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A B S T R A C T

During the calibration of the system matrix of a Stokes polarimeter using reference polarization states (RPSs) and
pseudo-inversion estimation method, the measurement intensities are usually noised by the signal-independent
additive Gaussian noise or signal-dependent Poisson shot noise, the precision of the estimated system matrix
is degraded. In this paper, we present a paradigm for selecting RPSs to improve the precision of the estimated
system matrix in the presence of both types of noise. The analytical solution of the precision of the system matrix
estimated with the RPSs are derived. Experimental measurements from a general Stokes polarimeter show that
accurate system matrix is estimated with the optimal RPSs, which are generated using two rotating quarter-wave
plates. The advantage of using optimal RPSs is a reduction in measurement time with high calibration precision.

1. Introduction

Stokes polarimeters, also termed as polarization state analyzers
(PSAs), are powerful tools for characterizing the states of polarization
of target [1–3]. To get full Stokes parameters [𝑆0, 𝑆1, 𝑆2, 𝑆3], a PSA
should have 𝑁𝐵 ≥ 4 different analysis states, and these states form a
so-called system matrix 𝐵 with a dimension of 𝑁𝐵 × 4 [1]. Before using
the PSA for practical measurement, its practical system matrix 𝐵 needs
to be estimated using a polarization state generator (PSG) that generates
𝑁𝐴 ≥ 4 different reference polarization states (RPSs) [4,5]. These states
form a RPS matrix 𝐴 with a dimension of 𝑁𝐴 × 4. The system matrix 𝐵
is estimated using pseudo-inversion estimation of the well-known RPS
matrix 𝐴 and the measured intensity matrix 𝐼 with a dimension of 𝑁𝐴
× 𝑁𝐵 . The RPS method for calibration has the potential of accounting
for higher order effects of systematic errors such as multiple reflections
between or within optical devices, incorrectly oriented crystals in re-
tarders, imperfect polarizers, and residual birefringence [4,5]. However,
there are no guide theory for the selection of RPSs. Most of RPSs are
generated using a simple PSG setup of easy implementation [6–10].

It is noted that the intensities, measured by the PSA during cali-
bration, usually are perturbed by several types of noise such as signal-
independent detector noise, signal-dependent shot noise, or compound
noise [11]. The estimation precision of the system matrix is then limited
by noisy data. Up to now, most researches only focus on the optimization
of the PSA’s analysis states in the presence of noise [12–21]. For
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example, the optimal estimation of samples’ Muller matrix by selecting
PSG and PSA in the presence of both Gaussian and Poisson noise are
presented [21]. The closed-form solutions of estimation precision show
that the optimal PSG and PSA architectures that minimize and equalize
the estimation variances of the sample’s Muller matrix are based on
spherical designs of order 2 or 3. These spherical designs have ever
been identified analytically [14–16] and numerically [17–19] during
the optimization of the PSA [10–12]. A spherical design of order 𝑡 is a set
of 𝑁𝐴 points on the surface of the unit sphere for which the normalized
integral of any polynomial of degree 𝑡 or less is equal to the average
taken over the 𝑁𝐴 points [14]. The platonic solids such as tetrahedron,
octahedron, cube, icosahedron, dodecahedron all belong to spherical
designs [16,17].

However, to our best knowledge, the choice of RPSs for minimizing
and equalizing the estimation variance of the system matrix of a
general PSA has not been explored, and the corresponding estimation
performance remains to be quantified. In this paper, we will estimate
the practical system matrix of a general PSA in linear optics with
pseudo-inversion method. The closed-form expressions of the estimation
precision in the presence of both Gaussian and Poisson noise are
derived. It is demonstrated that, for calibrating arbitrary system matrix
(regardless of optimal ones [12–19], or not [8,22–27]), the optimal RPSs
that can minimize and equalize noise variance are based on spherical
designs of order 2 or 3. The important feature of the optimal RPSs is
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that the sum of the matrix elements of any columns is equal to zero
except for the first column. We verify the analytical solutions with Monte
Carlo simulations and experiments at first time. The architectures for
generating the optimal RPSs are presented. Experimental results show
that the system matrix estimated with the proposed RPSs has immunity
to kinds of noise such as, but not limit to, Gaussian and Poisson noise.

2. Theory

2.1. Calibration model

The calibration system usually comprises an unpolarized light source
with intensity 𝐼0, a PSG and a PSA. The RPSs and analysis states
generated by the PSG and PSA, respectively, are stacked row-wise to
form the RPS matrix 𝐴 and the system matrix 𝐵. The matrix 𝐴 (𝐵) thus
has the dimensions 𝑁𝐴 × 4 (𝑁𝐵 × 4). The intensities acquired by the
PSA are

𝐼 = 𝐼0𝐵𝐴
𝑇 , (1)

where 𝐼 is a 𝑁𝐵 × 𝑁𝐴-dimensional intensity matrix representing 𝑁𝐵𝑁𝐴
measurements, and the superscript 𝑇 indicates transpose. In the follow-
ing, we will estimate the system matrix 𝐼0𝐵, and define a vector operator
by stacking the matrix elements row-wise to form a vector. Then Eq. (1)
is rewritten as

𝐕𝐼 = [𝐸 ⊗𝐴]𝐕𝐵 , (2)

where ⨂ represents the Kronecker product [28], 𝐸 is a 𝑁𝐵× 𝑁𝐵-
dimensional identity matrix, 𝐕𝐵 = ([𝑉𝐵]1, …, [𝑉𝐵]4𝑁𝐵

) is a 4𝑁𝐵-
dimensional analysis state vector, and 𝐕𝐼 = ([𝑉𝐼 ]1, …, [𝑉𝐼 ]𝑁𝐴𝑁𝐵

) is
a 𝑁𝐴𝑁𝐵-dimensional intensity vector by reading the corresponding
matrix elements in the lexicographic order.

In this paper, we consider that the measurement vector 𝐕𝐼 is
disturbed by two types of common noise sources: additive Gaussian
noise or Poisson shot noise, respectively. The analysis state vector 𝐕𝐵
is estimated from the noisy measurements using pseudo-inverse (PI)
estimator ⌢𝐕𝐵 [21],

⌢𝐕𝐵 = 𝑃𝐕𝐼 with𝑃 =
(

[𝐸 ⊗𝐴]𝑇 [𝐸 ⊗𝐴]
)−1 [𝐸 ⊗𝐴]𝑇 , (3)

where 𝑃 is the pseudoinverse of the 4𝑁𝐵× 𝑁𝐴𝑁𝐵-dimensional matrix
[𝐸 ⊗ 𝐴]. Based the properties of the Kronecker product [26], the PI
matrix is rewritten as

𝑃 = [𝐺𝐸 ⊗𝐺𝐴][𝐸 ⊗𝐴]𝑇 , (4)

where 𝐺𝑈 = (𝑈𝑇𝑈)−1 with 𝑈 = 𝐸 or 𝐴.
The pseudo-inverse estimator ⌢𝐕𝐵 is the best possible estimator and

unbiased in the presence of Gaussian or Poisson noise. Its precision is
indicated by its covariance matrix [21].

