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This paper describes a new method for solving variable density incompressible viscous
flows. We have dealt with the momentum equation and the divergence free constraint
in a new manner by rewriting the original equations. The originality of the proposed
approach is that we have used different numerical methods to evaluate the evolution of
the velocity and pressure. Compared with some established methods, the proposed
approach is parameter-free, more flexible and can avoid the difficulties caused by the ori-
ginal equations. The stability analysis of the method is performed to show that our method
is stable. Finally, numerical experiments are given to show the accuracy, efficiency and val-
idness of this method for variable density incompressible flows.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Variable density incompressible Navier–Stokes equations are widely used in the fields of fluid dynamics: for instance, in
highly stratified flows, in the study of the dynamics of interfaces between fluids with different density, and in problems of
inertial confinement and problems of astrophysics. However, very few papers have been dedicated to this problem. This pa-
per deals with the numerical approximation of incompressible viscous flows with variable density. This type of flows are
governed by the time-dependent Navier–Stokes equations [1,2]:
qt þr � ðquÞ ¼ 0;
qðut þ u � ruÞ þ rp� mDu ¼ f ;
r � u ¼ 0;

8><
>: ð1:1Þ
where the dependent variables are the density q > 0, the velocity field u, and the pressure p. The constant m is the dynamic
viscosity coefficient and f is a driving external force. In stratified flows we typically have f ¼ qg, where g is the gravity field.
The fluid occupies a bounded domain X in Rd (with d ¼ 2 or 3) and the solution of the above problem is sought on a time
interval ½0; T�. The Navier–Stokes system is supplemented by the following initial and boundary conditions for u and q:
qðx;0Þ ¼ q0ðxÞ; qðx; tÞjC� ¼ aðx; tÞ;
uðx;0Þ ¼ u0ðxÞ; uðx; tÞjC ¼ bðx; tÞ;

�
ð1:2Þ
0112).
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where C ¼ @X and C� is the inflow boundary, which is defined by C� ¼ fx 2 C; uðxÞ � n < 0g, with n being the outward unit
normal vector. Throughout this paper we assume that the boundary C is impermeable, i.e., u � n ¼ 0 everywhere on C, and
C� ¼ ;. We note that no initial and boundary condition is needed for the pressure p, which can be viewed as a Lagrange mul-
tiplier whose mathematical role is to enforce the incompressibility condition.

The simulation of the system (1.1) and (1.2) presents the difficulty of satisfying the property of mass conservation twice.
On one hand, the mass density of each fluid particle must remain unchanged during the fluid motion, whatever the level of
unsteadiness and mixing. On the other hand, the velocity field must satisfy the incompressibility constraint, which reflects
the unability of pressure to do compression work. These two important physical characteristics are fully described by the set
of incompressible Navier–Stokes equations augmented by the advection equation for the density [3]. Therefore, how to con-
struct stable and efficient numerical schemes for the system (1.1) and (1.2) is challenging.

For the mathematical theory of existence and uniqueness of solutions to this set of equations, we refer to Guermond [3]
and Lions [4] for further details. This theory is very difficult, because the equations governing the motion of the incompress-
ible fluid with variable density constitute a mixed PDE system entangling hyperbolic, parabolic, and elliptic features. Approx-
imating (1.1) and (1.2) efficiently is a challenging task. A testimony of the difficulty is that, so far, very few papers have been
dedicated to the mathematical analysis of the approximation of (1.1) and (1.2). We refer to Liu [5] and Guermond [6–8] for
one of the few attempts in this direction.

For developing numerical approximations to this problem, it seems natural to exploit, as far as possible, the techniques
established for the solution of constant density incompressible Navier–Stokes equations, viz., the fractional step projection
method of Chorin [9,10] and Temam [11,12]. The method uses a time splitting, solving separately the transport equation for
the density and the momentum for the velocity, the incompressible constraint being treated through a projection method,
see [6]. This is the methodology followed in [3,13–15]. Several algorithms have been developed which extend this idea to the
situation that concerns us here, see for example [1–3,16,17]. Caterina introduce an hybrid scheme which combines a finite
volume approach for treating the mass conservation equation and a finite element method to deal with the momentum
equation and the divergence free constraint [18]. To the best of our knowledge, Guermond and Quartapelle [3] gave the first
stability proof of a projection method for variable density flows. The algorithm proposed in [3] is somewhat expensive since
it is composed of two time-consuming projections. An alternative algorithm composed of only one projection per time step
was proposed in [2] and had been proved to be stable.

These approaches have been used in some papers for incompressible flows with variable density. However, the variable
density introduces considerable difficulties for the construction and analysis of accurate and stable projection type schemes.
For example, it is well-known that the skew-symmetry of the nonlinear term in the Navier–Stokes equations (with constant
density q0), namely,
Z

X
ðq0u � rÞv � vdx ¼ 0 for u;v smooth enough and u � njC ¼ 0
plays a very important role in the analysis of the Navier–Stokes equations and the corresponding numerical schemes. How-
ever, this property no longer holds when q is not a constant.

