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Study of liquid film dynamics promotes understanding the critical heat flux (CHF) of boiling heat transfer,
which occurs as the liquid layers (micro-layer and macro-layer) near the heater wall lose their integrity.
Since the measurement at micro-scale is a challenge, and further complicated by the chaotic nature of the
boiling process, profound knowledge on the thin liquid film dynamics is not well documented in the
existing literature. In the present paper, we employ a confocal optical sensor system to study the dynam-
ics and the integrity of a thin liquid film sheared by the co-flowing air from above and heated from below
in a horizontal aluminum channel. The results indicate that the entrainment governs the liquid film thin-
ning process under adiabatic or lower heat flux conditions, whereas the evaporation becomes more pro-
nounced in a higher heat flux system. The detailed evolution of liquid film is discussed. Based on our
experimental observations, the critical film thickness of an integral film is related to the condition of
the heating surface and the heat flux. For a specific surface, the critical film thickness remains constant
under a defined heat flux and increases with the increasing heat flux. A spectrum analysis is also imple-
mented to analyze the film instability. It is concluded that the heat flux is the dominant factor to govern
the film instability compared with the effect of differential velocities of gas and liquid flow.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

A thin liquid film spreading over and evaporating on a solid sur-
face is encountered in many engineering applications that involve
processes such as spray cooling, heating, coating, cleaning and
lubrication. In most cases, the stability and integrity of the liquid
film on the heating surface is desired to avoid performance deteri-
oration and physical destruction of the devices. Note that the per-
formance of a boiling device is bounded by the critical heat flux
(CHF), which is thus an important parameter for system design
and operation [1]. If the liquid film rupture occurs in boiling heat
transfer, for instance, the heat transfer coefficient may be consider-
ably reduced and it will lead to the burnout (dryout) which is a
threat to the equipment safety.

So far, an extensive research has been carried out in the inves-
tigation the liquid film dynamics and integrity. The minimum
thickness of an integral liquid film is of special interest since it is
related to film rupture. For adiabatic conditions, the minimum
thickness of the film flowing down a vertical or inclined solid sur-
face can be predicted theoretically according to force balance or
minimum total energy criteria [2–7], as well as a horizontal liquid
film by free energy theory [8,9]. Oron et al. [10] provided a compre-
hensive review of the multifaceted subject of thin film dynamics
modeling. Based on the long wave theory, they presented a unified
mathematical system to predict the long-scale evolution of thin
liquid films. The set of mathematical evolution equations has its
root in the work of Burelbach et al. [11], taking into account the
influential factors such as van der Waal forces, surface tension,
gravity, thermo-capillary, mass loss and vapor recoil force. Later,
Craster and Matar [12] also presented a comprehensive review of
the work carried out on thin film flows. As pointed out by Oron
et al. [10], there is a clear need for careful experimental investiga-
tions to verify phenomena and to give data that can be used to test
the theories, and they claimed their review paper stands as a call
for such experiments. Remarkably, there are few data for film rup-
ture on a horizontal surface under non-adiabatic conditions which
is important to boiling heat transfer and boiling crisis.

Additionally, most of the published modeling and numerical
studies for boiling heat transfer concentrate on the near-wall liquid
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Nomenclature

f frequency (Hz)
Ml liquid mass flow rate (g/s)
q heat flux (kW/m2)
t Time (s)
um mixture velocity (m/s)
usg gas superficial velocity (m/s)
usl liquid superficial velocity (m/s)
x axial distance (mm)

Greek letters
d film thickness (mm)

Subscripts
g gas
l liquid
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layers (micro/macro-layer) with the thickness estimated to range
from several to hundred micrometers [13–17]. However, there is
a dearth of data on the direct measurement of such near-wall liq-
uid layers. This is probably due to the fact that the measurement at
micro-scale is a challenge, and further complicated by the tradi-
tional experimental setups (e.g. Pool boiling with heater block)
and the chaotic nature of boiling process which all impede direct
observation and measurement of thin liquid films, especially under
high heat-flux conditions.

