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When evolving from a normal state to failure, mechanical systems undergo a gradual degradation
process. Due to the nonlinearity of damage accumulation, degradation data always exhibit a distinctive
trend and random fluctuations. It makes the prediction of remaining useful life (RUL) very difficult and
inaccurate. The phase space trajectory reconstructed from the time series of degradation data is capable
of reliably elucidating the nonlinear degradation behavior. In this paper, a novel method based on the
similarity of the phase space trajectory is proposed for estimating the RUL of mechanical systems. First,
the reference degradation trajectories are built with historical degradation data using the phase space
reconstruction. Second, the similarities between the current degradation trajectory and the reference
degradation trajectories are measured with a normalized cross correlation indicator, which is determined
solely by the trajectory shape and is not interfered with the scaling and shifting of the trajectory. Trajec-
tory shape and degradation stage matching algorithms are combined to find the optimal segments in the
reference degradation trajectories compared with the current degradation trajectory. Finally, the RULs
corresponding to the optimal matching segments are subjected to weighted averaging to obtain the
RUL of the current degradation process. The proposed method is evaluated utilizing both simulated data
in stochastic degradation processes and experimental data measured on an actual pump. The results
show that the predicted RULs are very close to the actual RUL.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Following increasing demands in the field of operational safety,
asset availability and resource conservation, the area of prognos-
tics has emerged as one of the key foundations for the maintenance
scheme of modern industry. The main task of prognostics is to
estimate the remaining useful life (RUL) of a mechanical system,
which is defined as the period from the current service time until
the component or system fails. It is important to predict the RUL
of an asset as the incipient damage or performance degradation
occurs because it provides valuable information toward decreasing
future risk and loss due to failures or accidents. Over the past
decade, RUL prediction has become a research topic of high inter-
est, investigated in application fields (Heng, Zhang, Tan, & Mathew,
2009; Si, Wang, Hu, & Zhou, 2011; Sun, Zeng, Kang, & Pecht, 2012).
Most failures in mechanical systems result from gradual
degradation processes rather than sudden occurrences. Incipient
damage is formed under the effects of repeated load and adverse
conditions, such as wear and erosion, and then evolves into a
distinct failure. Numerous prognostic approaches have been devel-
oped to model the degradation processes of mechanical systems
and estimate the RUL. The physics-based and data-driven models
are representative prognostic approaches, which have a wide range
of applications.

Generally, physics-based models implement the mathematic
formulas deduced from the physics of failures to predict the theo-
retical damage evolution, such as crack propagation and spall
growth. Due to its convenience and accuracy, physics-based mod-
els are used as the basis of some expert systems for RUL prediction,
which can be found in references (Jin, Matthews, Fan, & Liu, 2013;
Kim, Song, & Park, 2009; Liu, Xuan, Si, & Tu, 2008; Zhao, Tian, &
Zeng, 2013). However, the damage that modeled by physics-based
models is specific and cannot be used for reference to other types
of mechanical components. Moreover, it is hard to construct an
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adequate physics-based model when the real-life system is
complex.

