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Abstract: The feature space extracted from vibration signals with various faults is often nonlinear and of high dimension. Currently, 
nonlinear dimensionality reduction methods are available for extracting low-dimensional embeddings, such as manifold learning. 
However, these methods are all based on manual intervention, which have some shortages in stability, and suppressing the disturbance 
noise. To extract features automatically, a manifold learning method with self-organization mapping is introduced for the first time. 
Under the non-uniform sample distribution reconstructed by the phase space, the expectation maximization(EM) iteration algorithm is 
used to divide the local neighborhoods adaptively without manual intervention. After that, the local tangent space alignment(LTSA) 
algorithm is adopted to compress the high-dimensional phase space into a more truthful low-dimensional representation. Finally, the 
signal is reconstructed by the kernel regression. Several typical states include the Lorenz system, engine fault with piston pin defect, and 
bearing fault with outer-race defect are analyzed. Compared with the LTSA and continuous wavelet transform, the results show that the 
background noise can be fully restrained and the entire periodic repetition of impact components is well separated and identified. A new 
way to automatically and precisely extract the impulsive components from mechanical signals is proposed. 
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1  Introduction∗ 
 

Feature extraction is one of the critical components in 
mechanical fault diagnosis, which is developed through 
vibration signal analysis and processing. At the viewpoint 
of identification of conditions and faults, a good feature 
extraction method should be capable to distinguish 
different conditions and faults effectively, and helpful to 
simplify the work of pattern recognition. However, since 
vibration signals of machinery with fault are often 
nonlinear and nonstationary, it is difficult to extract 
effective features. In time domain and frequency domain 
analysis, statistical indexes, such as peak amplitude, root 
mean square amplitude, kurtosis and frequency components, 
are applied to fault diagnosis of rotating machinery[1]. 
Obviously, these indexes simplify the description of the 
machine condition, but the selection of index directly 
affects the pattern recognition. Moreover, most frequency 
spectrums have similar characteristics, which make 
misjudgements in detecting machine faults.  

Time-frequency analysis can supply both time and 
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frequency information. There are several time-frequency 
analysis methods, such as orthogonal wavelets, Morlet 
wavelet transform[2–4]. The selection of time-frequency 
information still depends on transcendent knowledge and 
manual intervention. If there is no manual intervention and 
all the time-frequency components are directly used for 
pattern recognition, the fault recognition can be seriously 
influenced by high dimension or strong noise disturbance. 

In addition, there are many non-linear factors such as 
loads, clearance, friction and so on making distinct 
influences on the signals. The fractal dimensions presented 
by YANG, et al[5], is adopted to describe the nonlinear 
behavior of rolling element bearing. The approximate 
entropy[6] is adopted as a diagnostic tool for machine health 
monitoring. However, simple parameters can only reflect 
the overall irregularity of signals, which fail to reveal the 
details of fractal structures.  

Dimensionality reduction is proposed to solve this 
problem. The traditional dimensionality reduction methods 
such as principal component analysis and independent 
component analysis[7–8] are effective only on nonlinear 
structures. It is difficult to use these methods to discover 
the nonlinear structure. Since manifold learning concept 
was proposed and applied successfully by SEUNG, et al[9], 
in 2000, manifold algorithm has become an active research 
topic in the field of dimensionality reduction and intelligent 
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pattern recognition. The current manifold algorithms 
mainly include isometric feature mapping[9], locally linear 
embedding[10], Laplacian Eigenmaps[11], local tangent space 
alignment[12], etc. Except for being applied to image 
processing, manifold learning is also used for fault 
diagnosis[13–14]. However, how to choose the neighborhood 
freely without worrying about the topologically instability 
is a continuous pending problem. The k-neighborhood and 
ε -neighborhood methods are influenced by curvature, 
sampling density, and noises. Some extended methods have 
been proposed to resolve this problem[15–16]. Nevertheless, 
these methods failed to deal with the sample data without 
manual intervention. 