Theofanous et al. [18,19] proposed a ‘‘scales-separation” phe-
nomenon which indicates that high heat-flux boiling and boiling
crisis is dominated by micro-hydrodynamics of liquid microlayer
on the heater surface. More specifically, for a given surface con-
dition and coolant chemistry, boiling crisis can be treated as a
hydrodynamic phenomenon, and there exist two hydrodynamic
scales: an external one and an internal one. However, boiling cri-
sis in pool boiling is irrelevant to the external-scale hydrody-
namics. Note that the ‘‘scales-separation” phenomenon can also
be applied to flow boiling [20]. This provides the rationale to
perform the BETA-B boiling experiment [21] on a thin liquid film
so that the micro-hydrodynamics of the film was visualized
directly by a high-speed video camera synchronized with the
IR imaging, without losing the key physics of boiling. To take
one step forward, Gong et al. [22,23] developed an experimental
method for the diagnosis of liquid film dynamics and investi-
gated the stability and rupture of evaporating liquid films on dif-
ferent heater surfaces under boiling conditions from low heat
fluxes to high fluxes [24–26]. The data were then applied in
the modeling and simulation of liquid film dynamics [27]. Since
previous studies were oriented to pool boiling, there is a clear
need to advance the developed experimentation to flow boiling
so that the research is applicable to boiling water reactors. Note
that the flow boiling features a liquid film driven by shear forces
of vapor flow in the mainstream. The shear force not only affects
the instability of the micro-layer, but also forces the liquid in the
micro-layer to spread into the dry areas. Generally, the interfa-
cial waves on the liquid film is believed to trigger the dryout
in flow boiling [28]. However, the experimental quantification
of such thin liquid films and their dynamics is not straightfor-
ward. Essentially, more experimental data and in-depth analysis
are required to investigate the film rupture.

The present study calls into question the effects of gas shear-
ing and evaporation on the dynamics of a thin liquid film. We
develop a confocal optical sensor system for a rapidly varied
liquid film and try to evaluate the factors and properties which
govern film dynamics, stability and rupture. We discuss the
effects of entrainment and evaporation on liquid film evolution.
We also analyze the effects of different parameters (e.g. gas
and liquid flow rate, heat flux, etc.) on the critical film thickness.
Based on the spectrum analysis, we discuss the film instability
under various flow conditions, providing insights into the
dynamics of a thin liquid film.
2. Experimental system and method

2.1. Test facility

Fig. 1 shows the schematic of the test facility which mainly con-
sists of water and air supply systems, a heating system, a test sec-
tion as well as a measurement system. The test section is a
rectangular channel made of aluminum with the length of
180 mm, the width of 8 mm and the height of 12 mm, as seen in
Fig. 2. In order to isolate the vibration, the test facility is fixed on
an optical table which also serves as an operating platform to fix
the test section horizontally. The surface of the test channel has
the properties of 0.293 Ra/lm for roughness and 68� for contact
angle. For the purpose of forming a stratified flow with minimum
entrance effect, a water-air inlet section is carefully designed to
make water and air flow into the test section in parallel.

The main difficulties for the dynamics of the thin liquid film
measurement are the film’s small scale and rapid evolution, as well
as randomness of nucleation and bubble growth. For a rapidly var-
ied liquid film, the confocal optical sensor is employed because the
sensor is equipped with a data acquisition rate up to 30 kHz, and
able to measure thickness ranging from several lm to 3 mm with
nominal spatial resolution up to less than 1 lm. In the present
study, the confocal optical sensor, fixed on a linear guide system
(Igus, model DryLin), is incorporated with a controller
(optoNCDT2431) which is also connected to a special Xenon light
source. By detecting the reflections from the upper and the lower
surfaces of the liquid film, the film thickness can be efficiently
and accurately deduced. The detailed principle of the confocal opti-
cal sensor is accessible in [22].