Data-driven models are the more available solutions in many
practical cases where degradation data are collected either contin-
uously or periodically from operating systems. This type of models
can be further classified as random coefficient models, artificial
intelligence approaches and trend-based approaches. In random
coefficient models, the degradation process is usually represented
as a linear, polynomial, exponential, or any other functional form
(Gebraeel, 2006). To characterize the complicated relationship
between the hidden degradation behavior and the observed fluctu-
ating data, stochastic processes, such as the Wiener process (Si,
Wang, Hu, & Zhou, 2013; Son, Fouladirad, Barros, Levrat, & Iung,
2013) and Gamma process (Guida & Pulcini, 2013), are used to fit
the distribution of the degradation path. For the random coefficient
models, it is necessary to acquire prior degradation knowledge and
abundant historical data to determine the model form and stochas-
tic parameters. Therefore, some improved strategies, such as
expectation maximization (Si et al., 2013) and Bayesian updating
(Gebraeel, Lawley, Li, & Ryan, 2005), have been utilized to reduce
the prediction errors caused by inappropriate parameters and to
enhance the generalization ability of the models. Artificial intelli-
gence is currently the most common foundational technique in
the prognostics literature due to its flexibility in generating appro-
priate model. Huang et al. (2007) developed a set of feed-forward
back propagation networks to model the exponential degradation
process and estimate the bearing life. Other types of neural net-
works, such as the cerebellar model articulation controller neural
networks (Lee & Kramer, 1993), recurrent neural networks (Tse &
Atherton, 1999) and self-organizing map neural networks (Niu &
Yang, 2010), have also been used to quantify the degradation level
and predict failure. In addition, some prognostics approaches are
developed based on artificial intelligence algorithms, such as sup-
port vector machine (Kim, Tan, Mathew, & Choi, 2012; Widodo &
Yang, 2011), relevance vector machine (Hu & Tse, 2013) and hid-
den Markov model (Peng & Dong, 2011). Because the degradation
characteristics are learned by hidden neural units or are mapped
into a high dimensionality space, artificial intelligence approaches
usually provide non-transparent solutions to failure prognosis, or
rather it cannot be observed that how predict results are inferred.
Trend-based approaches built degradation model utilizing the time
series of experience data acquired from long-term degradation
processes. The main difference with random coefficient models is
that the degradation path is not predefined but completely
determined by historical data. These approaches utilize advanced
statistical techniques, such as sequential Monte Carlo method
(Caesarendra, Niu, & Yang, 2010), state-space model (Sun, Zuo,
Wang, & Pecht, 2014) and Bayesian hierarchical model (Zaidan,
Harrison, Mills, & Fleming, 2015), to deal with the various degrada-
tion trends of mechanical systems, which work on variable operat-
ing conditions. For the above data-driven models, the bottleneck
problem is that their accuracy is highly dependent on the quantity
and quality of available degradation data.

Recently, condition monitoring is widely applied to detect the
degradation process of critical mechanical system. It provides a
favorable situation for data-driven models. However, due to the
nonlinearity of mechanical damage accumulation, unstable operat-
ing conditions and accidental disturbances can significantly alter
the associated degradation behavior. Therefore, the practical deg-
radation data, which represent the time series indicating system
performance, always exhibit a distinctive trend and random fluctu-
ations. In most data-driven models, the time series of degradation
data are directly engaged as the learning samples to model degra-
dation evolution. When the available samples are insufficient, the
distinctive trend and random fluctuations within the degradation
data may produce unacceptable errors.
Nonlinear degradation behavior is the major challenge con-
fronting the effective prediction of the RUL of mechanical systems.
From the viewpoint of dynamical systems, the time series of
degradation data are products of systems, which are undergoing
degradation progresses. Although the degradation data present
nonlinear behavior and possible chaos, the underlying data gener-
ating mechanisms can still be identified by phase space reconstruc-
tion technique. By virtue of the ability of revealing the nature of
system state, phase space reconstruction has become a powerful
tool for pattern recognition (Sharma & Pachori, 2015) and been
wildly applied to differentiate the failed state from the normal
state for mechanical systems (Aydin, Karakose, & Akin, 2014;
Wang, Li, & Luo, 2007). In phase space reconstruction, the time
series is rearranged into a phase space based on time delay embed-
ding. The evolving state of a system over time traces a path, which
is called the phase space trajectory, through the reconstructed
phase space. The shape of the trajectory represents the system
behavior that is compatible with a particular operating state.
Because degradation leads to changes in the dynamics that are
characteristic of the system state, the phase space trajectory is
capable of elucidating the latent degradation behavior from the
observed time series. In our research, the phase space trajectory,
rather than the original degradation data, is used to analyze the
degradation process.

