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1. Introduction

Generating multi-mode entanglement with controllable 
quant um states is important to realize entanglement-based 
quantum information processing, such as quantum routing 
[1], quantum key distribution (QKD) [2, 3] and long-distance 
quantum communication [4]. Recently, the interest in utilizing 
continuous variables (CV) of optical fields to generate squeez-
ing and entanglement states is increasing due to its applicabil-
ity in quantum information, where field fluctuations in one of 
the quadratures are reduced below the shot noise. This can 
be used in overcoming the shot-noise precision restrictions 

in optical measurements [5] and realization of sub-shot-noise 
quantum imaging [6]. Generally speaking, techniques for pro-
ducing the entanglement states are based on either parametric 
down-conversion [7, 8] in solid-state crystal or spontaneous 
parametric four-wave mixing (SP-FWM) in atomic vapors. 
Nowadays, the EPR (Einstein–Podolsky–Rosen) entangled 
state of light with quantum correlations of 8.4 dB for both 
amplitude and phase quadratures are experimentally produced 
[9] using a single non-degenerate optical parametric amplifier. 
However, bi-photons generated from spontaneous paramet-
ric down-conversion (SPDC) in nonlinear crystals have very 
wide bandwidth (>THz) and ultra-short coherence time (<ps) 
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Abstract
We report a theoretical study into the two- and three-mode entanglement inside an atom-
like optical cavity. A five-level system is considered and the influence of the multi-dressed 
parametric amplification four-wave mixing (PA-FWM) process on the quantum correlation 
of fluctuation spectra is researched. Three-mode entanglement is determined by the coupling 
of two nonlinear gains; one of enhanced gains via the dressing state plays a dominant role in 
controlling and optimizing the profile of three-mode entanglement via vacuum Rabi splitting, 
enhancement/suppression of entanglement as well as two-mode. Specifically, increasing the 
quantity of dressing fields may result in the single-channel entanglement turning into nonlocal 
multichannel (multiple anti-crossing behaviors). Moreover, these entanglement channels can 
be squashed via the lateral squeezing effect of the cavity. Such multichannel entanglement has 
potential applications in nonlocal quantum imaging and quantum key distribution.

Keywords: parametric processes, quantum fluctuations, optical parametric amplifiers, 
cascade four-wave mixing
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[10]. In contrast, the SP-FWM process in atomic ensemble 
demonstrates a performance that is narrow-band (<MHz) and 
bi-photons with a long coherence time (>0.1–1.0 µs) [11]. 
Such a long coherence time allows us to access and manipu-
late the spatial entanglement directly. However, achieving a 
higher degree of entanglement via FWM in atomic vapors is 
limited by spontaneous emission noise. As a result of atomic 
coherence, electromagnetically induced transparency (EIT) 
[12] and dressed multi-wave mixing [13, 14] attract a lot of 
attention. Researches have demonstrated that the spontaneous 
emission noise can be reduced or eliminated by EIT [12]. In 
the EIT window the transmission and the absorption spec-
trum agrees well with calculations based, experimentally, on 
the double-dressing density-matrix equations[15]. Currently, 
in hot rubidium vapor a large number of modes of quantum-
correlated beams [16] have been generated by using multiple 
FWM processes.

In previous studies, two beams of light could be quantum 
mechanically entangled through correlations of their phase 
and intensity fluctuations [11]. Three strong quantum correla-
tion bright beams have been produced via two cascade FWM 
(TC-FWM) in experiment [16]. The influence of dark states on 
two-mode optical entanglement in rubidium atomic ensemble 
[17] and the transitions between the bright and dark states by 
nested and parallel double-dressing FWM have been reported 
[18]. The essential characteristic of such enhanced nonlinear 
optical processes is the controllable nonlinear susceptibil-
ity due to atomic coherence. It can be used to generate the 
strongly correlated three-mode bright beams [19] in a cavity 
with high efficiency and narrow bandwidth. Meanwhile, spa-
tial-mode multiplexing for entanglement distribution and the 
suitability of FWM in atomic vapors as a resource for QKD 
schemes have been demonstrated [20]. At present, multi-
particle entanglement has been reported comprehensively, 
and there are some experiments that have realized one-to-one 
entanglement distribution [21, 22], but up to now the invest-
igation on quantum multichannel entanglement that realizes 
secure key one-to-multiple distribution in a Pr3+: YSO crystal 
has not been reported theoretically or experimentally.