For the above mentioned reasons, this paper proposes a 
novel method to extract fault features automatically based 
on self-organizing manifold learning(SOML). The novelty 
of the proposed method is combining self-organization 
neighborhood selection with local tangent space alignment 
algorithm. Under the non-uniform sample distribution, it 
can divide the local neighborhoods self-adaptively. 
Combined with dynamics trajectory of phase space, the 
proposed method can achieve low-dimensional manifold 
extraction without manual intervention. Based on the kernel 
regression of low-dimensional manifold, the signal can be 
reconstructed. 

This paper is organized as follows: the fundamental 
theories and algorithm of the self-organizing manifold 
learning are presented in section 2. The feature exaction 
scheme based on self-organizing manifold learning is given 
and analyzed in section 3. In section 4, simulated analog 
signal is adopted to validate effectiveness. In section 5, the 
fault application is presented to demonstrate the effect of 
the proposed strategies. Finally, some conclusions are 
drawn in section 6. 

 
2  Overview of SOML Algorithm 

 

2.1  Adaptive neighborhood selection  
It is obvious that large neighborhoods cause confusions 

in dealing with the highly twisted and folded manifold. In 
contrast, small neighborhoods can falsely estimate the 
relationships between the neighbors, even if the continuous 
manifold is divided into disjoint sub-manifolds. Due to 
added noise, the distribution of samples in feature space is 
usually non-uniform. Therefore, to the sparse distribution 
of sample data, the neighborhood size must be large enough 
to ensure overlaps between neighbors. On the other hand, 
small neighborhoods often represent complex nonlinear 
distribution. Therefore, the fixed sizes of neighborhoods 
cannot satisfy the changing manifold structures. Therefore, 
it is inevitable that the neighborhood size should be 
selected adaptively with two principles: (1) All of 
sub-spaces divided by neighborhoods can be connected to 
construct the topology structure of manifold; (2) There 
should be enough overlaps between adjacent neighbors, in 
order to transmit the local information.  

In the adaptive learning methods, self-organizing 
mapping(SOM) has the ability to divide network nodes 
adaptively. Using competing-layer neurons to match the 
center of local neighbors of manifold structures, SOM 
organize node grids to cover the whole topological 
structures. Then the local neighbors of high-dimensional 
manifolds are divided adaptively. Considering the above 
requisitions, the EM iteration algorithm is adopted to divide 
local neighbors adaptively[17]. 

 

2.2  SOML algorithm 
The process of the algorithm is shown in Fig. 1, and the 

implementation procedures of the SOML are detailed as 
follows. 

 

 

Fig. 1.  Schematic diagram of SOML algorithm 
 

(1) Given a set of inputs X, the SOM network is adopted 
to optimize weight W with EM iteration algorithm. Let i

rp  
denote the probability that input xi is assigned to the node 
with wr. It is constrained by 1i

rr
p   and i

rp >0. There 
is a neighborhood function hr,s that corresponds to the 
control strength between node r and node s. Usually it is a 
decreasing function of the distance between nodes r and s. 
Given the data X, the optimal goal is to find the probability 
assignment P and weight W that minimizes  
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where d(r, s) is the distance between nodes of network, and 
D is the distance between inputs and weights. The initial 
weight matrix W is given by 
 

1
diag

q

         
W Q QX ,           (3) 

 
where 1[ , , ]rq qQ   and iq  is a random value 
between 1 and r . Thus, the location coordinate of topology 
node is set to element of weight W. Therefore, with the EM 
iteration, weight W is calculated using the prior value of the 
parameters and then fixed in the maximization for the new 
value. 

(2) Each element of W is set to the center node of local 
neighbors. To ensure enough overlap, the radius of 
neighbor is equal to the half of maximal distance between 
center nodes. According to radius of neighbor, the local 
neighbors iX  are selected, where i   1, 2, …, k and k is 
the number of topology grids. 

(3) Compute the d largest eigenvectors g1,…, gd of the 
correlation matrix T T T( e ) ( e )i i i i− −X X X X , and set 
 

1[ , , , ]i dkG e g g ,          (4) 
 

where iX  is the mean of iX . 
(4) The alignment matrix B can be computed by carrying 

out a partial local summation as follows: 
 

iiiii BXXBXXB +← ),(),( .        (5) 
 

(5) Compute the 2 to d+1 smallest eigenvectors of B and 
pick up the eigenvector matrix (u2, u3, …, ud+1), then set     
T (u2, u3, …, ud+1)T. 