𝛤𝐕𝐵
= 𝑃𝛤𝐕𝐼

𝑃 𝑇 . (5)

A standard scalar performance criterion for polarization calibration is
the sum of the variances of all the elements of the system matrix, which
is the trace of 𝛤𝐕𝐵

[21]:

𝛺 = Tr[𝑃𝛤𝐕𝐼
𝑃 𝑇 ]. (6)

2.2. Gaussian noise

We first assume that the measurements are mainly perturbed by zero-
mean additive white Gaussian noise with variance 𝜎2. The covariance
matrix in Eq. (5) of the estimator should be [21]

𝛤𝐕𝐵
= 𝜎2[𝐺𝐸 ⊗𝐺𝐴], (7)

and the criterion in Eq. (6) is deduced as

𝛺gau = 𝜎2Tr[𝐺𝐸 ]Tr[𝐺𝐴], (8)

where Tr[𝐺𝐸 ] = Tr[𝐸] = 𝑁𝐵 is a constant. Obviously, the total variance
does not depend on the observed system matrix itself. Our aim is to find
optimal RPS matrix 𝐴 for minimizing the performance criterion 𝛺gau,
thus minimizing Tr[𝐺𝐴]. It has been shown that Tr[𝐺𝐴] is minimized if
the last three columns of the RPS matrix 𝐴 form a sphere 2 design on the
Poincaré sphere of unit radius [14–16], that is 𝐴𝑇𝐴 = 𝑁𝐴

12 diag(3, 1, 1, 1)
and 𝐺𝐴 = 4

𝑁𝐴
diag(1, 3, 3, 3). Then the matrix 𝐺𝐸⊗𝐺𝐴 in Eq. (7) is a 4𝑁𝐵

× 4𝑁𝐵-dimensional diagonal matrix, and its coefficients [𝐺𝐸 ⊗𝐺𝐴]𝑖𝑖 are
derived as
{

4∕𝑁𝐴 if 𝑖 = 4𝑚 + 1, and𝑚 = 0, 1,… , 𝑁𝐵 − 1
12∕𝑁𝐴 others. (9)

The corresponding minimal value of the performance criterion is calcu-
lated as

𝛺gau
opt =

40𝑁𝐵
𝑁𝐴

𝜎2. (10)

As seen, the total noise variance decreases with the increase of the
number of the RPSs when the numbers of the analysis states are fixed.
The covariance matrix 𝛤𝐕𝐵

in Eq. (7) is diagonal and its diagonal
elements denote the estimation variances of the elements of the system
matrix 𝐵 as

VAR[𝐵]gauopt =
4
𝑁𝐴

𝜎2

⎡

⎢

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
⋮ ⋮ ⋮ ⋮
1 3 3 3

⎤

⎥

⎥

⎥

⎥

⎦𝑁𝐵×4

. (11)

It is interesting to note that the variance of each element is also
independent of the observed system matrix 𝐵, and its last three columns
achieve noise equalization.

2.3. Poisson noise

Second, we assume that the measurements are mainly degraded by
Poisson shot noise. The diagonal element of the covariance matrix 𝛤𝐕𝐵
in Eq. (5) is derived as [21]

∀𝑖 ∈ [1, 4𝑁𝐵], [𝛤𝐕𝐵
]𝑖𝑖 =

4𝑁𝐵
∑

𝑗=1
𝑄𝑖𝑗 [𝐕𝐵]𝑗 , (12)

where 𝑄 is a 4𝑁𝐵 × 4𝑁𝐵-dimensional matrix expressed as

∀(𝑖, 𝑗) ∈ [1, 4𝑁𝐵], 𝑄𝑖𝑗 =
𝑁𝐴𝑁𝐵
∑

𝑛=1
(𝑃𝑖𝑛)2[𝐸 ⊗𝐴]𝑛𝑗 . (13)

It is easily found that the variances depend on the observed system
matrix 𝐵 in the presence of Poisson noise, which are different from
the case in Eq. (7) in the presence of Gaussian noise. The performance
criterion in Eq. (6) is then given as [21]

𝛺poi =
4𝑁𝐵
∑

𝑖=1
[𝛤𝐕𝐵

]𝑖𝑖 = 𝐕𝑇
(𝐸,𝐴)𝐕𝐵 , (14)

where 𝐕(𝐸,𝐴) is a 4𝑁𝐵-dimensional vector defined as

∀𝑗 ∈ [1, 4𝑁𝐵], [𝐕(𝐸,𝐴)]𝑗 =
4𝑁𝐵
∑

𝑖=1
𝑄𝑖𝑗 . (15)

If the RPSs form a sphere 3 design on the Poincaré sphere [21], one
derives

𝑄𝑖𝑗 =
{

1∕𝑁𝐴 if 𝑖 = 𝑚 ⋅ 4 + 1, and𝑚 = 0, 1,… , 𝑁𝐵 − 1
3∕𝑁𝐴 others. (16)

Then the optimal value of the performance criterion is derived as

𝛺poi
opt =

40𝑁𝐵
𝑁𝐴

𝐼0
4
. (17)
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It is found that 𝛺poi
opt in Eq. (17) has the same expression as 𝛺gau

opt in
Eq. (10), with variance 𝜎2 replaced by 𝐼0/4. Similarly, the total noise
variance decreases with the increase of the numbers of the RPSs if the
numbers of the analysis states are fixed. The variances of the elements
of the system matrix 𝐵, ordered in the matrix VAR[𝐵], are

VAR[𝐵]poiopt =
4
𝑁𝐴

𝐼0
4

⎡

⎢

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
⋮ ⋮ ⋮ ⋮
1 3 3 3

⎤

⎥

⎥

⎥

⎥

⎦𝑁𝐵×4

. (18)

It is interesting to note that the VAR[𝐵]poiopt in Eq. (18) has the same
expression as the VAR[𝐵]gauopt in Eq. (11), with variance 𝜎2 replaced by
𝐼0/4.

