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a b s t r a c t

Using a high-pressure shock tube facility, the ignition delay times of stoichiometric C2H6/

H2/O2 diluted in argon were obtained behind reflected shock wave at elevated pressures

(p ¼ 1.2, 4.0 and 16.0 atm) with ethane blending ratios from 0 to 100%. The measured

ignition delay times were compared to the previous correlations, and the results show that

the ignition delay times of ethane from different studies exhibit an obvious difference.

Meanwhile, numerical studies were conducted with three generally accepted kinetic

mechanisms and the results show that only NUIG Aramco Mech 1.3 agrees well with the

measurements under all test conditions. Sensitivity analysis was made to interpret the

poor prediction of the other two mechanisms. Furthermore, the effect of ethane blending

ratio on the ignition delay times of the mixtures was analyzed and the results show that

ethane blending ratio gives a non-linear effect on the auto-ignition of hydrogen. Finally,

chemical interpretations on this non-linear effect were made from the reaction pathway

analysis and normalized H radical consumption analysis.

Copyright ª 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
1. Introduction

Increasing demand of energy and steady deterioration in at-

mospheric environment has accelerated endeavors to seek

the renewable and clean energy sources and to develop high-

efficiency combustion techniques. The so-called bio-hydrogen

has attracted special attention [1,2], although numerous

alternative sustainable energy sources have been proposed,

such as alcohol, ether, hydrogen, diesel. Hydrogen is the most

abundant element in the universe, and thus can be produced

virtually unlimited quantities by various ways using renew-

able energy sources like solar, electric, geothermal and natural

gas, etc. [2]. Fundamentally, hydrogen shows desirable
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characteristics in combustion [3,4]. Carbon-neutral allows free

combustion on carbon-related emissions such as CO2, HC,

soot and PAH. Wide flammability range permits a smooth

engine operation under very lean mixture with low NOx

emission. High reactivity and flame speed of hydrogen make

the real engine cycle closer to the thermodynamic ideal cycle

with high thermal efficiency. Additionally, high diffusivity of

hydrogen promotes the homogenous of fuel and air. These

desirable natures have facilitated a number of studies on in-

ternal combustion engines [5e7] and gas turbine combustors

[8,9]. Nevertheless, engines fueled with pure hydrogen are

prone to abnormal burning such as knock, pre-ignition and

backfire due to the extremely rapid combustion of hydrogen

[4]. However, these drawbacks can be mitigated by mixing
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Table 1 e Main constitutes in the test mixtures (f [ 1.0
for all mixtures).

Mixture Blend XC2H6 ð%Þ XH2 ð%Þ XO2 ð%Þ XAr (%)

1 100%C2H6 1.133 0.000 3.964 94.904

2 30%C2H6/70%H2 0.783 1.827 3.653 93.737

3 10%C2H6/90%H2 0.416 3.744 3.328 92.512

4 3%C2H6/97%H2 0.158 5.094 3.098 91.650

5 100%H2 0.000 5.917 2.959 91.124

Fig. 1 e Definition of ignition delay time.
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hydrogen with hydrocarbon, leading to the growing interests

in the studies of hydrogen/hydrocarbon combustion.

Previous fundamental studies of hydrogen enriched

methane or natural gas were reported in laminar flame speeds

using the spherically expanding flame method [10e12], the

stagnation flame method [13,14] and heat flux method [15], in

ignition delay times using the shock tube [16e20] and rapid

compression machines [21]. These experimental data are

valuable for the validation of the kinetic mechanisms of

methane and hydrogen, which is the foundation to build the

mechanisms of large hydrocarbons because of its hierarchical

structure. Furthermore, investigations on hydrogen enriched

propane and butane were also reported. Laminar flame

propagation characteristics of hydrogen enriched propane

[22,23] were investigated using the spherically expanding

flames and the studies showed that laminar flame speed

experienced an initially gradual increase and then a steep

increase with the increase of hydrogen blending ratio in the

fuel mixtures. Additionally, hydrogen addition changes the

diffusionalethermal property of the mixture, leading to an

alternation on the flame front behavior. Using a hydrogen

addition parameter, RH, proposed by Yu et al. [13]. Tang et al.

[24] investigated the laminar flame speed of hydrogen

enriched butane and they found that laminar flame speed

increases linearly with the increase of RH. Recently, Man et al.