 
2.3  Robustness analysis 

Through the EM iterative process, W approaches to a 
reasonable topology network which covers the whole 
structure, and the results satisfy the first principle. On the 
other hand, it is obvious that the connected distance 
between the adjacent nodes is used to be the radius of 
neighborhood, so as to ensure enough overlaps between 
neighbors. Thus, the second principle of neighborhood 
selection is also satisfied. Based on the adaptive 
neighborhood, the low-dimensional embedding can be 
extracted effectively. The residual variance[18] is adopted to 
estimate the representation from high-dimensional structure 
to embedded space, and it is defined as 
 

              2( ) 1R k ρ 
X TD D ,                 (6) 

 
where ρ is correlation coefficient, k is neighborhood size, 

XD  and TD are matrixes of Euclidean distances (between 
pairs of points) in X and T, respectively.  

The smaller the residual variance is, the better 
high-dimensional data are compressed in the embedded 
space. Since node neighborhood is divided adaptively by 
the grid of network for competition mechanism, EM 
iteration can overcome the limitation of fixed neighborhood 
algorithms and get a better residual variance. 

 
3  Feature Extraction Based on SOML 

 

3.1 Schematic diagram 
For feature extraction in machinery fault diagnosis, the 

SOML algorithm is adopted to explore the geometric 
distribution properties embedded in the high-dimensional 
space. Thus, on the basis of the principles above, a new 
approach of feature extraction method based on adaptive 
manifold learning is proposed. First, high-dimensional 
observation space is built with phase space reconstruction, 
and then map the space phase data into a low-dimensional 
feature space by SOML, and estimate the intrinsic 
distribution of samples to gain the embedding manifold 
structure. Finally, the signal is reconstructed by kernel 
regression strategy. The schematic diagram of the feature 
extraction method based on adaptive manifold learning is 
shown in Fig. 2. 

 

 

Fig. 2.  Schematic diagram of feature extraction strategy 
 

3.2 Observed space reconstruction 
Generally speaking, m-dimensional delay embedding 

space is equivalent to the original unobserved state space of 
the dynamics system. Taking the long-time steady-state 
response of the variable x and performing the time delay 
embedding transformation lead to the trajectories in the 
embedding space which comprise a geometric object called 
a manifold. Given proper parameters, a manifold can be 
reconstructed by embedding a time series into a 
high-dimensional space, in which the topological structure 
and nonlinear characteristics hidden in the low-dimensional 
time series can be easily extracted. For a time series 

1 2, , , Nx x x , the delay vectors in the embedded phase 
space are given by ( 1)[ , , , ]i i i i mx x xτ τY  -  , where i1, 

2, …, N, m is the embedding dimension, and τ is the delay 
time. 
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3.3  Embedding dimension 
At the viewpoint of geometry, the vibration data of 

machinery in the same state has the same geometric 
properties in space distribution or topological structure. 
Their mapping points in the low-dimensional embedded 
space can be distributed in embedding manifolds or in its 
neighbors. Obviously the relationship between embedding 
dimension d of manifold and embedding of dynamics 
system is defined as 

 
 min( )d  m , (7) 

 
where m is estimated from E1(m) and E2(m) curve5 
calculated[19].  
 
3.4  Signal reconstruction based on kernel regression 

Feature extraction is regarded as a mapping from initial 
data to a feature space with a special function. By manifold 
learning, an embedding manifold md RRf →⊂T:  can 
be found. Then the inverse function Ff (x) is considered as a 
feature extraction function, where the feature t   Ff (x). 

