125 exhibit the swinging motion and capsules with
¢ =0.15 and 0.2 exhibit the tumbling motion.

of the unit outward normal vector, respectively. o is calculated as follows:

1

O—XZ = Vin

/ [ fexe + A (27 = 1) (uan; + uzny)| dA™, (5.3)
Ain

where V" and A™ are the volume and surface area of the inner capsule, respectively, f is the elastic
force in the capsule membrane, and x is the position of membrane points.

Figure 11 presents the time evolutions of the average shear rate S,,, the excess shear stress
0«2, and the effective internal fluid viscosity " in dimensionless forms for compound capsules with
different sizes of inner capsules. It is noted that Sy, o, and y* are all time-dependent quantities
regardless of the regime that the compound capsule is in the swinging or tumbling regime, as
the capsule shape and orientation angle oscillate over time. The excess shear stress o, primarily
depends on the deformation of the inner capsule, while the average shear rate Sy is affected by both
the deformation and the orientation of the outer capsule. The non-Newtonian rheological behaviour
of the compound capsule, i.e., the time-dependent internal fluid viscosity, is similar to the observa-
tions in previous 2D simulations for compound vesicles.”? However, there are significant differences
in the variations of Sy;, 0 x;, and y* versus time between our 3D simulations and the 2D simulations
by Kaoui et al.*® For example, in previous 2D simulations, the effective internal fluid viscosity
is found to diverge to the limit of a solid medium at 6 = +m/4, but the same divergence is not
observed in our 3D simulations as the average shear rate never approaches zero. Notably, owing to
the presence of the inner membrane, the effective viscosity of the fluid inside the compound capsule
increases significantly (i.e., u* > 10u for ¢ = 0.2 in Figure 10(a)). As the volume ratio of the
inner capsule increases, the outer capsule deformation decreases, but the inner capsule deformation
increases due to the stronger hydrodynamic interaction between the inner and outer membranes.*
Accordingly, the average shear rate decreases with the decreasing outer capsule deformation, which
is also indicated in our previous study,>® and the excess shear stress increases with the increasing
inner capsule deformation. As a result, the effective internal fluid viscosity of compound capsules
increases as the inner capsule is enlarged (Figure 11(b)).

Figure 12 shows that the time-averaged value of the effective internal fluid viscosity u*,, always
increases with the increasing volume ratio ¢ of the inner capsule for different values of Ca and
a/b. Previous theoretical analyses and 2D simulations for compound vesicles also conclude the
increasing tendency of the effective internal fluid viscosity with the inclusion size.?®?° In qualitative
terms, the increase of u*,, versus ¢ can be used to address the effects of the inclusions on the dy-
namics of compound capsules. For example, increasing the inner capsule size alone can induce the
swinging-to-tumbling transition at vanishing viscosity mismatch (Figure 2). The effective internal
fluid viscosity also increases with the capillary number decreasing, which in qualitative terms is
another reason for the increase of the critical volume ratio versus the capillary number (Figure 7).
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FIG. 12. Effective internal fluid viscosity is plotted as a function of ¢ at different a /b and Ca.

Note that decreasing the capillary number also facilitates the tumbling of homogeneous capsules
due to the pronounced shape memory effect.”!

However, in quantitative terms, compound capsules do not exhibit exactly the same dynam-
ical behaviors as homogeneous capsules, even if the effective internal fluid viscosity of compound
capsules is the same as the internal viscosity of homogeneous capsules. The minimum deforma-
tion index D,,, and orientation angle 6,,;, are used to predict the transition of dynamical states
in our 3D simulations and in previous 2D simulations,?®?° respectively. Thus, we plot D,,;, and
Omin of compound capsules versus u*,,/u in Figure 13, in which D,,;, and 6,,;, of homogeneous
capsules versus A7 are also plotted for the comparison purpose. In the swinging regime, both D,,;,
and 6,,;, decrease with u*, /u for compound capsules, which is qualitatively similar to those of
homogeneous capsules versus 4. Notably, the decreasing of 6,,,;, for compound capsules at A = 1
is gradually decelerated with u*,,/u, while it is accelerated for homogeneous capsules. Besides,
Omin of compound capsules is larger than that of homogeneous capsules, in the case of low outer
viscosity ratio (i.e., 4 = 1) in particular. Moreover, D,,;, of compound capsules is also inconsistent
with that of homogeneous capsules. The decreasing speed of D,,;, near the swinging-to-tumbling
transition for compound capsules is much lower than that of homogeneous capsules, and the transi-
tion is thus delayed, i.e., the critical u*,,/u = 8.35 for compound capsules is higher than the critical
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FIG. 13. The minimum values of the deformation index D,,;, and the orientation angle 6, are plotted as functions
of the time-average value of the effective viscosity ratio u*,,/u for compound capsules with a/b =0.7 and Ca=0.1.
Corresponding values of homogeneous capsules versus the viscosity ratio A7 are also presented for the comparison purpose.
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FIG. 14. Dimensionless pressure field p/ pR%y? inside and outside the capsules with a/b =1.32,Ca=0.1,and 1 = A" =1.
(a) ¢ =0 in the swinging regime with D,,;, =0.035. (b) ¢ =0.05 in the swinging regime with D,,;, =0.0249. (c) ¢ =0.135
at the swinging-tumbling transition with D,,;, = 0.0005. (d) ¢ = 0.2 in the tumbling regime with D,,;, = 0.0221. The pressure
values are relative deviations from pressure at the center point of the capsule.