The objective of the present work is to introduce a new method for solving variable density flows. Many researchers have
done a lot of work about Navier–Stokes system with constant density, for example [19–21]. We can try to use these methods
to the variable density incompressible flows. In this paper, we proposed a new fractional time-stepping method for variable
density incompressible flows.

The originality of our work is that we will use different numerical methods to evaluate the evolution of the velocity driven
by the last two equations in the system (1.1). To be more specific, we solve the last two equations for a given density by the
new fractional time-stepping method with time-splitting. The proposed algorithm is proved to be stable and numerically
illustrated. The results show that this method is efficient.

The paper is organized as follows. In next section, we introduce some notations and preliminary results for this paper. In
Section 3, a detailed presentation of the new method is given. In Section 4, the stability of the method is proved. In Section 5,
a series of numerical experiments are given. The last section is devoted to concluding remarks.

2. Preliminary settings

2.1. Some notations

In this section, we aim to describe some of the notations which will be frequently used in this paper. We consider the
time-dependent variable density Navier–Stokes system (1.1) and (1.2) on the finite time interval ½0; T� and in an open con-
nected and bounded domain X � Rd ðd ¼ 2 or 3Þ with boundary C, which we assume to be sufficiently smooth. More pre-
cisely, we assume that X is such that the Stokes operator possesses the usual regularization properties (see [22–24]).

For the mathematical setting of problem (1.1), we introduce the following Hilbert spaces:
H1
0ðXÞ ¼ fv 2 H1ðXÞ : vj@X ¼ 0g



126 Y. Li et al. / Journal of Computational Physics 242 (2013) 124–137
L2
0ðXÞ ¼ fq 2 L2ðXÞ :

Z
X

qdx ¼ 0g
For simplicity, set W ¼ H1ðXÞ; X ¼ ½H1
0ðXÞ�

2; M ¼ L2
0ðXÞ. Here, the spaces W and X are equipped with their usual scalar

product and equivalent norm ðru;rvÞ; kukH1
0
¼ kruk0 for u;v 2 X. Here, k � ki and j � ji denote the usual norm and semi

norm of the Sobolev space HiðXÞ or HiðXÞd, respectively, for i ¼ 0;1;2. We define Au ¼ �Du. In particular, there holds
ðA1=2u;A1=2vÞ ¼ ðru;rvÞ; 8u;v 2 X
Moreover, we define the continuous bilinear forms að�; �Þ and dð�; �Þ on X � X and X �M, respectively, by
aðu;vÞ ¼ mðru;rvÞ; u;v 2 X;

dðv; qÞ ¼ ðq;r � vÞ; v 2 X; q 2 M
and a trilinear form on X � X � X by
bðu;v;wÞ ¼ ððu � rÞv;wÞ; u;v;w 2 X:

~bðu;v;wÞ ¼ ðuðr � vÞ;wÞ; u;v;w 2 X:
Obviously, the bilinear að�; �Þ is continuous and coercive on X � X and the bilinear dð�; �Þ is continuous on X �M and sat-
isfies the well-known inf-sup condition [24,25]: there exists a positive constant b0 > 0 such that for all q 2 M
sup
v2X

jdðv; qÞj
krvk0

P b0kqk0; ð2:1Þ
where dðv; qÞ ¼ ðq;r � vÞ. It is easy to verify that b satisfies the following important property [23]:
jbðu;v;wÞj 6 ckruk0krvk0krwk0; 8u;v;w 2 X;
where c > 0 is a constant depending only on X. Henceforth c denotes a generic constant whose value may change at different
occurrence.

2.2. The heuristics

To ensure the conservation of the density the L2-norm and the balance of the kinetic energy for the variable density
incompressible flows, Guermond and Quartapelle presented a equivalent system in the conserved form in their pioneering
work [3]; See also Guermond and Salgado [1], Pyo and Shen [2] for the brief introduction. Our new time splitting scheme
presented in the next section will also base on this conserved system. To make our presentation more clearly, we recall some
introductions and observations of this conserved system.