[25] and Tang et al. [26] measured the ignition delay times of

hydrogen enriched propane. They suggested that hydrogen

addition yielded a non-linear effect on ignition delay time,

which is similar to laminar flame behavior of hydrogen

enriched propane. Rare investigations on hydrogen enriched

hydrocarbons larger than butane are reported yet. Aggarwal

et al. [27] numerically studied the effects of hydrogen on the

ignition behavior of n-heptane/air mixtures using four widely

used kinetic mechanisms. They found that hydrogen addition

to n-heptane/air mixtures increased and decreased the igni-

tion delay times at low and high temperatures, respectively,

but this effect was relatively small even under 80% hydrogen

in fuel blend. Later, Jain et al. [28] numerically studied the

ignition characteristics of hydrogen addition to iso-octane/air

mixtures. Small effect on ignition behavior of hydrogen

addition iso-octane/air mixtures was found and this depen-

dence was obviously generalized to propane, butane and

heptane.

Although some studies have been reported on the ignition

behavior of hydrocarbon/H2 mixtures, but no study on the

ethane/H2 mixtures has been reported. Being an important

constituent of natural gas, a well understanding of ignition

behavior of hydrogen/natural gas requires a well under-

standing of ignition characteristic of hydrogen/ethane mix-

tures. Additionally, previous studies on ignition delay times of

hydrogen enriched large hydrocarbons indicated that hydro-

carbon addition exhibited small effect on the ignition of

hydrogen, thus one objective of this study is to study the effect

of ethane addition on hydrogen ignition characteristic.

Meanwhile, a comparison of the measured ignition delay

times with other previous data as well as predictions with

some kinetic mechanisms was made and the performance of

these mechanisms was evaluated. Finally, chemical kinetic

analysiswas performed to clarify the effect of ethane blending

ratio on the ignition of hydrogen.
2. Experiment

The shock tube in this study was described in

detail everywhere [17,29]. Only a brief description is given

here. The shock tube with a diameter 11.5 cm has a whole

length of 9.37 m which is divided into a 4 m driver section and

5.3 m driven section by a 0.07 m double-diaphragm section.

The shock wave is generated by suddenly reducing the pres-

sure in the double-membrane section. Before each experi-

ment, a roots-mechanical pump was used to vacuum the

whole shock to a pressure of 1 Pa. The stoichiometric fuel

mixtures of ethane/H2 mixtures, as shown in Table 1, were

prepared in a 128 L mixing tank by Dalton’s Law of Partial

Pressure. The partial pressure of each component was

measured by a high-accuracy pressure transmitter (Rose-

mount 3051). Purities of ethane, hydrogen and oxygen are

higher than 99.99%, and purity of helium and argon is

99.9999%.

Three time counters (FLUKE, PM6690) triggered by four

pressure transducers (PCB 113B26) were used to obtain the

time interval of adjacent transducers and the incident shock

velocities are then correspondingly calculated. The incident

shock velocities at the end-wall were obtained through

extrapolating the shock velocity profile to the end-wall. The

reflected temperature (T5) and pressure (p5) were calculated

using a chemical equilibrium programGaseq [30]. The ignition

delay time was defined as the time interval between the

pressure rise due to the arrival of incident shock wave at the

end-wall and the steepest rise of excited OH* emission, as

shown in Fig. 1. The excited OH* emission was detected by a
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Table 2 e Summary of ethane correlations.

Sources Parameters Conditions range

A a b c Ea p (atm) T (K) f Dilution (%)

Burcat et al. [34] 2.35E�14 0.46 �1.26 0 34.2 2e8 1235e1660 0.5e2 90.5e97.3

Cooke and Williams [35] 1.20E�15 0.4 �1.40 0 31.1 0.2e0.47 1400e2200 0.5e2 90e95

Hidaka et al. [37] 1.15E�13 1 �1.00 0 29.9 0.027e0.053 1300e2000 0.7e2 94.5e95.5

Shim et al. [39] 1.20E�14 0.71 �1.20 0 49.2 0.7e1.4 1227e1543 0.7e2 86.5e91

Lamoureux et al. [38] 2.46E�15 0.64 �1.05 0 55.2 2.9e14.2 1270e1520 0.5e2 94e98.6

de Vries et al. [36] 7.15E�19 0.79 �1.21 0.42 39.6 0.57e3.0 1218e1860 0.5e2 91e98
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photomultiplier (Hamamatsu CR131) with a narrow filter

centered at 307 � 10 nm mounted in the end-wall.