In this letter, we extend multi-dressed two-mode entangle-
ment to the three-mode case and explore tripartite CV entan-
glement in an atomic-cavity coupled system. Here, we focus 
on the role of the multi-dressed state and nonlinear gain on 
the three-mode entanglement process. Based on the standard 
criteria proposed by van Loock et al [23] and enhanced non-
linear optical processes, we propose a scheme for achieving 
CV two- and three-mode entanglement. First, we investigated 
three-channel entanglement of two-mode sequential double 
dressing. Second, we investigated multichannel three-mode 
entanglement coming from TC-FWM processes with sequen-
tial and parallel double dressing and triple dressing, respec-
tively. The entanglement maximum peak is determined by 
nonlinear gain and the entanglement profile is modified by the 
dressing field. Further, our system can be used directly in mul-
tichannel nonlocal quantum imaging. The quality of imaging, 
including the contrast and resolution, is significantly improved 
compared with the two-mode entanglement state [24] and 
can be well controlled by multiple parameters. The proposed 

method is also used in the implementation of a three-mode 
entangled source to achieve multichannel communication, for 
example, realizing secure key one-to-multiple distribution in 
QKD. This paper is organized as follows. In section  2, we 
describe the basic physics for the parametric amplification 
four-wave mixing (PA-FWM) and TC-FWM processes. Then, 
we calculate the variance for the entanglement criterion of 
two- and three-mode entanglement. In section 3, we present 
the entanglement properties with the multiple dressed fields. 
In section 4, we conclude the paper.

2. Basic theory

2.1. TC-FWM in atom-like cavity

A theoretical scheme for the preparation of three-mode entan-
glement is carried out in a sample of 0.05% rare-earth Pr3+ 
doped Y2SiO5 (Pr3+: YSO) crystal, which has good perfor-
mance and the atomic coherence are important materials for the 
research and development on some nonlinear optics, quantum 
computing and optical information storage topics. Figure 1(a) 
illustrates the simplified energy-level diagram of Pr3+: YSO. 
We can analyze of the triplet energy level 3H4 and doublet 
energy level 1D2 since it is easy to identify them reliably by 
investigating the optical spectrum of the Pr3+ ions. The degen-
eracy of the energy levels of the Pr3+ is removed completely by 
the crystal field of YSO, where the terms in 3H4 and 1D2 states 
are split into nine and five Stark components, respectively. The 
Pr3+ impurity ions can occupy two nonequivalent cation sites 
(i.e. sites I and II, respectively) in the YSO crystal lattice. The 
energy levels of site I are labeled by a Greek letter without 
asterisk and the ones for site II with an asterisk as shown in 
figure 1(a). Actually, with induced dipole–dipole interaction, 
the coupling between Pr3+ ions localized at different cation 
vacancies in the YSO crystal can occur, so one can treat the 
two ions (at different sites) as a hetero nuclear-like molecule 
[25]. Therefore, we can construct a five-level diagram for the 
Pr3+ ions in Pr3+: YSO crystal by coupling the corresponding 
laser beams as indicated in figure 1(b). The Stark level δ0, δ1 
and δ2 of the ground state 3H4 and the lowest Stark level γ0 
and 0γ

∗ of excited-state 1D2 are selected to couple with each 
other. Three corresponding laser beams are E1 (frequency ω1, 
wave vector k1, Rabi frequency G1) driving δ γ∗〉( ) ↔ 〉( )0 10 0  
transition, E2 (ω2, k2, G2) driving 0 20 0δ γ〉( ) ↔ 〉  and E3 
(ω3, k3, G3) driving δ γ〉( ) ↔ 〉3 21 0. Next, we introduce the 
three-mode entanglement via TC-FWM in figure 1(b). Such 
cascade processes consist of two cascades involving closed-

loop SP-FWM in a Λ-type 0 2 30 0 1δ γ γ( 〉( ) ↔ 〉( ) ↔ 〉( )) and 
a V-type 0 1 20 0 1δ γ γ( 〉( ) ↔ 〉( ) ↔ 〉( )) three-level sub-system. 
Two sub-systems can generate two kinds of non-degenerate 
SP-FWM processes by coupling the corre sponding laser fields. 
When there are pumping beams k2 and k3 (propagating in the 
opposite directions), the Λ-type three-level subsystem gener-
ates two SP-FWM signals ES2 (ωS2, kS2, GS2) and ES3 (ωS3, kS3, 
GS3). Two entangled signals kS2 and kS3 are generated along 
different directions and satisfy phase-matching conditions 
kS2  =  k2  −  kS3  +  k3 and kS3  =  k3  −  kS2  +  k2, respectively. 