A copper block with imbedded six cartridge heaters (CIR-30224
230 V 400W) is employed as the heat source attached to the
downward surface of the metallic test sections, which can provide
up to 4 MW/m2 heat flux to the liquid film. The power level of the
cartridge heaters is regulated by a DC power transformer and the
temperature profile of the copper block is monitored by K-type
thermocouples. In order to eliminate condensation of vapor on
the upper surface, an AC heater power supply is applied to pre-
heat the air flow before it enters the test section.
2.2. Experimental method and procedures

For adiabatic tests, the water and air are supplied separately to
the water-air inlet section at room temperature to form a stratified
flow. For boiling tests, de-ionized water is firstly degassed about
30 min and then cooled down to the room temperature. After-
wards, water is circulated by the pump to the test section and
compressed air is also provided to the channel after filtering and
pre-heating. When the flow becomes stable at the given liquid
and air flow rates and heat flux, the confocal optical sensor is oper-
ated to measure the dynamic liquid film thickness profiles along



Fig. 1. Schematic of test facility.

Fig. 2. The dimensions of test section.

K. Wang et al. / Experimental Thermal and Fluid Science 85 (2017) 279–286 281
the longitudinal (x-axis) and transverse (y-axis) directions. Fig. 3
shows the distribution of the preliminary measurement points
(3 � 5) on the test channel surface. Note that the measurement
points locate at least 135 mm away from the inlet of the channel,
which insures that the measurements are corresponding to the
fully developed equilibrium stratified flow.

For each test run, the liquid film thickness is recorded by sam-
pling rate of 1000 Hz over a period of 60 s. In the present study, the
gas velocity ranges from 0.31 m/s to 5.02 m/s, the liquid mass flow
rate ranges from 0.03 g/s to 0.30 g/s and heat flux ranges from
0 kW/m2 to 109 kW/m2. It is noted that all the experiments are car-
ried out under the atmospheric pressure.

2.3. Data processing

Note that the optical sensor is sensitive to capture the details of
film fluctuation. Fig. 4a shows the typical time-trace of film thick-
Fig. 3. The distribution of
ness with the periodic fluctuation obtained by the optical sensor. It
is noted that the raw signals acquired from the transducer contain
substantial background noise (e.g. ambient vibration and natural
frequency of pump). Thus, the fast Fourier transform algorithms
(FFT) is employed to reduce noise before liquid film features are
extracted (see Fig. 4b).

Due to the gas shearing and evaporation, the liquid film
decreases along the flow direction. However, the optical sensor will
not work well when film rupture occurs, as seen in Fig. 5. The min-
imum film thickness of an integrated film is defined as the critical
film thickness. Since the occurrence of the film rupture is random,
five tests are repeated to obtain the averaged critical film thickness
and rupture frequency.

2.4. Uncertainty

The air flow rate is measured by the mass flowmeter Vögtlin-
GSCC5TSBB1 with the uncertainty of 0.3%, and the liquid mass flow
rate by a Coriolis mass flowmeter YOKOGAWA RCCF31DH2MPSIE1
with the uncertainty of 0.5% and the temperature by K-type ther-
mocouples with an accuracy of 1 K. In addition, a liquid flow rate
controller Fluidwell F120 is used to ensure a more stable liquid
flow rate. The characteristics of the confocal optical sensor are
listed in Table 1. For the demonstration of the reliability and feasi-
bility of the confocal optical sensor for thickness measurement, a
set of gauge blocks (Mitutoyo, Class 0 with the accuracy of
±0.4 lm) is employed to calibrate the optical sensor before the
tests. It can be inferred from Fig. 6 that the optical sensor is capable
of measuring the thicknesses of the gauge blocks with a root-
mean-square deviation (RMSD) of 9.5%.
measurement points.



(a) Typical time-trace film thickness.      (b) Spectrum of liquid film. 