3. Monte Carlo simulations

To verify the proposed method, the theoretical results obtained
above is particularized for a general Stokes polarimeter with the system
matrix

𝐵 = 1
2

⎡

⎢

⎢

⎢

⎢

⎣

1 1 0 0
1 −1 0 0
1 0 1 0
1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (19)

This system matrix is formed using linear polarizers at 0◦, 90◦, 45◦ and
a right circular polarizer [1]. It is widely employed in practice [23–
26]. However, it is not an optimal Stokes polarimeter; since the 𝐿2
norm condition number of the system matrix is about 3.2255, larger
than ideal value of

√

3 [12–19]. In the simulation, we assume there
is no any systematic error in the practical Stokes polarimeter, and the
measured intensities are only influenced by Gaussian or Poisson noise
during calibration. This is not true in real case, because the system
matrix will deviate from ideal one due to the systematic errors such
as alignment error and retardance error. This point is discussed further
in Section 4 below.

To compare the influence of noise on the estimated system matrix,
six different RPS matrices are employed to estimate the system matrix
from simulated noisy intensities, respectively. Assuming the first RPS
matrix 𝐴1 is the same to the system matrix, that is 𝐴1 = 𝐵. The second
one 𝐴2 forms a regular tetrahedron (sphere 2 design) on the Poincaré
sphere [6], that is 𝐴2 = 0.5[1, 𝑎, 𝑏, 𝑐; 1,−𝑎,−𝑏,−𝑐; 1, 𝑎,−𝑐, 𝑏; 1, 𝑎, 𝑐,−𝑏],
where 𝑎 = 1∕

√

3, 𝑏 = 0.1877, 𝑐 = 0.3626. The third one 𝐴3 forms a regular
tetrahedron (sphere 2 design) with a specific orientation [7,11,12], that
is 𝐴3 = 0.5[1, 𝑎, 𝑎, 𝑎; 1, 𝑎,−𝑎,−𝑎; 1,−𝑎,−𝑎, 𝑎; 1,−𝑎, 𝑎,−𝑎]. The fourth one
𝐴4 forms a regular octahedron (sphere 3 design) based on linear polar-
izers at 0◦, 90◦, 45◦, 135◦, and right- and left-circular polarizers [8,9],
that is 𝐴4 = 0.5[1, 1, 0, 0; 1,−1, 0, 0; 1, 0, 1, 0; 1, 0,−1, 0; 1, 0, 0, 1; 1, 0, 0,−1].
The fifth matrix 𝐴5 forms a regular cube and the sixth matrix 𝐴6 forms
an icosahedron, which all belong to sphere 3 design.

For these six RPSs matrices, we compute the performance criterion
𝛺 and the variance matrix VAR[𝐵] by using the analytical forms in
the presence of Gaussian noise with zero mean and variance 𝜎2 = 0.1
(see Eqs. (7) and (8)), and Poisson noise, (see Eqs. (12) and (14)). The
theoretical results are shown in Table 1. We have checked the validity
of theoretical prediction with Monte Carlo simulations. It is found that
when a sufficient number of realizations for each intensity is used, all
simulation results have a very good agreement with theoretical values.
With the 105 random realizations in the Monte Carlo simulation, the
relative differences between the theoretical and simulated results are
less than 1.2% for the variance of each element and 0.8% for the sum
of the variances of all the elements.

We observe that the performance criterion 𝛺 is minimal for the
RPS matrices 𝐴2 and 𝐴3 because they form the regular tetrahedrons on
the Poincaré sphere regardless of their orientations. In contrast, for the
general RPS matrix 𝐴1, the total variance is relatively larger for both
Gaussian and Poisson noise. Let us now look at the variances VAR[𝐵]

of the different elements of the system matrix. The variances for the
matrix 𝐴1 are diverse for both types of noise. For the general tetrahedron
matrix 𝐴2, the variances along the last three columns are similar only
for Gaussian noise, but diverse for Poisson noise. In contrast, for the
RPS matrix 𝐴3, the variances along the last three columns are similar
for both types of noise because 𝐴3 forms the regular tetrahedron with
a special orientation. Since the RPS matrices 𝐴4, 𝐴5 and 𝐴6 belong to
sphere 3 design, both the performance criterion 𝛺 and the variances
VAR[𝐵] achieve optimization in the presence of both types of noise.
Obviously, for the same number of RPSs, the optimal sets of RPSs can
realize the minimization and equalization of the noise variance in the
estimated system matrix compared to the nonoptimal sets of RPSs.

4. Experimental verification

4.1. PSG

Previously, we have optimized a full-Stokes polarimeter that consists
of two rotatable quarter waveplates (QWPs) followed by a fixed horizon-
tally linear polarizer [18,19]. The optimal sets of fast axis directions of
the two QWPs are determined at different numbers 𝑁B of analysis states
such as 𝑁B = 4, 6, 8, 12 and 20. These analysis states correspond to
the Platonic solids such as tetrahedron, octahedron, cube, icosahedron,
and dodecahedron respectively [19]. It is noted that the PSG can be
built easily by reversing the configuration of the optimized full-Stokes
polarimeter. As shown in Fig. 1, the PSG consists of a fixed horizontally
linear polarizer P1 followed by the QWP1 and QWP2 in tandem. The
optimal sets of fast axis azimuths (𝜃1, 𝜃2) of the two QWPs and the
corresponding RPS matrices of the Platonic solids such as tetrahedron
with two special directions, octahedron and cube are derived in Table 2.
In this paper, for simplification, we just use the first tetrahedron I and
the octahedron in Table 2 to calibrate the system matrix of a general
PSA, respectively, for comparison.

4.2. PSA

In Fig. 1, a general PSA consists of a rotatable QWP3 followed
by a fixed horizontally linear polarizer P2 will act as a full Stokes
polarimeter. Diverse analysis states can be generated by rotating the
QWP3 to different sets of azimuth angles. As an example, we will
rotate the QWP3 to a set of azimuth angles [−45◦, 0◦, 30◦, 60◦], the
corresponding system matrix is [29]

𝐵ideal =
1
2

⎡

⎢

⎢

⎢

⎢

⎣

1.0000 0.0000 0.0000 1.0000
1.0000 1.0000 0.0000 0.0000
1.0000 0.2500 0.4330 −0.8660
1.0000 0.2500 −0.4330 −0.8660

⎤

⎥

⎥

⎥

⎥

⎦

. (20)

This PSA is a non-optimal configuration, since the 𝐿2 condition number
of the system matrix 𝐵 is about 3.6268 that is larger than

√

3. The
matrix in Eq. (20) is theoretical and ideal one. In fact, the system matrix
will deviate from the theoretical one due to imperfect optical elements
or other factors [30–32]. Therefore, the real system matrix should be
calibrated first before using it in practical application.