Simulation worksweremade using SENKIN code [31] in the

CHEMKIN II [32] package coupled with the VITM method

developed by Chaos andDryer [33] to consider non-ideal effect

(dp/dt). Typical non-ideal effect (dp/dt) was measure to be 4%

in our previous work [26]. The definition of calculated ignition

delay time is similar to that in the experiment for direct

comparison.
Fig. 2 e Comparison between measurements and previous

correlations for stoichiometric ethane.
3. Results and discussion

3.1. Comparison with previous data

Ignition delay times of the stoichiometric C2H6/H2/O2 diluted

with argon were measured behind reflected shock wave at

pressures of 1.2, 4, 16 atm, temperatures from 900 to 1700 K,

and hydrogen blending ratios from 0 to 100%. All measured

ignition delay times are provided in Supplementary material.

Some of ignition data and correlations of ethane can be found

in the previous studies [34e39], as summarized in Table 2.

Apparently, it needs caution in the comparison of these cor-

relations from different authors because of their different

applicability range.

Fig. 2 gives the comparison between the measured ignition

delay times and previous correlations for the stoichiometric

ethane mixture. Considering the scope of each correlation,

correlations of Shim et al. [39] and de Vries et al. [36] were used

to compare with the measured data at 1.2 atm, while the

correlations of Burcat et al. [34] and Lamoureux et al. [38] were

used to compare with the measured data at 4 atm. At

p ¼ 1.2 atm, themeasured ignition delay times fit fairly well to

the correlation of de Vries et al. [36] with lower ignition acti-

vation energy. However, the measured data give lower and

higher value than the correlation of Shim et al. [39] at higher

and lower temperature respectively, indicating a lower global

activation energy of the measurement. At p ¼ 4.0 atm, the

measurements agree well with the correlation of Burcat et al.

[34] in both ignition delay times and global activation energy.

However, the correlation of Lamoureux et al. [38] yields

respectively lower and higher values at higher and lower

temperature. Obviously, the ignition delay time of ethane

measured by different authors exhibits the difference in

global activation energy ranging from 30 to 50 kcal/mol, sug-

gesting that further accurate measurements is required.

3.2. Calculated ignition delay time

In this study, three generally accepted mechanisms, NUIG

Aramco Mech 1.3 [40], USC Mech 2.0 [41] and LLNL C4 Mech

[42], are chosen to simulate the ignition delay times and

conduct the kinetic analysis. NUIG Aramco Mech 1.3, pro-

posed by the Combustion Chemistry Centre at NUI Galway in

2013, is the latest version by updating rate constant of re-

actions associated with methane, ethane, ethylene, acetylene

and oxygenated hydrocarbon species, including formalde-

hyde, methanol, acetaldehyde, and ethanol. This mechanism

consisting of 253 species and 1542 elementary reactions has

http://dx.doi.org/10.1016/j.ijhydene.2014.01.157
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been widely validated against numerous of experimental

measurements including the data from shock tubes, rapid

compression machines, flames, jet-stirred and plug-flow re-

actors. USC Mech 2.0 consisting of 111 species and 784 re-

actions, developed by Wang’s group in 2007, is found

applicable to a wide variety of combustion scenarios. LLNL C4

Mech developed by Lawrence Livermore National Laboratory

in 1998, involves 155 species and 689 elementary reactions.
Fig. 3 e Comparison between measured and calculated by

NUIG Aramco Mech 1.3 for ethane/hydrogen mixtures.
This mechanism was also validated against large number of

experimental targets.

Figs. 3e5 give the comparison between the measured and

calculated ignition delay times of the stoichiometric ethane/

H2 mixtures at p ¼ 1.2, 4.0, 16.0 atm using NUIG Aramco Mech

1.3, USC Mech 2.0 and LLNL C4 Mech, respectively. As shown

in Fig. 3, NUIG Aramco Mech 1.3 not only well captures the
Fig. 4 e Comparison between measured and calculated by

USC Mech 2.0 for ethane/hydrogen mixtures.