For high-dimensional data X, an excellent estimate form 
Ff (x) is provided. Therefore, the purpose is to minimize the 
reconstruction error: 

 

2
( ) ( ( )) ( )d

n
f

R

E f x f F x p x x  , (8) 

where ||·||2 stands for the 2- norm of a matrix, and f(Ff (x)) 
is a reconstruction point of the feature Ff (x) in manifold. It 
is worth noting that the embedding space has no explicit 
formulation to correspond the nonlinear model. Thus the 
signal is reconstructed with statistic regression strategy 
through the coordinate of low-dimensional embedding. 
Because the kernel regression[20] adopts the non-parametric 
statistics to evaluate the probability density function, it is 
suitable that the signal is reconstructed by the embedding 
manifold with kernel regression. Thus, for a given kernel 
function K(x) and sample data Y, the reconstruction signal 
based on the Nadaraya-Watson kernel regression estimator 
is defined as  
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As an effective tool, the reconstruction procedure is 

described as follows: the training sample ti is selected from 
low-dimensional embedding T, and the corresponding 
original data Yi is conformed at the same time. Then the 
remainder of T is used as the reconstruction sample t. 
According to the Yi and the ti, the function f(t) is calculated 
with Eq. (9). 

 
4  Experiments Verifications and Discussion 

 
To verify the capability of feature extraction of the 

proposed method, the nonlinear Lorenz system was adopted 
for test and described as 

 

 

d ( )
d
d ( )
d
d
d

x y x
t
y z x y
t
z xy z
t

α

γ

β

       

，

，

, (10) 

 
where parameters α16, β4, γ45.92, and the 8 dB 
white noise was also mixed. According to the evaluation 
index proposed in Eq. (7), E1(m) and E2(m) curves were 
calculated , respectively, where the time delay τ1. The 
result is shown in Fig. 3.  
 

 

Fig. 3.  E1(m) and E2(m) curves of the Lorenz system 
 

Of course the minimum embedding dimension is 3, since 
E1(m) and E2(m) curves are slowly increasing when m > 2. 
Two dimension projection of the phase space is shown in 
Fig. 4, where m30 and τ1. Due to the mixed noise, the 
dynamics trajectory is difficult to be identified. The 
extraction result of Lorenz system by the SOML technique 
is shown in Fig. 5, which is the projection of three 
dimension embedding manifold. 

 

 
Fig. 4.  Phase space of Lorenz system with added noise 
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Fig. 5.  Projection of three-dimensional embedding manifold 
 
  It is found that the embedding manifold structure is 
similar to the Lorenz system in Fig. 5. Then, the 
embedding manifold is reconstructed to the phase space, 
which is shown in Fig. 6. The reconstructed result 
indicates that the level of noise variance decreased to 10.5 
dB, and the dynamics trajectory of chaotic behavor was 
extracted precisely. 
 

 
Fig. 6.  Reconstructed phase space of the Lorenz system 

 
With the EM iteration, the neighborhood sizes learned 

from the SOM network is shown in Fig. 7. It is easy to 
figure out that the neighborhood sizes of nodes fluctuate 
are between 4 and 78 and the average is 38 due to the 
varying sampling distribution. 
 

 

Fig. 7.  Neighborhood size learned from SOM network 

In order to verify the capability of the proposed method, 
different neighborhood sizes were adopted by LTSA to 
extract the low-dimensional embedding, where the 
neighborhood size k is set to 10, 20, 30, and 40 respectively. 
The experimental results with different k are shown in Fig. 
8. It is clear that the curve of the reconstructed phase space 
with fixed neighborhood size may reflect the whole 
structure of dynamics trajectory. However, there are 
deformations in outline and internal trajectory to some 
extent. Even if the neighborhood size is equal to the 
average of adaptive neighborhood size (i.e. k 40), the 
reconstructed result shown in Fig. 8(d) is still not as good 
as SOML method displayed in Fig. 6. It indicates that the 
SOM neighborhood selection strategy is more effective 
than the fixed neighborhood idea. 

 

 
Fig. 8.  Reconstructed phase space with different neighborhood 
 
To quantitively evaluate the effectiveness of the 

proposed method, the residual variance calculated by the 
low-dimensional embedding of neighborhood size k is 
shown in Fig. 9, where k changes in the range (5, 100). Fig. 
9 shows that the residual variance of the low-dimensional 
embedding driven by parameter k20 is less than the other 
parameters k. However, though k is set to 20 to extract the 
features of the Lorenz system, the result shown in Fig. 8(b) 
also reflects the large reconstruction errors so that it is 
difficult to select an optimal fixed parameter k which can 
satisfy both the minimum residual variance and the 
reconstruction errors at the same time. 