4.3. Experimental setups

Figure 2 shows our experimental setup. The PSG consists of a
horizontally linear polarizer (CVI Melles Griot, FPG-50.8-5.3) and two
rotatable free-standing polymeric achromatic QWP1 and QWP2 (BVO
Inc., AQWP-25.4) in tandem. The QWPs can be automatically rotated via
two continuous 360◦ motorized rotation stages (Thorlabs, KPRM1E/M)
respectively. The PSA comprises a free-standing polymeric achromatic
QWP3 (BVO Inc., AQWP-25.4) followed by a horizontally linear polar-
izer. The QWP3 can be manually rotated via a continuous 360◦ manually
operated rotation stage. Light beam emitted from a linearly polarized
He–Ne laser first pass through a rotatable Glan–Taylor polarizer P0 for
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Table 1
Variance of each element of the system matrix and efficiency criterion values obtained by using different sets of RPS
matrices. 𝐴1 is the same to the system matrix 𝐵. 𝐴2 forms a general tetrahedron. 𝐴3 forms a tetrahedron with the
specific orientation. 𝐴4 forms an octahedron. 𝐴5 forms a cube. 𝐴6 forms an icosahedron.

𝐴1 𝐴2 𝐴3

VAR[𝐵]gauopt = 𝜎2×

⎡

⎢

⎢

⎢

⎣

2.01 1.99 6.00 6.01
2.00 2.00 6.02 5.99
2.00 2.01 6.01 6.00
2.00 2.00 6.00 5.99

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

𝛺gau
opt = 𝜎2× 64.05 40.10 40.14

VAR[𝐵]poiopt =
𝐼0
4
×

⎡

⎢

⎢

⎢

⎣

2.00 2.00 6.00 6.00
1.99 1.99 5.97 5.99
2.00 2.00 9.99 6.03
1.99 2.00 6.00 9.94

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1.02 2.86 3.82 1.97
1.04 3.15 1.98 4.15
0.94 3.38 2.77 3.25
0.99 3.03 3.28 2.97

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

𝛺poi
opt =

𝐼0
4
× 71.90 40.60 40.21

𝐴4 𝐴5 𝐴6

VAR[𝐵]gauopt = 𝜎2× 2
3

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

1
2

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

1
3

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

𝛺gau
opt = 𝜎2× 26.62 20.05 13.32

VAR[𝐵]poiopt =
𝐼0
4
× 2

3

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

1
2

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

1
3

⎡

⎢

⎢

⎢

⎣

1 3 3 3
1 3 3 3
1 3 3 3
1 3 3 3

⎤

⎥

⎥

⎥

⎦

𝛺poi
opt =

𝐼0
4
× 26.68 20.03 13.35

Table 2
The azimuths of the QWP1 and QWP2 for the realization of the Platonic solids, and
the corresponding ideal RPS matrices.

𝑁𝐴 Platonic solids Azimuths (𝜃1 , 𝜃2)∕◦ RPS matrix 𝐴ideal

4 Tetrahedron-I

(−64.66, +58.18)
1
2

⎡

⎢

⎢

⎢

⎢

⎣

1 +1∕
√

3 +1∕
√

3 +1∕
√

3
1 +1∕

√

3 −1∕
√

3 −1∕
√

3
1 −1∕

√

3 −1∕
√

3 +1∕
√

3
1 −1∕

√

3 +1∕
√

3 −1∕
√

3

⎤

⎥

⎥

⎥

⎥

⎦

(+64.66, −58.18)
(+70.86, +47.18)
(−70.86, −47.18)

4 Tetrahedron-II

(−19.14, −42.82)
1
2

⎡

⎢

⎢

⎢

⎢

⎣

1 −1∕
√

3 −1∕
√

3 −1∕
√

3
1 −1∕

√

3 +1∕
√

3 +1∕
√

3
1 +1∕

√

3 +1∕
√

3 −1∕
√

3
1 +1∕

√

3 −1∕
√

3 +1∕
√

3

⎤

⎥

⎥

⎥

⎥

⎦

(+19.14, +42.82)
(−87.84, −70.15)
(+87.84, +70.15)

6 Octahedron

(+45, −20)

1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 +0.6428 +0.7660 0
1 −0.6428 −0.7660 0
1 +0.7660 −0.6428 0
1 −0.7660 +0.6428 0
1 0 0 +1
1 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(−45, −20)
(−45, +25)
(+45, +25)
(0, +45);
(0, −45)

8 Cube

(+45, +22)

1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −0.6947 +0.7193 0
1 −0.6947 −0.7193 0
1 +0.6947 +0.7193 0
1 +0.6947 −0.7193 0
1 +0.4258 +0.3853 −0.8187
1 −0.4289 +0.3875 +0.8160
1 +0.4258 −0.3853 +0.8187
1 −0.4289 −0.3875 −0.8160

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(−45, −22)
(+45, −22)
(−45, +22)
(+12.6, −45)
(+12.7, +45)
(−12.6, +45)
(−12.7, −45)

Fig. 1. The optical schema for the verification of the calibration strategy.
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Fig. 2. Experimental setup for the calibration verification.

tuning the beam power. By rotating the P0 to a special position, all
of measurements will not have any saturated pixels. Then the beam is
focused by the first lens L1. A pinhole located at focal plane of the lens L1
is used to filter out unwanted nonuniformly beam. The divergent beam
from the pinhole is collimated by the second lens L2 and expanded by a
5× beam expander. The widen beam passes through the PSG and PSA,
and finally arrives at a CMOS camera (JAI, SP-20000M-MLC) directly
without any auxiliary lens. A relatively uniform light spot that covers
about 120 × 120 pixel are formed on the CMOS.

Since the retardations of the achromatic QWPs are not the ideal value
of 90◦ at the wavelength of 632.8 nm, the real RPS matrices of the
PSG will deviate from the ideal ones shown in Table 2. To get the well-
known RPS matrices, a standard polarimeter (Thorlabs, PAX1000VIS) is
employed to measure the Stokes parameters generated by the PSG. The
standard polarimeter is based on a continuously rotating quarter-wave
plate technique, and the Fourier analysis is used to recover the Stokes
parameters. With the rotation of the QWP1 and QWP2 following the
azimuthal angles in Table 2, more than 103 measurements are realized
by the polarimeter (Thorlabs, PAX1000VIS) at each RPS for averaging.
Finally, the practical RPS matrix of the PSG for the tetrahedron I is
measured as

𝐴T,real =
1
2

⎡

⎢

⎢

⎢

⎢

⎣

1.0000 0.6210 0.5913 0.5138
1.0000 0.5499 −0.6123 −0.5679
1.0000 −0.5637 −0.5769 0.5910
1.0000 −0.5652 0.6056 −0.5600