First, we observe the mass conservation equation, namely the first equation of the system (1.1), and using the incom-
pressibility of the velocity field, it can be rewritten in the non-conservative form:
@q
@t
þ u � rq ¼ 0; ð2:2Þ
one can deduce the boundedness of qðr; tÞ if q0ðrÞ is bounded, namely, if
0 < a 6 q0ðrÞ 6 b; 8r 2 X; ð2:3Þ
then there holds that 0 < a 6 qðr; tÞ 6 b for any t > 0.
When multiplying Eq. (2.2) by q and integrating the resulting equation over X, one can obtain
Z

X
q
@q
@t
þ
Z

X
qu � rq ¼ d

dt
1
2

Z
X
q2

� �
¼ 0; ð2:4Þ
here the result
Z
X
qu � rq ¼ 1

2

Z
X

u � rðq2Þ ¼ 0
is used by virtue of integration by parts, the incompressibility condition and the boundary condition for the normal compo-
nent of velocity n � ujX ¼ 0. From (2.4), one can immediately deduce that
kqð�; tÞk0 ¼ kq0k0; ð2:5Þ
namely the conservation of the density in the L2-norm, which needs to use the incompressibility condition. Hence, this prop-
erty will be lost at the discrete level because the incompressibility constraint will be enforced weakly only. To bypass this
trouble, one can rewrite the term u � rq in Eq. (2.2) in its skew-symmetric form u � rqþ qr � u=2 by involving the incom-
pressibility condition directly, i.e.,
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@q
@t
þ u � rqþ q

2
r � u ¼ 0: ð2:6Þ
As verified by Guermond and Quartapelle in [3], the mass conservation equation of this form can ensure the conservation of
the density q in L2 norm in time without invoking the incompressibility condition. Due to this property, the conservation of
the density can be kept at the discrete level.

As to the momentum equation, following [3], to make the argument more clearly, the force f is assumed to be zero. Now
multiplying the second equation of (1.1) by u and integrating over X, one can obtain
Z

X
qðut þ u � ruÞ � uþ

Z
X
rp � uþ m

Z
X
jruj2 ¼ 0: ð2:7Þ
By integration by parts and the conditions u � n ¼ 0 on C ¼ @X and incompressibility r � u ¼ 0, the second term vanishes.
This is still true at the discrete level due to the weak imposition of the incompressibility condition. Meanwhile, from inte-
gration by parts and (2.6), one can deduce
Z

X
qut � u ¼

1
2

Z
X
q
@juj2

@t
¼ 1

2

Z
X

@ðqjuj2Þ
@t

þ ðu � rqþ q
2
r � uÞjuj2

 !
and
 Z
X
qu � ru � u ¼ 1

2

Z
X
qu � rjuj2 ¼ 1

2

Z
X
r � ðqujuj2Þ � ðu � rqþ qr � uÞjuj2
� �

:

Hence, under the condition u � n ¼ 0, the first term in (2.7) becomes
Z
X
qðut þ u � ruÞ � u ¼ 1

2

Z
X
r � ðqujuj2Þ � 1

4

Z
X
qr � ujuj2: ð2:8Þ
To this end, when involving the incompressibility condition, (2.7) gives
1
2

Z
X

@ðqjuj2Þ
@t

þ m
Z

X
jruj2 ¼ 0;
which yields the control of the kinetic energy
R

X qjuj2 6
R

X q0ju0j2 immediately. However, in view of (2.8), this property can
also be guaranteed (especially at the discrete level) without the imposition of the incompressibility condition by modifying
the original momentum equation with adding the nonlinear term 1=4

R
X qðr � uÞu. Noting that this tricky technique is

unnecessary for constant density incompressible flows due to the skew-symmetric property of the trilinear term involving
the nonlinear convective part qu � ru.

In conclusion, the complete equation system of the variable density incompressible flows for developing unconditionally
stable integration schemes can be written as the following system in a conserved form
@q
@t þ u � 5qþ q

2r � u ¼ 0;
q @u

@t þ u � 5u
� �

þrp� mDuþ q
4 ðr � uÞu ¼ f;

r � u ¼ 0:

8><
>: ð2:9Þ
In the above Eqs. (2.9), the additional terms q
2r � u and q

4 ðr � uÞu are consistent since they are all zero ifr � u ¼ 0, and its
meaning will become clear when doing the stability analysis as indicated by Guermond and Salgado [1, Proof of
Theorem 2.1].

3. Description of our new numerical scheme

In this section, we shall propose a new fractional time-stepping method for variable density incompressible flows by
referring the treatment technology of constant density flows and the technique used by Guermond and Salgado for variable
density flows in reference [1]. The method uses a time splitting, solving separately the transport equation for the density in
the first equation of (2.9) and the momentum in the second equation of (2.9). A first-order backward difference (BDF) for the
temporal term is used. The velocity and pressure fields are computed simultaneously for the resolution of the last two equa-
tions in (2.9). We now describe the iterative methods that we proposed.

3.1. Our time splitting method

Let s > 0 be a time step and let us set tn ¼ ns for 0 6 n 6 N :¼ ½T=s�. Let E be a normed space equipped with the norm
k � kE. The space of functions / : ½0; T� ! E such that t 2 ð0; TÞ, the map t ! k/ðtÞkE 2 R is Lp-integrable, is indifferently de-
noted Lpðð0; TÞ; EÞ or LpðEÞ. For any time-dependent function /, we denote
/k
h ¼ /k

hðtkÞ; /k :¼ /ðtkÞ; k ¼ 0;1;2; . . . ;N:
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Now, we first present our time splitting method as follows. Set q0 ¼ q0; u0 ¼ u0, repeat the two following steps for
0 6 n 6 N 6 T=s� 1.