http://dx.doi.org/10.1016/j.ijhydene.2014.01.157
http://dx.doi.org/10.1016/j.ijhydene.2014.01.157


i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 3 9 ( 2 0 1 4 ) 6 0 2 4e6 0 3 36028
ignition delay times of neat ethane and neat hydrogen, but

also well reproduces the measured ignition delay times of the

stoichiometric ethane/H2 mixtures for mixtures 2, 3 and 4

under all test conditions. For USC 2.0 Mech, as shown in Fig. 4,

it gives a reasonable agreement with the ignition delay times

for the stoichiometric mixtures 2, 3 and 4 at p ¼ 1.2 and

4.0 atm, while it gives under-prediction for the stoichiometric
Fig. 5 e Comparison between measured and calculated by

LLNL C4 Mech for ethane/hydrogen mixtures.
mixtures 2, 3 and 4 at p¼ 16.0 atm. Additionally, USC 2.0 Mech

predicts the faster ignition to the measurement for neat

ethane at all pressures and for neat hydrogen at p ¼ 4.0 and

16.0 atm. The poor prediction on the ignition delay times of
Fig. 6 e Sensitivity analysis for neat ethane mixture at

T [ 1250 K and p [ 4.0 atm.

http://dx.doi.org/10.1016/j.ijhydene.2014.01.157
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Fig. 7 e Rate constants of reaction: C2H4 D H (DM) 5 C2H5

(DM) in NUIG Aramco Mech 1.3, USC Mech 2.0 and LLNL C4

Mech.

Fig. 8 e Influence of rate constants of reaction: C2H4 D H

(DM) 5 C2H5 (DM) on performance of USC Mech 2.0 and

LLNL C4 Mech.
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ethane and hydrogen using USC 2.0 Mech is mainly resulted

from its higher rate constant of reaction: C2H4þH (þM)¼ C2H5

(þM) [43] and H þ O2 (þM) ¼ HO2 (þM) [44], respectively.

Regarding to LLNL C4 Mech, it well reproduces the ignition

delay times of neat hydrogen at all pressures while gives

under-prediction to the measurement for the stoichiometric

ethane/H2 mixtures. The poor prediction on ignition delay

times of the stoichiometric ethane/H2 mixtures by USC 2.0

Mech and LLNL C4 Mech suggests further optimization on the

kinetic data of these mechanisms.

The above comparison shows that only NUIG Aramco

Mech 1.3 can well predict the ignition delay times of ethane,

hydrogen and their blends at all pressures. Thus, NUIG Ara-

mco Mech 1.3 was chosen as the core mechanism to conduct

chemical kinetic interpretations in the following section.

3.3. Chemical kinetic analysis

3.3.1. Sensitivity analysis
To clarify the reasons for the poor prediction on ethane igni-

tion using USC 2.0 Mech and LLNL C4 Mech, sensitivity anal-

ysis was performed at T¼ 1250 K, p¼ 1.2 atm and f¼ 1.0 using

the three mechanisms to identify the profound reactions in

ethane ignition. The sensitivity coefficient is calculated by

perturbing the reaction rate,

Si ¼ sð2:0 � kiÞ � sð0:5 � kiÞ
1:5 � sðkiÞ (1)

where s is ignition delay time of combustible mixture, Si and ki
are sensitivity coefficient and rate constant of the ith reaction,

respectively. Negative sensitivity coefficient indicates the

corresponding reaction is an ignition promoting reaction and

vice versa. Fig. 6 lists 16 elementary reactions with the highest

sensitivity coefficients. The poor prediction on the ignition of

ethane by USC 2.0 Mech and LLNL C4 Mech is attributed

mainly to the ethane-specific reactions since these models fit

well with the experimental targets of hydrogen and methane

[16]. There are four ethane-specific sensitive reactions in these

three mechanisms:
C2H6 þH5C2H5 þH2 ðaÞ;
C2H6 þOH5C2H5 þH2O ðbÞ;

CH3 þ CH35C2H5 þH ðgÞ;
C2H4 þHðþMÞ5C2H5ðþMÞ ðdÞ:

It is observed that the absolute values of sensitivity coef-

ficient for the reaction (d) calculated by USC 2.0Mech and LLNL

C4 Mech are two times lower than that by NUIG Aramco Mech

1.3. Furthermore, the reaction (d) as a pressure-dependent

reaction is a critical reaction pathway in ethane oxidation.