⎤

⎥

⎥

⎥

⎥

⎦

. (21)

The practical RPS matrix for the octahedron is

𝐴O,real =
1
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.0000 0.6229 0.7805 0.0520
1.0000 −0.7240 −0.6898 0.0054
1.0000 0.7178 −0.6962 0.0080
1.0000 −0.7887 0.6143 −0.0212
1.0000 −0.0296 −0.0135 0.9995
1.0000 0.0124 0.0574 −0.9983

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)

As seen, there are slight differences between the measured and ideal
RPS matrices mainly due to the imperfect retarder components and
alignment errors [30]. The practical condition numbers of the PSG for
the tetrahedron-I in Eq. (21) and the octahedron in Eq. (22) are, respec-
tively, 1.7933 and 1.7716. Both are approximate to

√

3. Therefore, the
practical RPS matrix of the PSG can be regarded as the optimal one and
used to calibrate the PSA.

Similarly, the system matrix of the PSA also will deviate from
ideal one shown in Eq. (20). The practical system matrix also can be
determined by the standard polarimeter (Thorlabs, PAX1000VIS) for
comparison. Since the polarizer P1 and P2 are aligned well with the
assistant of the standard polarimeter, we first let the laser beam pass
through the horizontally polarizer P1 and then just pass through the
QWP3. The Stokes parameters are measured at four azimuthal angles

[−45◦, 0◦, 30◦, 60◦] as

𝐵real =
1
2

⎡

⎢

⎢

⎢

⎢

⎣

1.0000 −0.0547 0.0276 0.9976
1.0000 0.9996 0.0021 0.0264
1.0000 0.2559 0.4638 −0.8480
1.0000 0.2427 −0.4196 −0.8744

⎤

⎥

⎥

⎥

⎥

⎦

. (23)

The practical condition number of the PSA is about 3.5401 which is
approximate to the ideal value of 3.6268. The measured system matrix
in Eq. (23) will be compared to the system matrix, as follows, estimated
with the RPS matrices in Eq. (21) or (22).

4.4. Results

Generally, if the source intensity is low enough, the dominant noise
can be considered Gaussian distribution. In contrast, when the intensity
of the source is strong enough, the dominant noise will be Poisson
distribution [11]. Therefore, we will implement experiments at two
different illumination levels. The exposure time of the CMOS is set to
100 μs. More than 105 measurements are realized for each RPS and
each analysis state.

4.4.1. Strong photon flux
First, we let the maximum digital number (DN) value of the light

that pass through the polarizer P1 of the PSG is about 4000 via rotating
the Glan–Taylor polarizer P0. This DN value is large enough since the
analog-to-digital converter of the CMOS is 12 bits. According to the
Malus law, the scaling DN value of the unpolarized intensity 𝐼0 that
incident on the polarizer P1 in the PSG should be about 8000 if the
polarizer P1 is perfect. Figure 3 shows sixteen probability distribution
functions (PDFs) of the measured intensities when the RPSs matrix
in Eq. (21) is used for calibration. It is noted that the intensities
approximately obey normal distribution. Substituting these intensities
and Eq. (21) into Eq. (3), the PDF of each element of the estimated
system matrix are calculated in Fig. 4. Obviously, the variances in the
last three columns achieve equalization, and they are nearly three times
of the first column. The mean value of the system matrix is

𝐵T
real = 𝐼1 ×

1
2

⎡

⎢

⎢

⎢

⎢

⎣

0.9961 −0.0532 0.0281 0.9952
1.0000 0.9966 0.0024 0.0255
0.9971 0.2543 0.4643 −0.8478
0.9963 0.2452 −0.4187 −0.8786

⎤

⎥

⎥

⎥

⎥

⎦

, (24a)

where 𝐼1 = 8000.1. As seen, the estimated system matrix is approximate
to the one in Eq. (23) measured by the standard polarimeter. That means
our calibration process is valid. Correspondingly, the variance of each
element of the estimated system matrix is

VAR[𝐵real]Topt = 𝐼2 ×

⎡

⎢

⎢

⎢

⎢

⎣

0.9816 2.9978 2.7743 3.2064
1.0000 3.0593 2.8816 3.1527
0.9837 3.0387 2.8987 3.0824
0.9919 2.9416 2.8607 3.2626

⎤

⎥

⎥

⎥

⎥

⎦

, (24b)
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Fig. 3. The probability distributions functions (PDFs) of the measured intensities when using the RPSs of the tetrahedron with a relatively high illumination level.

Fig. 4. The probability distributions functions (PDFs) of the elements of the estimated system matrix with normalized intensity.

where 𝐼2 = 2989.2. The sum of the variances of all the elements of the
estimated system matrix is

𝛺T
opt = 𝐼2 × 40.11. (24c)

The experimental results are consistent with the theoretical predic-
tions. However, the coefficient 𝐼2 in Eq. (24b) is different from the
one that calculated from Eqs. (17) or (18). That means the total noise
is not the pure Poisson noise as assumed, it is the combination of
different types of noise. However, Poisson noise maybe dominant, since
the coefficient in Eq. (18) is 𝐼0/4 = 2000, which has the same order of
magnitude to 𝐼2.

Furthermore, we use the RPSs in Eq. (22) to calibrate the system
matrix. The estimated results are:

𝐵O
real = 𝐼3 ×

1
2

⎡

⎢

⎢

⎢

⎢

⎣

0.9999 −0.0541 0.0283 0.9960
0.9999 0.9987 0.0023 0.0253
1.0000 0.2572 0.4623 −0.8495
0.9998 0.2407 −0.4174 −0.8726

⎤

⎥

⎥

⎥

⎥

⎦

, (25a)

VAR[𝐵real]Oopt = 𝐼4 ×

⎡

⎢

⎢

⎢

⎢

⎣

0.9932 2.9216 3.0857 2.9769
0.9875 2.8028 3.1504 2.9275
1.0000 2.8447 3.0241 3.0457
0.9826 2.8697 3.0045 2.9893

⎤

⎥

⎥

⎥

⎥

⎦

, (25b)

125



T. Mu et al. Optics Communications 418 (2018) 120–128

Fig. 5. The probability distributions function (PDF) of the measured intensities when using the RPSs of the tetrahedron with a low illumination level.

𝛺O
opt = 𝐼4 × 39.61, (25c)

where 𝐼3 = 8001.8 and 𝐼4 = 2089.8. Obviously, the estimated system
matrix in Eq. (25a) is also approximate to that in Eq. (23) and the noise
variances are optimized. Since 𝐼4/𝐼2 is approximate to 2/3 which is
consistent with the coefficient calculated from Eqs. (17) or (18), we
can say that the total noise is dominant by the Poisson noise. This result
confirms the above judgment. The main reason is that the photon flux
of the system is large enough.