Step 1. Solve new density field:
Find qnþ1 2W as the solution of
qnþ1�qn

s þ un � rqnþ1 þ qnþ1

2 r � un ¼ 0;

qnþ1jC� ¼ aðx; tnþ1Þ:

(
ð3:1Þ
Step 2. Solve new velocity and pressure fields:
Find ðunþ1; pnþ1Þ 2 X�M as the solution of
qn unþ1�un

s þ qnþ1un � runþ1 þrpnþ1 � mDunþ1

þ qnþ1

4 ðr � unÞunþ1 ¼ fnþ1
;

r � unþ1 ¼ 0;
unþ1jC ¼ bðx; tnþ1Þ:

8>>>><
>>>>:

ð3:2Þ
Then the above Eqs. (3.1) and (3.2) can be rewritten into the variational formulations by multiplying these equations with
appropriate test functions and applying integration by parts as follows.
Step 1. Solve new density field:

Find qnþ1 2W with qnþ1jC� ¼ aðx; tnþ1Þ, such that
qnþ1 � qn

s
;w

� �
þ ðun � rqnþ1;wÞ þ qnþ1

2
r � un;w

� �
¼ 0 ð3:3Þ
for any w 2W with wjC� ¼ 0.
Step 2. Solve new velocity and pressure fields:

Find ðunþ1; pnþ1Þ 2 X�M with unþ1jC ¼ bðx; tnþ1Þ , such that
ðqnunþ1;vÞ þ sbðqnþ1un;unþ1;vÞ � sdðv;pnþ1Þ þ 1
4
s~bðqnþ1unþ1;un;vÞ þ sdðunþ1; qÞ þ saðunþ1;vÞ

¼ sðfnþ1
;vÞ þ ðqnun;vÞ ð3:4Þ
for any ðv; qÞ 2 X�M with vjC ¼ 0.

3.2. Finite element approximation

To construct a Galerkin approximation of (3.3) and (3.4), we introduce three sequences of finite-dimensional spaces
Wh; Xh; Mh, for h > 0, with Wh �W;Xh � X and Mh � M. We use Wh; Xh, and Mh to approximate the density, the velocity,
and the pressure, respectively. Assume that the pair of spaces ðXh;MhÞ satisfies the discrete inf–sup condition (cf. [24,25]). So,
we introduce the following finite-dimensional spaces
Wh ¼ fwh 2 C0ðXhÞ \Wj whjK 2 P2ðKÞ; 8K 2 T hg;
Xh ¼ fvh 2 ½C0ðXhÞ�2 \ Xj vhjK 2 ½P2ðKÞ�2; 8K 2 T hg;
Mh ¼ fqh 2 C0ðXhÞ \Mj qhjK 2 P1ðKÞ; 8K 2 T hg;
where PiðKÞ; i ¼ 1;2 represents continuous piecewise (bi) linear subspace on set K. Simultaneously, initial values u0
h ¼ Phu0

and q0
h are given with the L2-orthogonal projection [23].

With the above statements, the standard finite element (FE) approximation formulation of the equations [26] is given as
follows.

Step 1: Solve new density field:
Find qnþ1

h 2Wh with qnþ1
h jC� ¼ aðx; tnþ1Þ, such that
ðqnþ1
h ;whÞ þ sðun

h � rqnþ1
h ;whÞ þ

1
2
sðqnþ1

h r � un
h;whÞ � ðqn

h;whÞ ¼ 0 ð3:5Þ
for any wh 2Wh with whjC� ¼ 0.
Step 2: Solve new velocity and pressure fields:
Find ðunþ1

h ; pnþ1
h Þ 2 Xh �Mh with unþ1

h jC ¼ bðx; tnþ1Þ , such that
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ðqn
hunþ1

h ;vhÞ þ sbðqnþ1
h un

h;u
nþ1
h ;vhÞ � sdðvh; pnþ1

h Þ þ sdðunþ1
h ; qhÞ þ

1
4
s~bðqnþ1

h unþ1
h ;un

h;vhÞ þ saðunþ1
h ;vhÞ

¼ sðfnþ1
;vhÞ þ ðqn

hun
h;vhÞ ð3:6Þ
for all ðvh; qhÞ 2 Xh �Mh with vhjC ¼ 0.
In the next section, we will prove that the above algorithm is stable.