In this article, we present a method for remaining useful life
estimation based on the similarity of the phase space trajectory.
The phase space reconstruction is adopted to build reference deg-
radation trajectories from the time series of historical degradation
data. The similarities between the current trajectory and the refer-
ence trajectories are robustly measured and used to estimate the
RUL. The reminder of the paper is organized as follows. Section 2
describes the main principle of our method, which includes the
phase space reconstruction (PSR) and normalized cross correlation
(NCC). The methodologies of RUL estimation are also given in this
section. Section 3 shows the results from the simulation verifica-
tion. Next, a case study demonstrating the application on an actual
pump is presented in Section 4. Finally, the conclusions are given in
Section 5.
2. Methods and principles

2.1. Phase space reconstruction

According to Takens’ theorem (Takens, 1981), the underlying
dynamics characteristic of a system can be obtained by recon-
structing the phase space, preserving the topological properties
of the original unknown attractor. To characterize the nonlinear
feature of a scalar time series, time delay embedding is commonly
used, allowing for the construction of a high-dimensional phase
space in which the time series are unfolded. Suppose a time series
is x = (x1, x2, . . ., xN); then, a point in the phase space is represented
as a row vector:

Xi ¼ ½xi�ðd�1Þs; xi�ðd�2Þs; . . . ; xi�s; xi�; ð1Þ

where N is the number of points in the time series, i is the index of
the row vector, ranging from 1 + (d � 1)s to N, d is the embedding
dimension, and s is the time delay. The sufficient condition for
the topological equivalent of the reconstructed phase space is that
d is greater than twice the box counting dimension of the original
system.

Because d is the most critical parameter for PSR, many have dis-
cussed how to determine the minimum embedding dimension
from a scalar time series. In this paper, we adopt Cao’s algorithm
(Cao, 1997), which is a practical and non-subjective method. Sup-
pose the embedding dimension is chosen as d; then, the ith point in
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this d-dimensional phase space is written as Xi(d), which has the
same form as Eq. (1). Xnði;dÞðdÞ is the nearest point to XiðdÞ; that is,

XiðdÞ � Xnði;dÞðdÞ
�� �� ¼ min

j¼1þðd�1Þs;...;N;j – i
XiðdÞ � XjðdÞ
�� ��

1; ð2Þ

where �k k1 is the L1 norm in Rd space, nði;dÞ is the index of the
nearest point and is dependent on i and d. If d is qualified as an
embedding dimension according to the embedding theorem, then
any two points which are close in the d-dimensional reconstructed
phase space will continue to be close in the d + 1-dimensional
space. For all points in the d- and d + 1-dimensional phase spaces,
a(i, d), E(d) and E1(d) are separately defined as:

aði;dÞ ¼
Xiðdþ 1Þ � Xnði;dþ1Þðdþ 1Þ
�� ��

XiðdÞ � Xnði;dÞðdÞ
�� �� ; ð3Þ

EðdÞ ¼ 1
N � ds

XN�s

i¼1þðd�1Þs
aði;dÞ; ð4Þ

E1ðdÞ ¼
Eðdþ 1Þ

EðdÞ : ð5Þ

While the d- and d + 1-dimensional space are topologically equiva-
lent, E1(d) tends to a stable value, which stops changing with the
increase of d. Therefore, the minimum d that stabilizes E1(d) is the
embedding dimension for which we search. However, in a practical
experiment, it is difficult to judge whether E1(d) has stopped chang-
ing due to the finite length of the observed samples. To solve this
problem, E⁄(d) and E2(d) are proposed as supplemental criteria.

E�ðdÞ ¼ 1
N � ds

XN�ds

i¼1

xiþds � xnði;dÞþds
�� ��; ð6Þ

E2ðdÞ ¼
E�ðdþ 1Þ

E�ðdÞ : ð7Þ

If x is a stochastic time series, E2(d) is equal to 1. Conversely, E2(d)
changes with d for a deterministic time series. By tracking the var-
iation of both E1(d) and E2(d) with d, the suitable embedding dimen-
sion of the time series can be determined.

Chelidze and Cusumano (2004) applied PSR to develop a
dynamical systems approach, called phase space warping (PSW),
for failure prognosis. In the approach, damage processes are
described by a hierarchical dynamical system consisting of a
directly observable fast-time subsystem and a hidden slow-time
subsystem. The transformation from signals in fast-time subsys-
tem to damage indicators in slow-time subsystem is achieved
by PSR. Fan, Hu, Hu, and Gu (2012) utilized PSW to track the
damage evolution of bearings. In PSW, the reconstructed phase
space in the undamaged state is set as a reference system, and
the residual error between the current system and the reference
system is used to estimate the damage. In contrast, our research
considers the whole degradation processes, including initial dam-
age, developing damage and distinct damage, as the references to
estimate RUL. This is the main difference between PSW and our
method.