4.4.2. Low photon flux
Second, we let the maximum digital number (DN) value of the

light that pass through the polarizer P1 of the PSG to be about 800.
Correspondingly, intensity 𝐼0should be about 1600. Figure 5 shows
sixteen probability distributions of the measured intensities when we use
the RPSs matrix in Eq. (21). The intensities also approximately obey the
normal distribution. The PDFs of each element of the estimated system
matrix with normalized intensity are described in Fig. 6. The estimated
results are:

𝐵T
real = 𝐼5 ×

1
2

⎡

⎢

⎢

⎢

⎢

⎣

1.0000 −0.0537 0.0283 0.9980
0.9983 0.9981 0.0018 0.0271
1.0000 0.2564 0.4640 −0.8477
0.9999 0.2422 −0.4198 −0.8735

⎤

⎥

⎥

⎥

⎥

⎦

, (26a)

VAR[𝐵real]Topt = 𝐼6 ×

⎡

⎢

⎢

⎢

⎢

⎣

0.9952 3.0004 2.8060 3.2098
0.9868 3.0094 2.8257 3.1271
0.9739 2.9922 2.7831 3.2001
1.0000 3.0117 2.7729 3.1971

⎤

⎥

⎥

⎥

⎥

⎦

, (26b)

𝛺T
opt = 𝐼6 × 39.89, (26c)

where 𝐼5 = 800.2 and 𝐼6 = 40.9. As seen, the estimated system matrix in
Eq. (26a) is also approximate to that in Eq. (23). The variances in the last
three columns in Eq. (26b) achieve noise equalization and minimization,
and they are nearly three times of that of the first column. Since the
coefficient 𝐼6 in Eq. (26b) is far less than the illumination intensity 𝐼0,
the dominant noise maybe Gaussian distribution.

The RPSs in Eq. (22) was also used to estimate the system matrix,
and the results are:

𝐵O
real = 𝐼7 ×

1
2

⎡

⎢

⎢

⎢

⎢

⎣

0.9996 −0.0533 0.0278 0.9962
0.9986 0.9991 0.0025 0.0258
0.9997 0.2561 0.4627 −0.8465
1.0000 0.2418 −0.4187 −0.8752

⎤

⎥

⎥

⎥

⎥

⎦

, (27a)

VAR[𝐵real]Oopt = 𝐼8 ×

⎡

⎢

⎢

⎢

⎢

⎣

1.0000 2.9113 3.0905 2.9355
0.9888 2.8211 3.0012 2.9454
0.9946 2.8643 3.9759 2.9570
0.9945 2.8750 3.0068 2.9855

⎤

⎥

⎥

⎥

⎥

⎦

, (27b)

𝛺O
opt = 𝐼8 × 39.35, (27c)

where 𝐼7 = 800.0 and 𝐼8 = 27.1. Obviously, the estimated system matrix
is optimized. Since 𝐼8/𝐼6 is approximate to 2/3 which is consistent with
the coefficient ratio calculated with Eqs. (10) or (11), we can say the
total noise is dominant by the Gaussian noise. The main reason is that
the photon flux of the system is low enough.

5. Discussions

5.1. Noise type

During deriving the analytical solution of the performance precision,
we just consider Gaussian and Poisson noise respectively. Actually, the
measurement also would be contaminated by other types of noise such
as laser speckle noise, salt & pepper noise, uniform noise, or compound
noise. It is complex and hard to derive the analytical solution of the
estimation precision in the presence of those types of noise. However,
we can add those noise into the intensities with Monte Carlo numerical
simulation. It is found that the estimation precision are analogous to
the case of the Gaussian or Poisson noise when using the optimal RPSs.
That means the proposed RPSs are adaptive to the most types of noise
or their combinations. This conclusion is verified in the experiments.
For the strong light level, the experimental coefficient 𝐼2 in Eq. (24b)
is different from the theoretical one calculated from Eqs. (17) or (18).
For the low light level, the experimental coefficient 𝐼6 in Eq. (26b) is
different from the theoretical one calculated from Eqs. (10) or (11). That
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Fig. 6. The probability distributions functions (PDFs) of the elements of the estimated system matrix with normalized intensity.

means the noise in real system is not pure Poisson noise or Gaussian
noise as assumed, it is the combination of different types of noise.
However, it is easy to judge that Poisson noise is dominant in the
strong light experiments and Gaussian noise is dominate in the low light
experiments. No matter what type the noise is, the equalization and
minimization of the noise variances can be achieved with the RPSs based
on the sphere 3 design or sphere 2 design with the specific orientations.

5.2. Configurations of the PSG

Generally, the proposed optimal RPSs (sphere designs of order 2 or
3) can be generated with diverse PSG architectures. For example, an
octahedron (sphere 3 design) can be generated with a linear polarizer
at 0◦, 90◦, 45◦, 135◦, a right-circular polarizer and a left-circular
polarizer [1,8,9]. However, since different polarization elements are
needed, systematic errors would be introduced into the PSG with
the exchange of polarization elements. Furthermore, the variation of
optical flux introduced by different transmittance of elements would
be misled as the effects of polarization modulation. Therefore, it is
strongly suggested that the optimal sets of RPSs are generated with the
same optical elements. The PSG setup proposed in Section 4 is easily
configured with the off-the-shelf linear polarizer and QWPs. Actually,
the mechanically rotating QWPs can be replaced by the ferroelectric
liquid crystals to reduce systematic errors, since the retardation of the
ferroelectric liquid crystal is constant, and the azimuth of its fast axis is
driven electrically. The broadband optimally PSG based the ferroelectric
liquid crystals would be the best choice for the calibration of the
broadband PSA [2].

5.3. Systematic errors

During the derivation of the performance precision, we assume the
PSA and PSG systems are perfect, and only consider the influence
of noise. The numerical simulation using the parameters of perfect
systems verified the feasibility of the proposed RPSs. However, both
the PSA and PSG system matrices will deviate from the theoretical
ones due to imperfect optical elements or alignment errors. Since the
RPS calibration method has the potential of accounting for higher
order effects of systematic errors in the PSA setup, we just need to

focus on the systematic errors in the PSG setup when the PSA setup is
selected. In Section 43., we first use the standard polarimeter (Thorlabs,
PAX1000VIS) to measure the real system matrix of the PSA and the real
RPSs of the PSG. It is found that the real RPSs deviated from the ideal
values a little bit. However, they are still considered as optimal RPSs.
Fortunately, the system matrix estimated with the real RPSs approaches
to that measured by the standard polarimeter (Thorlabs, PAX1000VIS).
The noise variances of elements of the estimated system matrix are
minimized and equalized. That means small systematic errors in the
optimal PSG have no significant influence on the estimation. However,
the acceptable maximum systematic error can be evaluated theoretically
or numerically for the calibration of a practical PSA.