4. Stability analysis of the method

Given the initial data ðq0;u0Þ, we construct the approximate data ðq0
h;u

0
h; p

0
hÞ 2Wh � Xh �Mh, such that
kq0 � q0
hkL1 þ ku0 � u0

hkL2 þ hku0 � u0
hkH1 þ hkp0 � p0

hkL2 6 chlþ1
: ð4:1Þ
The initial pressure p0
h can be computed by the pair ðq0;u0Þ, see [6] for more details.

Henceforth we assume that min
x2X

q0ðxÞ > 0 and the approximate density field q0
h satisfies the following property
a 6 q0
h 6 b; ð4:2Þ
where the parameters a and b are assumed to satisfy the following property
a 6 min
x2X

q0ðxÞ; sup
x2X

q0ðxÞ 6 b: ð4:3Þ
The following Lemma is a classical result, see Guermond [3].

Lemma 1. For / and v regular and v such that n � vjC ¼ 0, we have
Z
X
½/v � r/þ 1

2
/2r � v� ¼ 0:
Next, we start with the stability proof of the system. To avoid irrelevant technicalities, we assume that there is no external driving
force, i.e., f ¼ 0.
Proposition 1. For any s > 0 and any sequence of velocities un
h; n ¼ 0; . . . ;N in L1ðXÞ with bounded divergence and satisfying

un
h � njC ¼ 0, the solution to Eq. (3.5) satisfies:
kqN
h k

2
0 þ

XN�1

k¼0

kqkþ1
h � qk

hk
2
0 ¼ kq0

hk
2
0: ð4:4Þ
Proof. Taking wh ¼ 2qnþ1
h in (3.5) and using the identity 2a � ða� bÞ ¼ a2 � b2 þ ða� bÞ2, we obtain
kqnþ1
h k2

0 � kqn
hk

2
0 þ kqnþ1

h � qn
hk

2
0 þ 2s

Z
X
qnþ1

h un
h � rqnþ1

h þ s
Z

X
ðqnþ1

h Þ2r � un
h ¼ 0: ð4:5Þ
Taking into account the boundary condition on un
h and integrating by parts, owing to Lemma 1, we infer
2s
Z

X
qnþ1

h un
h � rqnþ1

h þ s
Z

X
ðqnþ1

h Þ2r � un
h ¼ 0:
So, we have
kqnþ1
h k2

0 � kqn
hk

2
0 þ kqnþ1

h � qn
hk

2
0 ¼ 0: ð4:6Þ
Adding up the above equality (4.6) from n ¼ 0 to n ¼ N � 1, we obtain the desired result. h

Using the above result, we obtain the following theorem.

Theorem 1. For any s > 0, the solution qn
h; n ¼ 1;2; . . ., of Eq. (3.5) satisfies the following stability estimate
kqnþ1
h k0 6 kq0k0: ð4:7Þ
Theorem 2. Setting rk ¼
ffiffiffiffiffiffi
qk

h

q
, for any s > 0, the solution un

h; n ¼ 1;2; . . ., of Eq. (3.6) with f ¼ 0 satisfies the following stability
estimate
XN

k¼1

krkuk
hk

2
0 þ 2ms

XN

k¼1

kruk
hk

2
0 6 kr0u0k2

0; ð4:8Þ
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kpnþ1
h k0 6 ckr0k0kr0u0k0 þ ckr0u0k2

0ðkq0k0 þ 1Þ: ð4:9Þ
Proof. Taking vh ¼ 2unþ1
h and qh ¼ 2ph in (3.6) and using the identity 2a � ða� bÞ ¼ a2 � b2 þ ða� bÞ2, we obtain
krnunþ1
h k2

0 � krnun
hk

2
0 þ krnðunþ1

h � un
hÞk

2
0 þ 2mskrunþ1

h k2
0 þ

s
2

Z
X
qnþ1

h ðr � un
hÞjunþ1

h j2 þ s
Z

X
qnþ1

h un
h � rjunþ1

h j2

¼ 0: ð4:10Þ
Next, we take wh ¼ junþ1
h j2 in (3.5) and use integration by parts to get
krnþ1unþ1
h k2