2.2. Normalized cross correlation

The normalized cross correlation is a popular and easily imple-
mented measure for evaluating the similarity between points in
trajectories or images (Tsai, Lin, & Chen, 2003). Compared with
other similarity measures, such as the Euler distance and standard
cross correlation, the NCC has significant advantages because it is
invariant to linear transformation and is less sensitive to noise.
In the applications of NCC for matching and tracking (Hii, Hann,
Chase, & Van Houten, 2006; Nakhmani & Tannenbaum, 2013),
the reference trajectory and the observed trajectory are compared
on a point-by-point basis. This approach involves taking a given
pattern in one trajectory and shifting a template containing the
same pattern in another trajectory until the best comparison is
found.

Suppose the reference trajectory is Z ¼ fZ1; Z2; . . . ; Zl1g and the
observed trajectory is Y ¼ fY1;Y2; . . . ;Yl2g; then, where l1 > l2 and
Y is similar to some parts of Z, the similarity measure of NCC is
defined as:

sYZðiÞ ¼
ðY � �YÞ � ðZi � �ZiÞ

0

Y � �Y
�� ��

2 Zi � �Zi

�� ��
2

i ¼ 1;2; . . . ; l1 � l2 þ 1; ð8Þ

where i is the shifting index of the reference trajectory, and
Zi ¼ fZi; Ziþ1; . . . ; Ziþl2�1g has the same length as Y. Additionally, �Y
and �Zi are the mean vectors of Y and Zi, respectively, and �k k2 is
the L2 norm. It is obvious that sYZ(i) is less than or equal to 1 for
any Y and Zi. If and only if Y = Zi, then sYZ(i) = 1. The invariance to
a linear transformation can be proved as follows:

sðaYþbÞZðiÞ ¼
ðaY þ b� a�Y � bÞ � ðZi � �ZiÞ

0

aY þ b� a�Y � b
�� ��

2 Zi � �Zi

�� ��
2

¼ aðY � �YÞ � ðZi � �ZiÞ
0

a Y � �Y
�� ��

2 Zi � �Zi

�� ��
2

¼ sYZðiÞ: ð9Þ

This means that the scaling and shifting of the observed trajectory
will not influence the similarity measure with the reference trajec-
tory. The computation process is repeated by traversing the refer-
ence trajectory. The maximum of sYZ(i) determines the similarity
of two trajectories and the most similar segment in the reference
trajectory is also indicated.

2.3. RUL estimation method based on similarity of phase space
trajectory

Although the degradation data exhibit a distinctive trend and
random fluctuations during each degradation process, similar tra-
jectories always exist in the phase space due to the comparable
evolution of the dynamics that are characteristic of the system
state. Hence, the similarities of the phase space trajectory between
the historical degradation processes and the current degradation
process are analyzed and applied to estimate the RUL. Our method
includes three steps, including the construction of the reference
degradation trajectory, similarity matching and RUL estimating.
The whole scheme is given in Fig. 1.

During the reference degradation trajectory construction step,
PSR is used to embed the time series of the historical degradation
data into the high-dimensional phase space. Suppose that

xj ¼ xj
1; x

j
2; . . . ; xj

Nj

� �
is the time series in the jth degradation pro-

cess, where j is the index of the available degradation processes,
and Nj is the number of points in the time series xj. The operating
time at the corresponding sampling epoch is denoted as

tj ¼ ðtj
1; t

j
2; . . . ; tj

Nj
Þ. Hence, tj

Nj
is the operational lifetime, i.e., the

failure time, of the jth degradation process. The minimum embed-
ding dimension dj is determined by Cao’s algorithm, as mentioned
in Section 2.1. To simplify the comparisons of different degradation
processes, the uniform embedding dimension d, which is equal to
or greater than the maximum of all dj, is adopted. The time delay
s is chosen as 1, which is the best choice for discrete time series.
In the reconstructed phase space, a reference degradation trajec-
tory Zj is obtained by:

Zj ¼ Xj
d;X

j
1þd; . . . ;Xj

Nj

h iT
; ð10Þ
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Fig. 1. RUL estimation based on the similarity of the phase space trajectory.
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where Xj
i ¼ ½x

j
i�ðd�1Þ; x

j
i�ðd�2Þ; . . . ; xj

i�1; x
j
i� is a point in the d-dimen-

sional phase space. Accordingly, a set of reference degradation tra-
jectories is formed with all available degradation data.