5.4. Number of RPSs

As we discussed in Section 2, the optimal sets of RPSs can be
tetrahedron with 𝑁A = 4 that belongs to sphere 2 designs, or octahedron
with 𝑁A = 6, cube with 𝑁A = 8, icosahedron with 𝑁A = 12 and
dodecahedron with 𝑁A = 20 that belong to the sphere design of order
3, or other regular polyhedrons with 𝑁A > 20 that belong to the sphere
𝑡 designs with 𝑡 ≥ 3. We can rotate the two QWPs in the proposed PSG
setup to produce different sets of optimal RPSs respectively as shown in
Table 2. Except for the tetrahedron with two specific orientations, the
optimal sets of azimuths for octahedron or cube are diverse, that means
other values that do not present in Table 2 also can be employed.

We should use at least four optimal RPSs to calibrate the full-
Stokes PSA. The advantage of using fewer optimal RPSs is a reduction
in measurement time for broadband systems or in systems with slow
response times. Although fewer RPSs are easy to generate and time-
saving, more RPSs could be employed to suppress the total noise
variance and reduce the sensitivity of systematic errors [33,34] if the
calibration time is a minor factor. According to the analytical solutions
in Section 2, it is noted that the noise variance decreases with the
increase of the number of the optimal RPSs when the numbers of
the analysis states are fixed. This point is verified using Monte Carlo
simulations with different numbers of RPSs in Section 3. Experimentally,
the noise variance in the system matrix estimated with the octahedron
of Eq. (22) is less than that estimated with the tetrahedron of Eq. (21).
More importantly, for the same number of RPSs, the optimal sets of RPSs
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can realize the minimization and equalization of the noise variance in
the estimated system matrix compared to the nonoptimal sets of RPSs.

6. Conclusions

In summary, we have derived the analytical solution of the esti-
mation variance of the system matrix, in the presence of Gaussian or
Poisson noise, for the calibration of the PSA with the optimized RPSs.
It is found that the optimal RPSs must form the regular polyhedrons of
sphere 𝑡 design on the Poincaré sphere of unit radius. Platonic solids
such as tetrahedron, octahedron, cube, icosahedron and dodecahedron
belong to the sphere designs of order 2 or 3. Wherein only tetrahedron
belongs to spherical 2 design. If the RPSs form a general tetrahedron of
spherical 2 design, the noise variances of the estimated system matrix
will only be optimal for Gaussian noise. The noise variances will vary
with the input signal if Poisson noise is dominant. However, if the RPSs
form tetrahedrons with two special directions as shown in Table 2,
the estimated system matrix will be optimal for both Gaussian and
Poisson noise. That is the noise variances of the last three column for
the estimated system matrix are equalized, the total noise variance is
minimized, and the noise variances are independent of the input signal.
Furthermore, if the RPSs form the polyhedrons of spherical 3 design,
the estimated system matrix will always be optimized in the presence of
both Gaussian and Poisson noise. The noise variances decrease with the
increase of the numbers of the RPSs.

The analytical results are verified with the Mote Carlo simulations
and practical experiments. In the experiments, we propose an easily
realized architecture, a fixed linearly polarizer followed by two QWPs,
for the generation of the regular polyhedrons based on sphere design.
The sets of azimuths of the QWPs for tetrahedron, octahedron and
cube are presented. The experimental results are consistent with the
theoretical prediction even the practical noise is not the pure Gaussian
or Poisson distribution. That is the proposed optimal RPSs are adaptive
to the calibration of PSA in the presence of kinds of noise or their
combinations.

The results shown in this paper are useful for the calibration of
arbitrary Stokes polarimeter in linear optics with pseudo-inverse es-
timation and assess their fundamental limits in terms of estimation
precision. Up to now, it can be concluded that, the PSA and PSG based
on spherical designs of order 2 or 3 are the optimal configurations for the
built of the Stokes polarimeter [12–19], and the built of Muller matrix
polarimeter [20,21], and the calibration of the Stokes polarimeter
presented in this paper. Although the presented method is developed for
the calibration of Stokes polarimeters in linear optics, it can be extended
for the calibration of nonlinear polarimetry in future.

Acknowledgments

The work is supported by the National Natural Science Foundation
of China (NSFC) (61775176, 61405153, 41530422); Fundamental Re-
search Funds for the Central Universities of China (xjj2017105).

References

[1] J.S. Tyo, D.L. Goldstein, D.B. Chenault, J.A. Shaw, Review of passive imaging
polarimetry for remote sensing applications, Appl. Opt. 45 (2006) 5453–5469.

[2] Q. Liu, C. Bai, J. Liu, J. He, J. Li, Fourier transform imaging spectropolarimeter using
ferroelectric liquid crystals and Wollaston interferometer, Opt. Express 25 (2017)
19904–19922.

[3] T. Mu, S. Pacheco, Z. Chen, C. Zhang, R. Liang, Snapshot linear-Stokes imaging
spectropolarimeter using division-of-focal-plane polarimetry and integral field spec-
troscopy, Sci. Rep. 7 (2017) 42115.

[4] C.M. Persons, M.W. Jones, C.A. Farlow, L.D. Morell, M.G. Gulley, K.D. Spradley, A
proposed standard method for polarimetric calibration and calibration verification,
Proc. SPIE 6682 (2007) 66820K.

[5] B. Boulbry, J.C. Ramella-Roman, T.A. Germer, Improved method for calibrating a
Stokes polarimeter, Appl. Opt. 46 (2007) 8533–8541.

[6] M. Gibney, Calibration of a visible polarimeter, Proc. SPIE 8364 (2012) 83640B.
[7] Joel G. Holder, Jacob A. Martin, Jeremey Pitz, Joseph L. Pezzaniti, Kevin C.

Gross, Calibration methodology and performance characterization of a polarimetric
hyperspectral imager, Proc. SPIE 9099 (2014) 90990J.

[8] Y. Zhang, H. Zhao, N. Li, Polarization calibration with large apertures in full field of
view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders,
Appl. Opt. 52 (2013) 1284–1292.

[9] T. Mu, C. Zhang, R. Liang, Demonstration of a snapshot full-Stokes division-of-
aperture imaging polarimeter using Wollaston prism array, J. Opt. 17 (2015)
125708.

[10] Olivier Morel, Ralph Seulin, David Fofi, Handy method to calibrate division-of-
amplitude polarimeters for the first three Stokes parameters, Opt. Express 24 (2016)
13634–13646.