0 � krnunþ1
h k2

0 � s
Z

X
qnþ1

h un
h � rjunþ1

h j2 � s
2

Z
X
qnþ1

h ðr � un
hÞjunþ1

h j2 ¼ 0: ð4:11Þ
Adding up (4.10) and (4.11) we obtain
krnþ1unþ1
h k2

0 � krnun
hk

2
0 þ krnðunþ1

h � un
hÞk

2
0 þ 2mskrunþ1

h k2
0 ¼ 0; ð4:12Þ
Adding up over n ¼ 0;1; . . . ;N � 1 gives
XN

k¼1

krkuk
hk

2
0 þ 2ms

XN

k¼1

kruk
hk

2
0 6 kr0u0k2

0; ð4:13Þ

XN

k¼1

krnðunþ1
h � un

hÞk
2
0 6 kr0u0k2

0: ð4:14Þ
Next, taking qh ¼ 0 in (3.6), we get
dðv;pÞ ¼ ðqn
hðunþ1

h � un
hÞ;vhÞ þ sb1ðqnþ1

h ;un
h;u

nþ1
h ;vhÞ �

s
4

b2ðqnþ1
h unþ1

h ;un
h;vhÞ þ saðunþ1

h ;vhÞ: ð4:15Þ
Hereafter, we will use the Poincare inequality
kvk0 6 ckrvk0; 8v 2 X ð4:16Þ
and the Agmon’s inequality:
kvk2
L1 6 ckvk0kAvk0; 8v 2 ðH2ðXÞÞ2 \ X: ð4:17Þ
Using (4.13), (4.14), (4.16) and (4.17), we have
jðqn
hðunþ1

h � un
hÞ;vhÞj 6 ckr0k0kr0u0k0krvhk0; ð4:18Þ

jsb1ðqnþ1
h ;un

h;u
nþ1
h ;vhÞj 6 cskq0k0kr0u0k2

0krvhk0; ð4:19Þ

j s
4

b2ðqnþ1
h unþ1

h ;un
h;vhÞj 6 cskq0k0kr0u0k2

0krvhk0; ð4:20Þ

jsaðunþ1
h ;vhÞj 6 ckr0u0k2

0krvhk0: ð4:21Þ
Combining these estimates with (4.15) and using the discrete inf–sup condition yield
b�kpnþ1
h k0 6 sup

vh2X

ðr � vh; pnþ1
h Þ

krvhk0
6 ckr0k0kr0u0k0 þ cskq0k0kr0u0k2

0 þ ckr0u0k2
0

6 ckr0k0kr0u0k0 þ ckr0u0k2
0ðkq0k0 þ 1Þ: ð4:22Þ
So, we obtain the desired stability result. h
5. Numerical simulations

In this section, we present a series of numerical results to illustrate the accuracy, efficiency and capability of the method
proposed in this paper through one smooth problem with exact solution and three benchmark problems with no exact solu-
tions, namely the problems of viscous Rayleigh–Taylor instability, falling bubble and sloshing tank. In all simulations, the
problem domain X will be partitioned into uniform triangular elements and the ðP2; P2; P1Þ approximation for the density,
the velocity, and the pressure respectively will be used.



Table 1
Rates of convergence and error with different mesh size.

1
h

kq�qhk0
kqk0

Order ku�uhk0
kuk0

Order ku�uhk1
kuk1

Order kp�phk0
kpk0

Order

8 1.13402e�4 = 1.52515e�4 = 4.40883e�3 = 4.6349e�3 =

16 2.11487e�5 2.4228 2.58468e�5 2.5609 1.46537e�3 1.5891 1.12378e�3 2.0442
24 6.07385e�6 3.0769 7.31649e�6 3.1126 6.20704e�4 2.1186 4.80086e�4 2.0976
32 2.25269e�6 3.4478 2.81756e�6 3.3171 3.07712e�4 2.4391 2.61307e�4 2.1144
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5.1. Rates of convergence study

In order to test the accuracy of the algorithm proposed in this paper, we consider a problem with a known analytical solu-
tion. Solving the variable density Navier–Stokes equations (1.1) and (1.2) in the unit square X ¼ ½0;1� � ½0;1� in R2, having the
exact solution
qðx; y; tÞ ¼ 2þ x cosðsinðtÞÞ þ y sinðsinðtÞÞ;

uðx; y; tÞ ¼
�y cosðtÞ
x cosðtÞ

� �
;

pðx; y; tÞ ¼ sinðxÞ sinðyÞ sinðtÞ;
so that the right-hand side to the momentum equation is
f ¼ qðx; y; tÞðy sinðtÞ � x cos2ðtÞÞ þ cosðxÞ sinðyÞ sinðtÞ
�qðx; y; tÞðx sinðtÞ þ y cos2ðtÞ þ sinðxÞ cosðyÞ sinðtÞÞ

 !
:

We use the ðP2; P2; P1Þ approximation for the density, the velocity, and the pressure, respectively. We perform the accuracy
tests with respect to s; h and Re. The mesh partition of X into triangular element.

First, we solve the above mentioned problem for T ¼ 0:5. The time step is chosen small enough so that the error from the
discretization of time can be negligible compared to the space error. We give our results for different mesh size h ¼ hmax,
where hmax is the length of the largest edge of the mesh. We consider Re ¼ 1000. The results are given in Table 1. The accu-
racy and convergence rate of results are displayed by means of the h. From Table 1, we can see that we obtained a better
convergence rates compared with the results presented in the literature [18].