In the similarity matching step, a time series of the current
degradation data, denoted as y ¼ ðy1; y2; . . . ; ycÞ, is obtained and
embedded into the same phase space. An incomplete degradation
trajectory can be constructed as:

Y ¼ ½Yd;Y1þd; . . . ;Yc�T ; ð11Þ

where Yi ¼ ½yi�ðd�1Þ; yi�ðd�2Þ; . . . ; yi�1; yi�. The operating time that cor-
responds to each point in trajectory Y is denoted as ti, where i
ranges from d to c. A time-based sliding window with length l is
used to select a trajectory segment Yk = [Yk-l+1, . . ., Yk] from Y. The
similarities between Yk and all of the reference degradation trajec-
tories are measured by NCC, as mentioned in Section 2.2. For the jth
reference degradation trajectory, the similarity measure is calcu-
lated and written as sYZðtj

kÞ, where tj
k is the corresponding time of

the compared segment in Zj. According to NCC’s invariance to linear
transformation, sYZðtj

kÞ is determined solely by the trajectory shape,
and the scaling and shifting of the compared trajectory do not
interfere. The parameter l determines the length of the compared
trajectory segments. For larger values of l, the noise causes less dis-
turbance. However, in practice, l is limited by the available degrada-
tion data and the computation load. The finite value of l and the
random fluctuations within the degradation data may result in
the identification of the best match in irrelevant degradation stages.
To avoid this situation, the similarity measure is modified as:

sj
kðtÞ ¼ sYZðtj

kÞ þ 1�
tk � tj

k

���
���

tk

0
@

1
A; ð12Þ

where tk is the operating time corresponding to Yk. In this similarity
metric, the former portion measures the shape similarity of the
compared trajectory segments, while the latter portion measures
the similarity of the degradation time. The epoch in which sj

kðtÞ
obtains a maximum value, is denoted as Tj

k. In the reference degra-
dation trajectory Zj, the segment at Tj

k is the optimal matching
result, which reflects the compromise between trajectory shape
and degradation stage.

In the RUL estimating step, the RUL of the current degradation
process is predicted by applying a weighted average of the RULs
of the most similar trajectory segments in all reference degradation
processes. The RUL of the most-similar segment in the jth reference
trajectory is obtained by:

Lj
k ¼ tj

Nj
� Tj

k: ð13Þ

The weight is calculated as:
xj
k ¼

sj
kðT

j
kÞ

XM

j¼1

sj
kðT

j
kÞ
; ð14Þ

where M is the number of reference degradation trajectories. Then,
the RUL of the current degradation process is estimated as:

RULk ¼
XM

j¼1

xj
kLj

k: ð15Þ

By the introduction of phase space trajectory, dynamics of deg-
radation evolution are utilized for prognostics. When degradation
processes are subject to finite dynamics modes, the dependence
of the proposed method on the quantity of degradation data will
be greatly weakened. However, reference degradation trajectories
should be enough to ensure that the necessary dynamics modes
are included in the available degradation processes.
3. Simulation result

Exponential degradation model (Gebraeel et al., 2005) is a good
representation for cumulative damage and has successfully
captured the degradation process of the rolling element bearing
(Gebraeel, 2006). Therefore, the model is used here to generate
the run-to-failure data for simulation verification. The logarithmic
form of the model is defined as:

LðtÞ ¼ h0 þ bt þ eðtÞ; ð16Þ

where L(t) is the log value of the degradation data at time t,
h0 � Nðl0;r0Þ;b � Nðl1;r2

1Þ, and the noise e(t) � N(0, r2t). Because
h
0
, b and e(t) are normally distributed random variables, the model

represents a wide range of stochastic degradation processes. For
convenience, L(t) is commonly substituted for degradation data.