AH =7.58. Under certain conditions (e.g., 1 = 1™ = 1), the swinging-to-tumbling transition for the
compound capsule will not occur by increasing the inner capsule size alone, though the effective
viscosity contrast increases to high values. Kaoui e al.? also observe that the orientation angle of
compound vesicles is larger than that of homogeneous vesicles, though they report the critical value
of u*,,/u for the tank-treading-to-tumbling transition of compound vesicles is close to the critical
viscosity contrast of homogeneous vesicles.

Figure 14 shows the inhomogeneous distribution of fluid stresses inside the compound capsule
due to the hydrodynamic interaction between the inner and outer membranes. Our previous work on
spherical compound capsules concludes that the hydrodynamic interaction can be largely reflected
by the pressure distribution.?® Similarly, a pressure gradient directed from the capsule equator to the
tip is also observed in the fluid layer between the two membranes of the nonspherical compound
capsules. This pressure gradient increases with the inner capsule size; as a result, the compound
capsule deformation decreases (Figures 5(a) and 5(b)), which is also observed for spherical com-
pound capsules. Notably, as the outer capsule tumbles or swings versus time, the higher pressure
region is always near the equator of the inner capsule (Figures 14(b)—14(d)). In contrast, the high
pressure region can appear near the tip of the outer capsule when the major axis of the outer
capsule tumbles to be perpendicular to that of the inner capsule (Figures 14(c) and 14(d)). Under
this specific condition, the pressure gradient prevents the initially nonspherical outer capsule from
deforming to be spherical. It is the likely reason for the fact that the minimum deformation of
the tumbling compound capsules increases with the inner capsule size (Figures 5(c) and 5(d)). As
shown in Figures 14(b)-14(d), compared to that inside the inner capsule, the pressure between the
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two membranes is much higher near the capsule equator but is much lower near the capsule tip.
Apparently, highly inhomogeneous distribution of pressure results from the presence of the inner
membrane, especially at high volume ratios of the inner capsule. These findings further indicate that
compound capsules cannot be viewed as homogeneous capsules in the study on their motions in
shear flow.

VI. CONCLUSIONS

In this study, we numerically investigate the dynamics of a nonspherical compound capsule
(a prolate/oblate capsule containing a smaller spherical capsule) in simple shear flow by using a
three-dimensional front-tracking finite-difference model. In this model, the shear elasticity, area
dilatation, and bending resistance are considered for the discovery of the membrane mechanics. Our
main findings are concluded as follows:

(1) Compound capsules exhibit the same swinging and tumbling motions as homogeneous cap-
sules do, and the phase diagram for their occurrence is presented. The swinging-to-tumbling
transition can be induced at vanishing viscosity contrast by increasing the inner capsule size
alone. The critical inner capsule size for the swinging-to-tumbling transition increases with
the capillary number and the reduced volume. Compared to previous small deformation theo-
ries, our numerical model is more applicable when the capillary number is high or the reduced
volume is low. Further, increasing the inner capsule size leads to the significant decrease of
the critical viscosity ratio for the swinging-to-tumbling transition for compound capsules with
viscosity contrast.

(2) The presence of the inner capsule and increasing its size significantly affect the dynamical
characteristics of both the swinging and tumbling motions, such as the time-average and
minimum values of the deformation index and orientation angle. Particularly, as the inner
capsule size increases, the minimum deformation index decreases in the swinging regime
but increases in the tumbling regime. At the swinging-to-tumbling transition, the compound
capsule transforms to be circular in the shear plane, while in three dimensions it is oblate with
the revolution axis in the vorticity direction.

(3) The mechanisms underlying the effects of the inner capsule on the compound capsule dy-
namics are discovered. Owing to the presence of the inner capsule, the effective viscosity
of the fluid inside the compound capsule is enlarged and it increases with the inner capsule
size, which accounts for the swinging-to-tumbling transition induced by increasing the inner
capsule size in qualitative terms. However, in quantitative terms, compound capsules do not
exhibit exactly the same behaviors as homogeneous capsules, as the presence of the inner
membrane induces significant inhomogeneity of fluid stress distribution inside the compound
capsule.

Our present research findings provide new insights into the motion of elastic capsules in shear
flow which have not been thoroughly examined to our best knowledge. Nevertheless, there are still
numerous issues to address in future work regarding the practical application of the fundamental
research findings, for instance, the extremely large volume ratio of the inner to outer capsules, the
extremely high viscosity and the viscoelastic nature of internal fluids for biological compound cap-
sules, more complicated mechanical properties of the capsule membrane including viscoelasticity
and extremely high area-dilatation modulus.
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