Secondly, computation are made on a fixed mesh size for different Reynolds number
ðRe ¼ 1000;3000;5000;8000;10000Þ. Taking h ¼ 1

8 ; h ¼ 1
16 ; h ¼ 1

24 ; h ¼ 1
32, the results is presented in Fig. 1. From Fig. 1,

we can see that the stability still keeps well when the Reynolds number increases. These demonstrate that our method is
very effective for high Reynolds number.

Next, computation are made on a fixed mesh size and a fixed Reynolds number with different time steps. The computa-
tion has been performed for 0 6 t 6 1. The mesh size is chosen small enough so that the error from the discretization in
space is negligible compared to the time stepping error. The convergence results with respect to s are plotted in Table 2.
From Table 2, we can see that the simulation results coincided with the theory.

5.2. Viscous Rayleigh–Taylor instability

In this Subsection we will illustrate the performance of the method on a realistic problem, namely the Rayleigh–Taylor
instability. The problem has been considered in [1,3,13,18] starting from the results and comments in [27]. We compute
the development of the Rayleigh–Taylor instability in the viscous regime as documented by Tryggvason in [27]. This problem
consists of two layers of fluid initially at rest in the gravity field. It occupies the domain
X ¼ ð�d=2;d=2Þ � ð�2d;2dÞ;
which splits into two region with varying density, the heavier fluid superposed to the light one. The interface is slightly
smoothed since we set at time t ¼ 0:
q0ðx; yÞ ¼
qm þ qM

2
þ qM � qm

2
tanh

y� gðxÞ
0:01d

� �
;

with qM > qm > 0, and gðxÞ ¼ �0:1d cosð2px=dÞ the initial position of the perturbed interface. The difficulty of the problem
essentially depends on:

(1) the density ratio between the light and the heavy fluid, which is measured by the so-called Atwood number
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Fig. 1. Effect of varying h at different Reynolds number.

132 Y. Li et al. / Journal of Computational Physics 242 (2013) 124–137
At ¼ qM � qm

qM þ qm
;

(2) the Reynolds number, defined as



Table 2
Rates of convergence and error in time.

s kq�qhk0
kqk0

Order ku�uhk0
kuk0

Order ku�uhk1
kuk1

Order kp�phk0
kpk0

Order

1
10

6.86335e�3 = 1.97172e�2 = 4.92798e�1 = 1.50103e�1 =

1
20

3.43669e�3 0.9979 1.00461e�2 0.9728 2.50629e�1 0.9754 7.15791e�2 1.0683
1

40
1.72141e�3 0.9974 5.07966e�3 0.9838 1.26527e�1 0.9861 3.49476e�2 1.0343

1
80

8.61434e�4 0.9988 2.55548e�3 0.9911 6.35873e�2 0.9926 1.72524e�2 1.0184
1

160
4.30589e�4 1.0004 1.2818e�3 0.9954 3.18886e�2 0.9957 8.55538e�3 1.0119

1
320

2.14937e�4 1.0024 6.41874e�4 0.9978 1.59896e�2 0.9959 4.24646e�3 1.0106

Fig. 2. The density field, At ¼ 0:5 ðqM ¼ 3;qm ¼ 1Þ; Re ¼ 1000.
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Re ¼ qmd3=2g1=2

l
;

where l > 0 is the dynamic viscosity of the fluid (supposed to be constant in the whole domain) and g is the gravitational
acceleration. For t > 0 the system evolves under the action of a vertical downward gravity field of intensity g; the source
term in the momentum equation is downward and equal to qg.

The equations are made dimensionless by using the following references: qm for the density, d for lengths, and d1=2
=g1=2

for time. So, the reference velocity is d1=2g1=2. We assume that the symmetry of the initial condition is maintained during the
time evolution. The no-slip condition is enforced at the bottom and top walls and symmetry is imposed on the two vertical
sides.

Next, we compare the solutions obtained at different Atwood numbers.



Fig. 3. The density field, At ¼ 0:75 ðqM ¼ 7;qm ¼ 1Þ; Re ¼ 1000.
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� A low Atwood number problem: Setting At ¼ 0:5 ðqM ¼ 3;qm ¼ 1Þ; Re ¼ 1000. The time evolution of the interface of the
density field is displayed in Fig. 2 at times 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8. The results are very close
to those in [1,3,7]. Compared to the old methods, the results show good agreement in the global characteristics of the
flows. And we can only observe some slight difference at large times of the calculation.
� A high Atwood number problem: Setting At ¼ 0:75 ðqM ¼ 7;qm ¼ 1Þ; Re ¼ 1000. For this situation, The time evolution of

the interface of the density field is plotted in Fig. 3 at times 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7. Compared with
the above test, we can observe the similar structure and the global characteristics of the flow in the early stage. At the
same time, we found that the heavy fluid falls faster compared with the low Atwood number problem. The simulation
results coincided with the law of physics and are very close to the results presented in the literature [1,3,7,18].
� A very high Atwood number problem: Setting At ¼ 0:9 ðqM ¼ 19;qm ¼ 1Þ; Re ¼ 1000. As the Atwood value increases, the

sensitiveness of the calculation to the numerical instabilities grows. The downward motion of the heavy fluid increases
with the density difference. The time evolution of the interface of the density field is plotted in Fig. 4. It seems that the
evolution of the interface configuration does not change significantly. But notice that at At ¼ 0:9 it is very difficult to con-
tinue the simulation in the literature[18]. A series of numerical experiments are given to show that this method is more
efficient.