Laser Phys. Lett. 13 (2016) 115701
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The conservation of energy is ωS2  +  ωS3  =  ω2  +  ω3. The gen-
erating frequency is i iω ϖ δ= +  (i  =  S2 and S3); here iϖ  is 
center frequency and δ is the small fluctuation around ωi. Since 
the SP-FWM process absorbs two photons (E2 and E3) and 
produces one Stokes (ES2) and one anti-Stokes (ES3) photon 
simultaneously, the two output photons of the SP-FWM process 
are highly correlated. Similarly, in the V-type sub-system the 
SP-FWM signals ES1 (ωS1, kS1, GS1) and ES2 are obtained from 
the incident beams E1 and E2. kS1 and kS2 satisfy phase-match-
ing conditions kS2  =  k1  −  kS1  +  k2 and kS1  =  k1  −  kS2  +  k2, 
and energy conservation ωS1  +  ωS2  =  ω1  +  ω2. Here, the 
fluctuations of the entangled signals ES1, ES2, and ES3 have 
zero on average and quantum-correlate with each other. The 
connection between these two involved closed-loop SP-FWM 
processes (Λ-type and V-type in figure  1(b)) mentioned 
above is that the cascade processes share the same pumping 
beam E2 and output beam ES2 both in frequency domain and 
 spatial domain. TC-FWM is similar to the SP six-wave mix-
ing (SWM) with the phase conditions kS1  +  kS2  +  kS3  =  k1  +   
k2  +  k3.

Secondly, we present experimental setup of three-mode 
entanglement via TC-FWM in figure 1(c). Here, schematics 
of three-mode entanglement with incident beams E1, E3 and 
E2 pass through the Pr3+: YSO atomic vapor in the opposite 
directions. Three entangled signals kS1, kS3 and kS2 will form 
three output cavity modes (aS1

o� , aS3
o�  and aS2

o�  in figure 1(c)) and 
are detected by three avalanche photodiode detector devices. 
At the same time, to ensure high conversion efficiency of 

SP-FWM and suppressed collinear resonance fluorescence, 
we should notice that there is a small angle between k1 and 
k3 to separate aS3

o�  and aS1
o�  as shown in figure 1(c). If there 

is no seeding to each SP-FWM, the output states will term 
as three-mode squeezed vacuum states. When TC-FWM is 
injected with seeding beams a 1

in
Ѕ� , a 2

in
Ѕ�  and a 3

in
Ѕ�  (kS1, kS2 and 

kS3 channels, correspondingly), the quant um gain can be 
enhanced, and the output states are three-mode squeezing 
quantum amplified states and the process becomes PA-FWM. 
In particular, when the incident beam k1 is blocked in fig-
ure  1(c), we can achieve the two-mode entangled aS2

o�  and 
aS3

o�  via PA-FWM in the Λ-type subsystem. Here, the ring 
cavity is formed by four mirrors with a longitudinal cavity 
length of 17 cm. The mirrors M3 and M1 are input and output 
mirrors with the reflectance r3 (r1) and transmittance t3 (t1) 
satisfying the condition r t 1i i

2 2+ =  (i  =  1, 3), while M2 and 
M4 are highly reflective mirrors in figure 1(c). Cavity-mode 
scanning and locking can be implemented by a PZT behind 
M4. Since we do not consider Doppler effects, our analy-
sis is also suitable for standing-wave cavities. For the limit 
of the cavity, the conical emission disappears. However, if 
three photons are prepared simultaneously, the entangle-
ment amongst them still exists. Thirdly, considering the 
three incident beams’ intensity condition E2  >  E3 and E3 
� E1, then ES1, ES2 and ES3 becomes dressed PA-FWM. To 
simplify calculation, we consider ωS1, ωS2 and ωS3 as single-
frequency light (i.e. δ  =  0), the corresponding multi-dressed 

Figure 1. (a) Simplified energy-level diagram of Pr3+ ions in an YSO crystal. (b) Schematics diagram of five-level atom-like system 
in Pr3+: YSO crystal for triple-photon generation by TC-FWM, made up of a Λ-type and a V-type three-level subsystem. Δi: frequency 
detuning of Ei (i  =  1–4). δ: ground-state energy levels, γ: excited-state energy levels. (λ[|0〉(δ0) ↔ |2〉(γ0)]  =  607.94 nm, λ[|0〉(δ0) 
↔ |1〉( 0γ

∗)]  =  605.99 nm, λ[|3〉(δ1) ↔ |2〉(γ0)]  =  609.2 nm, λ[|4〉(δ2) ↔ |2〉(γ0)]  =  611.4 nm). (c) Experimental setup of three-mode 
entanglement via PA-FWM. PBS: polarizing beam splitter, PZT: piezoelectric transducer. (d) Double and triple dressed state diagrams, 
respectively.
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state diagrams are shown in  figure 1(d). Based on the dressed 
state analysis, two-photon resonance results in the dark state, 
and the resonances of coupling field with the dressed state 
leading to the bright state. Through scanning different cav-
ity detuning Δ and field detuning Δ1 (Δ2, Δ3), spectrum 
variances of entanglement will present bright-state and dark-
state controllable conversion.