Moreover, if the above indexes(residual variance and 
reconstruction error) are used criterion to select 
neighborhood size k, each of low-dimensional embedding 
and signal reconstruction should be calculated with 
different k. Obviously, the training cost will be huge. 
Conversely, the residual variance calculated by the 
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low-dimensional embedding of SOML algorithm is only 
0.018. Compared with Fig. 9, the proposed method obtains 
a smaller residual variance and a smaller reconstruction 
error. Therefore, The SOML technique has more ability in 
extracting features than the fixed parameter method. 
 

 
Fig. 9.  Curve of residual variance for fixed neighborhood size 

 
 

5  Application in Machinery 
 
Due to the complex structure of the reciprocating 

machinery, it is difficult to diagnose the dynamic 
characteristics of engine. In this paper, the abnormal sound 
signal was recorded by microphone from a Jiefang CA141 
automotive gasoline engine with piston pin fault. During 
the measurements, the revolution speed of the gasoline 
engine was 1 800 rmin. Although there are same vibration 
source of the machine for vibration signals and sound 
signals, the frequency response range of sound sensors is 
much lower than that of accelerometers. In addition, the 
performance of abnormal sound caused by faults is usually 
decided by the crankshaft speed. In the view of audible 
sound, the sampling frequency is set to 6kHz that the low 
and middle frequency reflecting part impacts can be 
highlighted effectively.  

The result in Ref. [3] indicates that the abnormal sound 
is usually aroused by parts impact, caused by defect or 
wear of parts. Because the impact of parts is a transient 
process, abnormal sound can be characterized by the 
presence of periodic repetition of the impulse attenuation 
components. Fig. 10 shows the waveform of collected 
sound signal. Obviously, the waveform is more complex 
compared to the rotational machinery, whose signal should 
be a pure sine curve. The periodical impulse components 
are submerged by the noise. So how to extract these 
periodical features is a key problem to the diagnosis of the 
engine. 

 

 
Fig. 10.  Original abnormal sound signal 

 
According to the evaluation index proposed in Cao 

algorithm, the minimum embedding dimension is 3. Then, 
a high-dimensional manifold is built by phase space 
reconstruction, where m  30 and delay time τ  1. 
Finally, the three-dimensional embedding extracted by 
SOML is adopted to reconstruct the signal with gauss 
kernel function, which is shown in Fig. 11. At the view of 
the whole waveform, it is not difficult to find that the time 
of the interval appearance just rightly corresponds to the 
impulse response, so it can be identified as the knock 
vibration of the piston pin. 

 

 

Fig. 11.  Reconstructed waveform with SOML 
 
In order to estimate the performance of feature extraction, 

the reconstructed signal was compared with the original 
signal, which is shown in Fig. 12. The reconstructed signal 
based on SOML extracts not only the impulse component 
accurately, including amplitude and period, but also the 
small amplitude component, which can reflect other 
information. Moreover, the LTSA with the fixed 
neighborhood size was also applied to the same signal to 
extract the feature components. The plots in Fig. 13 give 
out the experimental results of residual variance outputs 
with different neighborhood sizes, where k changes in the  
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range (10, 100). 
 

 

Fig. 12.  Comparison of signal between SOML 
and original signal 

 
As depicted in Fig. 13, the R(k) exhibits its minimal 

value at k20. Therefore, LTSA with neighborhood size    
k20 is used to extract the features of the signal. The 
comparison to original signal is shown in Fig. 14. For 
LTSA with fixed neighborhood size, except for the impulse 
feature, the irrelevant noise components were also extracted, 
such as the noise components at 0.076 s and 0.085 s 
respectively. Moreover, compared with Fig. 12, the signals 
between impulse components were also filtered. Obviously, 
the experiment result shows that the small neighborhood 
size leads to lack necessary overlaps among neighbors. 
While for large k, the computed tangent space cannot 
represent the local geometry well. Then the small periodic 
components are linearized so that they are filtered. 
Meanwhile, the noise components are emerged because of 
the lack of necessary overlaps. It also indicates that the 
nonlinear mapping capability of SOML is superior to that 
of LTSA. 