5.3. Falling bubble test

To investigate the capability of our method to work with larger density variations, we give the computational results for
falling bubble test. This simulation is inspired from [18,28]. A heavy ‘‘droplet’’ falls through a light fluid and impacts into the
plane surface of the heavy fluid in a cavity. The computational domain is ð0; dÞ � ð0;2dÞ, where d ¼ 1 and at t ¼ 0 the fluid is
at rest with density:



Fig. 4. The density field, At ¼ 0:9 ðqM ¼ 19;qm ¼ 1Þ; Re ¼ 1000.
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qðx; yÞ ¼
100 if 0 6 y 6 1 or 0 6 r 6 0:2;
1 if 1 < y 6 2 and r P 0:2;

�

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 1:75Þ2

q
. As in [18,28], the equations are made dimensionless by using the following references:

qm for density, d for length,
ffiffiffiffiffiffiffiffi
d=g

p
for time, then, the reference velocity is

ffiffiffiffiffiffi
dg

p
. In the dimensionless equations, the gravity

term is f ¼ ð0;�qÞT and the Reynolds number is defined as in above Section. In our test, the viscosity of the fluid is supposed
to be constant in the whole domain and we have Re ¼ 1000.

The results are displayed in Fig. 5. The figure contain snapshots of the fluid interface. The snapshots show how the ‘‘drop-
let’’ travels up through a light fluid and merges with a light fluid below. As the ‘‘droplet’’ falls, its shape remains spherical due
to the surface tension and the viscosity. As the droplet hits the interface, it merges with the light fluid below and creates
waves on the surface. The simulation results show good agreement with the results presented in the literature.

5.4. Sloshing tank

To investigate the capability of our method to work with very large density variations, a two-fluid flow in a two-dimen-
sional sloshing tank is considered in this Subsection. This test case was also investigated in [29,30]. Following [29,30], the
problem domain is X ¼ ½�L; L� � ½�H;H�, where L ¼ 0:5 m and H ¼ 0:75 m. The interface separating the two phase is initially
given as
y ¼ 0:26þ 0:1 sinðpxÞ:



Fig. 5. The density field, Re ¼ 1000.

Fig. 6. The density field at different times.
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The densities of the fluids are q1 ¼ 1:0 kg=m3 and q2 ¼ 1000:0 kg=m3, and the dynamic viscosities are l1 ¼ 0:001 kg=ðmsÞ
and l2 ¼ 1:0 kg=ðmsÞ. The lighter fluid superposed to the heavy one. No surface tension is considered here, so the volume
force is f ¼ ð0;�0:1 m=s2ÞT . Slip-boundary conditions are assumed along the walls of the tank, and a zero velocity field is
initially assumed. The spatial approximation is performed with ðP2; P2; P1Þ for density, velocity and pressure, respectively.
The time-step length is s ¼ 0:015 s and the situation is observed for t ¼ ð0 s;20 sÞ.

The results are displayed in Fig. 6. The evolution of the interface at selected points in time. For confirmation, these pat-
terns may be compared to the respective patterns displayed Fig. 9 in [29] and Fig. 15 in [30], we can observe the similar
results.
6. Conclusion

In this paper, we proposed a new fractional time-stepping method to the case of incompressible viscous flows with var-
iable density. We have rewritten the momentum equation in a new form to guarantee that the spatial discretization errors
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associated with the satisfaction of the mass conservation cannot affect the balance of the kinetic energy of the fluid. The orig-
inality of our approach is that we have used different numerical methods to evaluate the evolution of the velocity and pres-
sure. The new method uses a time splitting scheme to separately solve the transport equation and the momentum equation.
The new scheme has been used to solve the momentum equation associated to the divergence constraint by a finite element
method. The stability proof of the method we proposed for variable density flows was given in the paper.

To verify the correctness of the method, we have applied it to the test cases previously considered in the literature. The
spatial approximation is performed by means of Lagrangian finite elements with P2 interpolation for density and velocity
and P1 interpolation for pressure. First, the rates of convergence of the method were given and we obtained a better conver-
gence rates compared with the results presented. Then, the simulation of the viscous Rayleigh–Taylor instability was also
investigated. The simulation results coincided with the law of physics and are very close to the results presented in the lit-
erature. Compared with some established methods, numerical results show that new method exhibited good stability behav-
ior even for large time steps or the high Atwood number.
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