0 2 4 6 8 10
675

690

705

720

735

750 usg=0.441 m/s, M
l
=0.052 g/s, x=155 mm, q=0 kW/m2

R
ea

l-t
im

e 
fil

m
 th

ic
kn

es
s 

(
m

)

t (s)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

usg=0.441 m/s, M
l
=0.052 g/s, x=155 mm, q=0 kW/m2

f (Hz)

A
m

pl
itu

de

Fig. 4. Time series and spectrum analysis of the film wave signals.
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Fig. 5. Typical detected film thickness when film rupture occurs.
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Fig. 6. Calibration of the optical sensor.
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282 K. Wang et al. / Experimental Thermal and Fluid Science 85 (2017) 279–286
Fig. 7 shows a typical distribution of liquid film in axial and
transverse directions. The liquid film decreases along the flow
direction and its transverse profiles show a concave shape which
is approximate symmetrical distribution. Thus, the thinnest part
of an integrated liquid film is believed to appear near the outlet
of the test channel around the central line. For a simplification,
three measurement points (numbered 1–3 in Fig. 3) are finally
selected in the present study.

It is known that the increasing heat flux results the promotion
of bubble generation. Generally, when the liquid film is thick, the
effect of bubble generation on thickness measurement can be
ignored and the measured film thickness under non-adiabatic
condition is believed to be smaller than that in adiabatic scenario
due to the evaporation (region I in Fig. 8). Since the increasing
gas velocity leads to a decrease in film thickness, the effect of bub-
ble generation and departure gradually enhanced. Fig. 9 shows the
detected departure of the bubble by the optical sensor, which
causes a faster and larger amplitude of vibration of the liquid film.
Table 1
The parameters of the optical sensor.

Sensor model Measuring range Spot diameter Resolution Max. tilt

IFS2431-3 3 mm 25 lm 0.12 lm ± 22�
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Remarkably, the growth of the bubbles makes the liquid among
bubbles accumulate to lift the water level. Consequently, the
detected local film thickness in the non-adiabatic experiment is
almost the same or even thicker than that under adiabatic condi-
tion (region II in Fig. 8). When the film thickness decreases further,
the generation of bubbles is restrained and finally ceases (region III
in Fig. 8). Note that the liquid film gets ruptured with the thickness
of a hundred micrometers. The effect of bubble generation on the
critical film thickness can be ignored.
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Fig. 9. Detected bubbles departure by optical sensor.
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3. Results and discussions

3.1. Evolution of the liquid film

Fig. 10 shows the variation of the film thickness d along the flow
direction with different heat flux under the constant liquid and gas
mass flow rates. Irrespective of adiabatic or non-adiabatic, the film
thickness decreases along the flow direction due to the entrain-
ment and evaporation (non-adiabatic). At a lower heat flux, the
thinning process is mainly governed by the entrainment and the
evaporation effect apparently becomes less pronounced. By
increasing the heat flux, the effect of evaporation is observed to
enhance gradually, leading to a rapid decrease in film thickness.

Fig. 11 shows the variation of the time-averaged film thickness
under different gas and liquid mass flow rates till rupture occurs at
the fixed measurement point 3. When liquid mass flow rate is low,
the film thickness decreases almost linearly with the increasing gas
velocity and the rupture occurs in a relative short time, indicating a
nearly constant entrained rate. By increasing the liquid mass flow
rate, the entrained rate seems decreases and the thinning process
turns into a parabolic tendency. With the further increase in liquid
mass flow rate, the film thickness firstly relative slowly decreases
and then dramatically decreases with the increase of gas velocity
(like cotangent image). In this case, the entrained rate firstly
decreases and then increases with the increase in gas velocity. It
is also worthwhile to mention that the averaged film thickness
for an integrity film linearly increases with the increase in liquid
mass flow rate.