According to Eq. (16), the training data and verification data are
generated with the parameters shown in Table 1. The sampling
interval is set as 0.1. To evaluate the estimation accuracy of the
proposed method, it is necessary to determine the actual life of
each simulated degradation process. In Eq. (16), h

0
and e(t) statisti-

cally define only the stationary component and noise, whereas bt
determines the degradation rate and degree. Considering the dom-
inant effect of bt, the actual life is set as the time period from the
onset of degradation until bt first reaches a failure threshold. In this
simulation study, the failure threshold is defined as 150. Fig. 2(a)
and (c) depict the generated training data and verification data,
respectively. For the ease of distinguishing each degradation pro-
cess within the figures, undegraded stages with different lengths



Table 1
The simulation parameters for the training data and verification data.

Parameters l0 r2
0

l1 r2
1

r2 Length of the undegraded stage Initial value

Training data 1 2 1 2.2 0.3 0.2 60 60
Training data 2 1 0.5 2 0.3 1 80 50
Training data 3 2 0.5 1.7 0.5 0.4 60 40
Training data 4 1 1 1.5 0.6 1 80 30
Training data 5 2 1 1.9 0.5 0.5 90 20
Training data 6 1 1 2.1 0.5 1 100 10
Verification data 1 1 1.8 0.5 0.1 40 5
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Fig. 2. The simulated degradation processes: (a) the training degradation data; (b) E1(d) and E2(d) of the simulated degradation data; (c) the verification degradation data; (d)
the RUL estimated by the proposed method; (e) the RUL estimated by the SbRLP; (f) estimation errors of the proposed method and the SbRLP.

Fig. 3. The high-pressure water pump layout.
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are inserted in front of the degradation data series. Additionally,
the initial values, as shown in Table 1, are added to the data series.

The time series of the training data are embedded into the phase
space to construct the reference trajectories. To determine the
embedding dimension, E1(d) and E2(d) are calculated separately.
Fig. 2(b) shows the values of E1(d) and E2(d) calculated with the
set identified as Training data 1. It can be seen that E1(d) tends to
a stationary value when d is larger than 8 and E2(d) changes with
d. The same conclusions were drawn for the other training data sets.
Hence, the embedding dimension is set to 8. The verification data
are embedded into the uniform phase space. A sliding window, with
a length of 30 and a sliding step of 20, is used to select the verifica-
tion trajectory segment after 200 operating times. By similarity
matching with the reference trajectories, the RUL is estimated.

Fig. 2(d) shows the estimated results and the corresponding
actual RUL. For comparison, a similarity-based residual life predic-
tion (SbRLP) approach (You & Meng, 2013) is utilized. Because the
solution A of SbRLP is applicable to the situation of limited sam-
ples, it is chosen to deal with the same simulation samples.
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Fig. 2(e) depicts the estimated results of SbRLP. To get a view of
this comparison, the absolute errors between the estimated RUL
and the actual RUL are shown in Fig. 2(f). It is readily apparent that
the estimation errors of our method are significantly less than
those of the SbRLP. The result verifies that the estimation accuracy
of the proposed method is satisfactory, even if data in each simu-
lated degradation process exhibit a distinctive trend and random
fluctuations.

4. Case study

To demonstrate the RUL estimation effect of the proposed
method, experimental data were collected from the degradation
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Fig. 5. The RUL estimation for the high-pressure water pump: (a) degradation process 1;
degradation process 5; (f) degradation process 6.
processes of a high-pressure water pump. The pump, which is
shown in Fig. 3, is used to remove the oxide scale formed on the
surface of stainless steel during the process of steel rolling. Due
to the nature of continuous work in a high-pressure environment,
pump degradation develops rapidly, and breakdown occurs fre-
quently. The outlet pressure, as a direct performance indicator, is
monitored at intervals of 1 h. Fig. 4 depicts the outlet pressure dur-
ing six complete degradation processes, which range from the
beginning of operation to failure. Significant difference can be
observed between the degradation trends and the operating life-
times, which range from approximately 1350–1700 h.