 

 

Fig. 13.  R(k) curve with different neighborhood size 

 
For the comparison, the continuous wavelet transform 

(CWT) was also used to extract the impulse components[4], 

where the wavelet function was Morlet wavelet. Since the 
amplitude division computed by hard-threshold function is 
rough, the noise components of the wavelet coefficient 
which are greater than the threshold cannot be suppressed 
effectively. Therefore, the soft-threshold is adopted in this 
paper. To find an optimal wavelet filter which can discover 
the periodic impulse, the first step is to search the optimal 
shape factor β. Increase β from 0.1 to 2 and calculate the 
entropy of the corresponding coefficients. The optimal 
shape factor β leaded by the minimal Shannon entropy 
relationship is obtained. As depicted in Fig. 15, the entropy 
exhibits its minimal value at β0.6. Therefore, β 0.6 
was selected as the optimal shape factor. 

 

 

Fig. 14.  Comparison of reconstruction signal 
 between LTSA and original signal 

 

 

Fig. 15.  Relationship between Shannon entropy  
of the wavelet coefficient and shape factor β 

 

After the shape factor β0.6 is selected, the de-noised 
signal by applying the Morlet wavelet filter with optimal 
shape factor β is shown in Fig. 16. Comparing the original 
signal with that after the CWT filter, the main periodic 
impulse features were extracted basically. However, it is 
obvious that there are noise components in the second 
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impulse feature, and the whole amplitude of reconstructed 
signal also decreases.  
 

 

Fig. 16.  Reconstructed waveform with wavelet filter 
 
Moreover, the small amplitudes of the signal between 

periodic impulses are considered as the noise to be 
completely filtered. The performance of wavelet filter 
based on de-noising method is influenced by the relative 
energy levels of signal coefficients and noise coefficients. 
It also implies that the feature extraction capability of 
SOML is superior to that of CWT.  

In order to further verify the validity of the proposed 
method in extracting localized defects, measurements from 
rolling bearing experiments is also considered. In rotating 
machinery, the failure of rolling bearings can result in the 
deterioration of machine running conditions. Therefore, it 
is significant to be able to detect and diagnose the existence 
accurately and automatically. The measurement was 
performed on a 308 rolling bearing with rotating speed of  
1 600 rmin and sampling frequency of 40 kHz. The 
vibration signal obtained from a defective bearing with an 
outer race fault is shown in Fig. 17.  

 

 
Fig. 17.  Vibration waveform of bearing outer race failure 

 
It even gives the impression that the bearing is fault-free, 

as no impulse can be seen clearly in the signal. According 
to the evaluation index proposed in Cao algorithm, the 
minimum embedding dimension is also 3. The 
reconstructed signal with three-dimensional embedding 
extracted by SOML is shown in Fig. 18. Fig. 18 shows that 
the impulses are visible, which correspond to the outer race 
fault frequencies respectively. The result shows that the 
reconstructed signal by SOML can effectively extract the 
impulse features and be able to suppress the disturbance 
noise well. 

 

 
Fig. 18.  Reconstruction signal with SOML 

 
 
6  Conclusions 

 

(1) Experiments demonstrate that The SOML technique 
has more ability in extracting features, and the impulse 
components can be extracted effectively. 

(2) Through the application of EM iteration algorithm to 
the non-uniform distribution, the affection of transcendent 
knowledge and manual intervention can be avoided and the 
local neighborhoods can be divided adaptively, then 
combining EM iteration with LTSA, a smaller residual 
variance and a smaller reconstruction error can be obtained 
at the same time. Therefore, the feature extraction 
capabilities can be improved obviously. 

(3) The simulation of Lorenz system and the application 
of an engine with piston pin fault and a bearing with outer 
race fault show that the feature extraction capability of 
SOML is superior to that of CWT and LTSA. 
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