3.2. Integrity of the liquid film

Fig. 12 shows the critical liquid film thickness for an integral
film and its time-averaged value under various flow conditions.
Without heating, the critical liquid film thickness remains almost
the same for a specific surface, though the time-averaged film
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thickness grows with the increase in gas, and the liquid mass flow
rates and the range of film thickness turn to be wider. i.e. the crit-
ical film thickness under adiabatic condition is �111.51 lm
(Fig. 12a). A similar conclusion is also drawn from non-adiabatic
results (Fig. 12b). Thus, besides surface condition, the critical thick-
ness for an integral liquid film is dominated by heat flux. Addition-
ally, the critical film thickness and the time-averaged thickness
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increase with the increasing heat flux (Fig. 12c), indicating a more
chaotic liquid film under high heat flux.
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Fig. 13. Effect of the gas velocity on the film spectrum.
3.3. Film instability

The mechanism of the film rupture depends on the thickness of
the liquid film present, since this determines if it is stable, meta-
stable or unstable [29,30]. Generally, for a stratified flow, the grav-
ity always acts as a stable factor, whereas the instabilities include
film evaporation, shear driven interfacial instabilities such as
Rayleigh-Taylor or Kelvin-Helmholtz waves, and interfacial defor-
mation due to surface tension gradients arising from thermal or
concentration gradients within the liquid film [31].

Fig. 13 shows the spectrum of the interfacial waves under dif-
ferent gas velocities and a constant liquid mass flow rate in adia-
batic condition. A dominant wave frequency is observed to exist,
indicating a period of fluctuation on the gas-liquid interface.
Increasing the differential velocity between gas and liquid phases
enhances the destabilizing Kelvin-Helmholtz instability which
leads to a more ‘‘wavy” interface, i.e. the dominant wave frequency
increases with the increase in gas velocity. It is also worthwhile to
mention that the amplitude of the fluctuation decreases with the
increase of gas velocity. Similarly, as seen in Fig. 14, increasing liq-
uid mass flow rate increases the dominant wave frequency. The
stabilizing effect of gravity increases with increasing film thick-
ness, consequently resulting in a reduction in the amplitude of
the fluctuation.
Fig. 15 shows the spectrum of the fluctuations when the film
rupture is approaching. Here, the mixture velocity um (um = ug + ul)
is employed. When the mixture velocity increases, the dominant
wave frequency gradually disappears and the spectrum has
multiple components and the relative strengths of each individual
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frequency are similar, which indicates that the liquid film becomes
more stable when the rupture occurs.

Fig. 16 shows the effect of heat flux on the film fluctuations
under the constant liquid mass flow rate and gas velocity (e.g.
Ml = 0.151 g/s, usg = 0.882 m/s). In adiabatic scenario, the liquid
film relatively has multiple components and the frequencies have
similar strength. Thus, the interface seems relative stable com-
pared with the heating ones. Subsequently, parts of frequencies
are restrained and gradually a dominant frequency appears and
enhanced when heat flux increases. When the heat flux increases
to a higher level, the strong evaporation promotes an apparent
periodical fluctuation with intensive amplitude. As discussed in
Fig. 13, the dominant wave frequency increases with the increase
in gas velocity. However, the effect of gas shearing will go away
with an increase in the heat flux, as seen in Fig. 17. It can be antic-
ipated that the effect of evaporation is more prominent for film
instability when heat flux is high enough.
4. Conclusions

The present study investigates the hydrodynamics of a thin liq-
uid film under the gas shearing and thermal influences. A new test
rig is developed to investigate the dynamics of liquid film on the
bottom of horizontal, rectangular channel, which is driven by the
gas flow from above and heated from below. The detailed evolution
of liquid film is discussed thoroughly. Due to the competitive rela-
tionship between the entrainment and evaporation, the film thick-
ness varies linearly or nonlinearly under different flow conditions.
Additionally, the occurrence of the liquid film rupture is random,
and the critical thickness for an integral film is dominantly affected
by the heat flux and increases with the increasing heat flux. We
also employ the frequency spectrum analysis to the film instability
to evaluate the factors and properties which govern film dynamics,
stability and rupture. The results indicate that the effect of heat
flux on film instability is more prominent when heat flux increases.
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