This rate constant in USC 2.0Mech andNUIGAramcoMech 1.3

was originally taken from Miller and Klippenstein [45], but

high- and low-pressure limits are multiplied by a factor of 0.7

in NUIG Aramco Mech 1.3. In LLNL C4 model, it is originally

derived from the values calculated by Feng et al. [46]. Com-

parison of the rates constants among these threemechanisms

is presented in Fig. 7. It is found that the rate constants of

reaction (d) in USC 2.0 Mech and LLNL C4 Mech are about two

or four times higher than that in NUIG AramcoMech 1.3, likely

leading to the under-prediction on ignition delay times of

ethane mixture by USC 2.0 Mech and LLNL C4 Mech. To eval-

uate the effect of the reaction (d) on the performance of

mechanisms, their rate constants in USC 2.0 Mech and LLNL

http://dx.doi.org/10.1016/j.ijhydene.2014.01.157
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Fig. 9 e Effect of ethane blending ratio on ignition delay

times for ethane/hydrogen mixtures using NUIG Aramco

Mech 1.3.
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C4 Mech were replaced by the corresponding one in NUIG

Aramco Mech 1.3, as shown in Fig. 8. The simulation results

show that the modified USC 2.0 Mech and LLNL C4 Mech well

capture the ignition delay times of ethane. Additionally, the

replacements of rate constants for other reactions were also

made and negligible influences were observed. Therefore, it

can be inferred that the large under-prediction on ignition

delay time of ethane by USC 2.0 Mech and LLNL C4 Mech is

primarily resulted from the higher rate constants of reaction

(d) in these twomechanisms. The reason for under-prediction

on ignition delay times of ethane by USC 2.0 Mech was also

proposed by Zhang et al. [43].
Fig. 10 e Reaction pathway diagram for stoichiometric ethane/hy

AramcoMech 1.3 (Black: 100% C2H6; Red: 30% C2H6/70% H2; Blue:

(For interpretation of the references to color in this figure legen
3.3.2. Chemical kinetic interpretations on the effect of ethane
blending ratio
To investigate the effect of ethane addition on the auto-

ignition of hydrogen, ignition delay times calculated by

NUIG Aramco Mech 1.3 as a function of ethane blending ratio

are presented in Fig. 9 at p ¼ 1.2, 4.0, 16.0 atm and T ¼ 1100 K.

The NUIG AramcoMech 1.3 is used in this study because it can

well reproduce the ignition delay times of all ethane/H2 mix-

tures. It is observed that a small amount (3%) of ethane

addition can significantly inhibit the ignition of hydrogen and

this effect is weakened with further increasing ethane

blending ratio. Obviously, ethane addition gives a non-linear

effect on the ignition of hydrogen, which is generalized to

propane, butane and heptane.

The non-linear effect of ethane blending ratio on the

ignition delay time of ethane/hydrogen mixtures is attributed

to the different ignition chemistry of the mixture. Generally,

with the increase of ethane blending ratio, the ignition of the

combustiblemixture resemblesmore andmore to that of neat

ethane oxidation. To interpret the ignition delay time depen-

dence on ethane blending ratio, reaction pathway analysis

using NUIG Aramco Mech 1.3 for each mixture was made at

T ¼ 1100 K and p ¼ 4 atm at the timing of 20% fuel consump-

tion to identify the controlling steps in ignition, as shown in

Fig. 10. The scheme shows that neat ethane is mainly

consumed by H-abstraction reactions through free radicals

including H (41.3%), OH (47.8%) and O (7.7%) to produce ethyl.

Ethyl radicals undergo the H-abstraction reaction by oxygen

molecular (O2) (29%) and H radicals (1.1%) and unimolecular

pyrolysis (55.7%) to produce ethylene which is consumed

subsequently through several paths to form the final product.

Compared to ethane, reaction pathways of neat hydrogen

appear considerably clear. Hydrogen molecular is wholly

attacked by OH (75.2%) radicals and O radicals (25.8%) and
drogenmixtures at T[ 1100 K and p[ 4.0 atm using NUIG

10% C2H6/90%H2; Magenta: 3% C2H6/97% H2; Olive: 100% H2).

d, the reader is referred to the web version of this article.)
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Fig. 12 e Competition of H radicals between reactions R1

and R191 at different ethane blending ratios at timing of

20% fuel consumption.
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produces H radicals. The H radicals are the chain promoters

and then react with O2 to produceO andOH radicalswhich are

in turn to feed the hydrogen consuming ways, as discussed

above. Actually, these pathways including reaction R1:

H þ O2 5 O þ OH, R2: OH þ H2 5 H þ H2O and R3:

O þ H2 5 H þ OH evolve into the recycle reaction sequence

that R2 and R3 produce H radicals to feed R1 which in turn

produce OH and O radical to feed R2 and R3, respectively. As

this recycle reaction sequence continues, a large amount of

reactive free radicals are produced and promote the ignition.