Due to the limitation of available samples, the Leave-One-Out-
Cross-Validation (LOOCV) method is used to verify the proposed
method. The time series of the outlet pressure in a degradation pro-
cess serves as the validation sample, and the time series of the out-
let pressure in the remaining degradation processes serve as the
training samples. This is repeated such that the pressure time series
in each degradation process is used once as the validation sample.
All samples are embedded into the same phase space, whose
embedding dimension d is set as 6 according to Cao’s algorithm,
and the time delay s is set as 1. The reference degradation trajecto-
ries are constructed with the training samples. The trajectory seg-
ments of the validation sample after 800 h of operating time are
selected using a sliding window with a length of 100 h and a sliding
step of 20 h. Then, the RUL is estimated during the period of oper-
ation from 800 h to failure at intervals of 20 h. Fig. 5 shows the com-
parisons of the estimated RUL and the actual RUL.

Despite the significant differences between the time series of
the outlet pressure, it can be observed from Fig. 5 that the RULs
estimated by the proposed method are close to the actual RUL.
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(b) degradation process 2; (c) degradation process 3; (d) degradation process 4; (e)
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For all degradation processes, the influence of random fluctuations
is effectively restrained. In particular, in degradation process 5, an
abrupt change of the outlet pressure occurs at 1380 h, while the
operating parameters are manually adjusted. Because the abrupt
change results in the local distortion of the degradation trajectory,
a small decrease of the estimated RUL can be seen in Fig. 5(e). For
degradation process 6, the pump has the shortest operating life.
Because the RULs of the most-similar trajectory segments in other
degradation processes are longer than the actual RUL, the curve of
the estimated RUL, as shown in Fig. 5(f), is higher than the actual
RUL curve in the early stage of degradation. After approximately
1100 h of operating time, the estimated error is decreased, due to
the increasing influence of trajectory shape similarity during the
later stage of degradation. In contrast, the estimated RULs in the
longest degradation period, i.e., degradation process 2, are slightly
less than the actual RULs during early degradation and coincide
well with the actual RULs when the failure is impending. This
RUL curve is given in Fig. 5(b). In conclusion, the proposed method
provides the capability of estimating the RUL when confronted
with the adverse condition of degradation data, which includes
random fluctuations, a distinctive trend and various lifetimes.

5. Conclusion and discussion

Due to the nonlinearity of mechanical damage accumulation,
historical degradation data are incapable of providing a direct ref-
erence for the prediction of future failure. In this paper, a novel
method based on the similarity of the phase space trajectory is pro-
posed to estimate the RUL for an ongoing degradation process. The
proposed method has two significant features. First, the nonlinear
degradation behavior of mechanical system is represented by the
phase space trajectory. Second, similarity matching of trajectory
is not affected by the scaling and shifting of the compared trajec-
tory. Then, the underlying degradation evolution, which generates
degradation data with a distinctive trend and random fluctuations,
is revealed and used to estimate the RUL. This method is success-
fully applied in simulated data in stochastic degradation processes.
In spite of the limited samples, the proposed method is greatly
superior in prediction accuracy to the compared approach, which
implements with the similarity of original degradation data. In
addition, the proposed method is evaluated by the actual data
acquired from a high-pressure water pump. The results show that
the predicted RULs are very close to the actual RUL.

There are still a number of challenges and practical problems to
be further studied. We summarized them as follows: (1) In some
applications, the mechanical system is not always allowed to run
to failure. Truncated data, which are collected from interrupted
degradation processes, cannot provide a clear reference for RUL
estimation. (2) Degradation paths of mechanical systems may
transform in the situation of manual intervention or changed oper-
ation condition. It is common in the accelerated degradation pro-
cess. (3) No completed degradation processes can be recorded. To
some critical and long-lifetime systems, such as nuclear coolant
pump, a continuous and hands-off degradation is unacceptable.
(4) Multiple degradation data are available from a mechanical sys-
tem. But their behaviors in a degradation process are inconsistent.

To tackle these challenges, some possible solutions are sug-
gested. The relationship between the degradation rate and the
operation condition can be analyzed according to the evolution
of the degradation trajectory. A phase space threshold, which
determined by the normal state, would be established to identify
the abnormal phase space trajectory. If a library of phase space tra-
jectory, which includes trajectories of different monitoring param-
eters and in different working stages, can be constructed, data
mining technique has potential as well. These are also where we
intend to focus our research in the future.
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