[11] G. Anna, F. Goudail, P. Chavel, D. Dolfi, On the influence of noise statistics on
polarimetric contrast optimization, Appl. Opt. 51 (2012) 1178–1187.

[12] D.S. Sabatke, M.R. Descour, E.L. Dereniak, W.C. Sweatt, S.A. Kemme, G.S. Phipps,
Optimization of retardance for a complete Stokes polarimeter, Opt. Lett. 25 (2000)
802–804.

[13] J.S. Tyo, Noise equalization in Stokes parameter images obtained by use of variable-
retardance polarimeters, Opt. Lett. 25 (2000) 1198–1200.

[14] M.R. Foreman, A. Favaro, A. Aiello, Optimal frames for polarization state reconstruc-
tion, Phys. Rev. Lett. 115 (2015) 263901.

[15] H. Gu, X. Chen, H. Jiang, C. Zhang, S. Liu, Optimal broadband Mueller matrix
ellipsometer using multi-waveplates with flexibly oriented axes, J. Opt. 18 (2016)
025702.

[16] F. Goudail, Equalized estimation of Stokes parameters in the presence of Poisson
noise for any number of polarization analysis states, Opt. Lett. 41 (2016) 5772–5775.

[17] A. Peinado, A. Lizana, J. Vidal, C. Iemmi, J. Campos, Optimization and performance
criteria of a Stokes polarimeter based on two variable retarders, Opt. Express 18
(2010) 9815–9830.

[18] T. Mu, Z. Chen, C. Zhang, R. Liang, Optimal configurations of full-Stokes polarimeter
with immunity to both Poisson and Gaussian noise, J. Opt. 18 (2016) 055702.

[19] T. Mu, Z. Chen, C. Zhang, R. Liang, Optimal design and performance metric of
broadband full-Stokes polarimeters with immunity to Poisson and Gaussian noise,
Opt. Express 24 (2016) 29691–29704.

[20] G. Anna, F. Goudail, Optimal Mueller matrix estimation in the presence of Poisson
shot noise, Opt. Express 20 (2012) 21331–21340.

[21] F. Goudail, Optimal Mueller matrix estimation in the presence of additive and
Poisson noise for any number of illumination and analysis states, Opt. Lett. 42 (2017)
2153–2156.

[22] J.L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, J.P. Pezzaniti, Four camera
complete stokes imaging polarimeter, Proc. SPIE 6972 (2008) 69720J.

[23] G.R. Boyer, B.F. Lamouroux, B.S. Prade, Automatic measurement of the Stokes vector
of light, Appl. Opt. 18 (1979) 1217–1219.

[24] S.X. Wang, A.M. Weiner, Fast wavelength-parallel polarimeter for broadband optical
networks, Opt. Lett. 29 (2004) 923–925.

[25] X. Zhao, A. Bermak, F. Boussaid, V.G. Chigrinov, Liquid-crystal micropolarimeter
array for full Stokes polarization imaging in visible spectrum, Opt. Express 18 (2010)
17776–17787.

[26] G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R.A. Chipman, S. Pau,
Liquid crystal polymer full-stokes division of focal plane polarimeter, Opt. Express
20 (2012) 27393–27409.

[27] P. Llull, G. Myhre, S. Pau, Lens array Stokes imaging polarimeter, Meas. Sci. Technol.
22 (2011) 065901.

[28] A.N. Langville, W.J. Stewart, The Kronecker product and stochastic automata
networks, J. Comput. Appl. Math. 167 (2004) 429–447.

[29] A. Ambirajan, D.C. Look, Optimum angles for a polarimeter: part I, Opt. Eng. 34
(1995) 1651–1655.

[30] H. Gu, S. Liu, X. Chen, C. Zhang, Calibration of misalignment errors in composite
waveplates using Mueller matrix ellipsometry, Appl. Opt. 54 (2015) 684–693.

[31] H. Gu, X. Chen, H. Jiang, C. Zhang, W. Li, S. Liu, Accurate alignment of optical axes
of a biplate using a spectroscopic Mueller matrix ellipsometer, Appl. Opt. 55 (2016)
3935–3941.

[32] W. Li, C. Zhang, H. Jiang, X. Chen, S. Liu, Depolarization artifacts in dual rotating
compensator Mueller matrix ellipsometry, J. Opt. 18 (2016) 055701.

[33] J.S. Tyo, Design of optimal polarimeters: maximization of signal-to-noise ratio and
minimization of systematic error, Appl. Opt. 41 (2002) 619–630.

[34] J.S. Tyo, H. Wei, Optimizing imaging polarimeters, constructed with imperfect
optics, Appl. Opt. 45 (2006) 5497–5503.

128

http://refhub.elsevier.com/S0030-4018(18)30162-7/sb1
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb1
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb1
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb2
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb2
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb2
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb2
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb2
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb3
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb3
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb3
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb3
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb3
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb4
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb4
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb4
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb4
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb4
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb5
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb5
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb5
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb6
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb7
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb7
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb7
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb7
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb7
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb8
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb8
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb8
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb8
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb8
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb9
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb9
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb9
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb9
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb9
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb10
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb10
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb10
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb10
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb10
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb11
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb11
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb11
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb12
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb12
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb12
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb12
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb12
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb13
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb13
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb13
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb14
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb14
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb14
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb15
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb15
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb15
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb15
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb15
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb16
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb16
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb16
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb17
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb17
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb17
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb17
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb17
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb18
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb18
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb18
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb19
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb19
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb19
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb19
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb19
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb20
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb20
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb20
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb21
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb21
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb21
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb21
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb21
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb22
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb22
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb22
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb23
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb23
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb23
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb24
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb24
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb24
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb25
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb25
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb25
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb25
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb25
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb26
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb26
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb26
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb26
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb26
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb27
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb27
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb27
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb28
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb28
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb28
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb29
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb29
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb29
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb30
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb30
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb30
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb31
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb31
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb31
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb31
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb31
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb32
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb32
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb32
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb33
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb33
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb33
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb34
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb34
http://refhub.elsevier.com/S0030-4018(18)30162-7/sb34

	Optimal reference polarization states for the calibration of general Stokes polarimeters in the presence of noise
	Introduction
	Theory
	Calibration model
	Gaussian noise
	Poisson noise

	Monte Carlo simulations
	Experimental verification
	PSG
	PSA
	Experimental setups
	Results
	Strong photon flux
	Low photon flux


	Discussions
	Noise type
	Configurations of the PSG
	Systematic errors
	Number of RPSs

	Conclusions
	Acknowledgments
	References