This is the main feature of the hydrogen ignition at high

temperature.

As shown in Fig. 10, themain reaction steps of hydrogen/or

ethane are changed by ethane/or hydrogen addition. Specif-

ically, when the ethane is added to hydrogen, the H radical

consumed through R1 exhibits the reduced tendency, and the

hydrogen attacked by OH (R2) and O (R3) gives an opposite

variation. However, when the hydrogen is added to ethane

mixture, the ethane molecular consumed by H radicals is

increased with hydrogen addition, while ethane molecular

consumed by OH and O radicals is somehow decreased since

hydrogen addition to hydrocarbon oxidation system increases

the amount of OH and O radicals. Obviously, interaction be-

tween ethane and hydrogen ignition in C2H6/H2 blends is

manifested as the competition for H radicals between ethane

(R191: C2H6 þ H 5 C2H5 þ H2) and oxygen molecular (R1).

Reaction R1 and R191 are respectively the most important

ignition promoting reaction and inhibiting reaction in C2H6/H2

blends, as shown in Fig. 6.

To further understand the change of controlling reactions

in the ignition chemistry and the effect of ethane blending

ratio, the normalized consumption of H radicals by reactions

R1 and R191 in the ignition induction period was presented at

T ¼ 1150 K and p ¼ 4.0 atm at all ethane blending ratios, as

shown in Fig. 11. H radicals are mainly consumed by R1 (57%)

for the neat hydrogen and by R191 (79%) for the neat ethane in

the induction period. As a result, neat hydrogen has faster

ignition than neat ethane. When adding a small amount (3%)

ethane, H radicals consumed by reaction R191 accounts for
Fig. 11 e Reactions with highest H radical consumption

rates of various ethane blending ratios at 1100 K and

4.0 atm.
35% of total H radicals while the H radicals consumed by re-

action R1 decrease by 23% compared to neat hydrogen.

Consequently, reactions R2 and R3 are inhibited and result in

an inhibition of H, O and OH productions and an increase of

ignition delay time. However, this influence is weakened

under higher ethane blending ratio, as shown in Figs. 11 and

12. Therefore, ignition delay times are more sensitive to small

ethane blending ratio than higher ethane blending ratio,

resulting in the non-linear effect in Fig. 9. The competition of

H radicals by reactions R1 and R191 shows that H radicals

react more readily with ethane than with oxygen. This is

primary due to two aspects: 1) bond energy of CeH bond

(w96.4e101.1 cal/mol) is much smaller than that of O]O bond

(w118 cal/mol), leading to a lower activation energy for reac-

tion R191; 2) There are six CeH bonds in an ethane molecular

and only one O]O bond in an oxygen molecular, making the

collision of H radicals with ethane molecular more efficient

than that with oxygen molecular.
4. Concluding remarks

Ignition delay times of the stoichiometric C2H6/H2 blends with

emphasis on the effect of blending ratio were obtained at

elevated pressures. The measured ignition delay times of

ethane were compared to previous correlations and the igni-

tion delay times obtained by different studies exhibited a

significant difference in global activation energy. Simulations

were made with three widely used mechanisms and the re-

sults show that NUIG Aramco Mech 1.3 agrees well with the

measurements of all C2H6/H2 blends, while USC 2.0 Mech and

LLNL C4Mech give under-prediction on the ignition delay time

of neat ethane. Sensitivity analysis indicates that poor pre-

dictions by USC 2.0Mech and LLNL C4Mech are ascribed to the

higher rate constant of reaction C2H4 þ H (þM) 5 C2H5 (þM).

Ethane blending ratio exhibits the non-linear effect on the

ignition delay time of C2H6/H2 blends, which is generalized to

propane and butane. This non-linear effect is mainly resulted

http://dx.doi.org/10.1016/j.ijhydene.2014.01.157
http://dx.doi.org/10.1016/j.ijhydene.2014.01.157
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from the competition of H radicals between reaction

H þ O2 5 O þ OH and C2H6 þ H 5 C2H5 þ H2.
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