Generally, the fluctuations of entangled photons ES1, 
ES2, and ES3 are quantum-correlated, and they can be used 
to prepare CV three-mode quadrature amplitude or phase-
squeezed state of the optical field. In addition, it has been 
shown how to produce genuinely entangled multi-mode 
states by van Loock [23], and we can conclude that the 
sufficient inseparability criterion for any CV two- and  
three-mode entangled states: δ δ− + + <( )〉 ( )〉X X Y Y 12

1 2
2

1 2   

and δ δ− + + + <( )( )〉X X g Y Y Y 12
2 3

2
1 1 2 3 , δ − +( )X X2

3 1  

Y g Y Y 12
1 2 2 3δ + + <( ) , X X Y Y g Y2

1 2
2

1 2 3 3δ δ− + + +( )( )  

< 1. Where g1, g2 and g3 are the optical gain adjustable factor. 
Such inseparability criterion can be adjusted by the dressing 
field and nonlinear gain. If these inequalities are established, 
the correlation variance is smaller than the corresponding 
SNL. In this case, the output field is a CV entangled state of 
the optical field. The smaller the correlation variance is, the 
higher the entanglement degree is.

2.2. Multi-mode entanglement of PA-FWM in atom-like cavity

Generally, considering that the pump fields E1, E2 and E3 
are much stronger than three outputs of cascaded SP-FWM 
(ES1,ES2 and ES3), they are treated as classical fields and 
quant um fields (described by operators as aS1� , aS2�  and 
aS3� ), respectively. In Λ-type and Λ-V-type energy level sys-
tem, under the dipole approximation and the rotating wave 
approximation, the interaction Hamiltonian describing two-
mode entanglement can be expressed as

H a ai H.c..I S S-2 1 2 3κ= ++ +� �� � (1)

Similarly, the three-mode entanglement can be described by a 
parametric interaction:

H a a a ai i H.c..I S S S S-3 1 1 2 2 2 3κ κ= + ++ + + +� � � �� � � (2)

The equation (2) is responsible for the entanglement among 
the three cavity modes. Each SP-FWM process generates aS1

+�  
and aS2

+�  in V-type three-level systems and aS3
+�  and aS2

+�  in Λ-type 
three-level systems, simultaneously, which represent the 
Boson-creation operator acting on the electromagnetic excita-
tion of the Stokes and anti-Stokes channel. Where κ1 and κ2 are 
two third-order nonlinear coefficients proportional to the non-
linear susceptibility of the medium and amplitudes of incident 

fields, namely: κ χ µ ρ ε= =′ �//
( )

/
( )

/E E N GS S S S1 1
3

2 3 F
2

2 3
3

0 2 3  

and κ χ µ ρ ε= =′ �//
( )

/
( )

/EE N GS S S S2 2
3

1 2 F
2

1 2
3

0 1 2 . Here, N is 

the atomic density, and Fµ  is the dipole matrix element of the 
FWM transition. Next, we can only consider nonlinear coef-

ficient κ1 ( S23 3
3( )ρ ) in two-mode and consider κ1 ( S23 3

3( )ρ ) and κ2 

( S20 2
3( )ρ ) in three-mode entanglement, simultaneously. The gen-

erated entangled photos in the SP-FWM process are related to 
the nonlinear coefficient κi (i  =  1, 2), which can be modified 
by the dressing effects induced by E2 and E3.

We adopted the dressing perturbation theory to obtain the 
density-matrix elements of the SP-FWM fields based on the 
strong-field coupled equations. Under the weak-field limit, the 
dressed FWM can be considered as a coherent superposition 
of a pure FWM process. For a Λ-type system, according to the 
Liouville pathways [13, 18] the density-matrix elements can 
be obtained by solving the density-matrix equations via the 

perturbation chain 00
0

20
1

30
2

20S2
32 S3 3→ →( ) ( ) ( ) ( )ρ ρ ρ ρ→

ω ω ω−
 (Stokes sig-

nal); the corresponding third-order density-matrix elements 
for kS2 are

ρ =
−
Γ ′

∗
( ) G G G

d d

i
,S

S
20 2
3 2 3 3

20 30 20
 (3)

where Gi  =  µijEij/ħ, µij is the dipole momentum, Γij is the trans-
verse decay rate between levels →i j , d20  =  Γ20  +  iΔ2, 
′d20  =  Γ20  +  iΔ3. Similarly, we can obtain the density-matrix 

element for kS3 via the pathway 33
0

23
1

03
2

23
3S3 2 2→ →( ) ( ) ( ) ( )ρ ρ ρ ρ→

ω ω ω
 

(anti-Stokes signal) as

G G G

d d

i
,S

S
23 3
3 2 2 3

23 03 23

ρ =
−
Γ ′

∗
( )

 (4a)

where d23  =  Γ23  +  iΔ3, ′d23  =  Γ23  +  iΔ2. And considering the 
dressing effect of E2, the density-matrix element is given by

G G G

d G G d d

i

/ /
,S

S
23 3
3 2 2 3

23 3
2

33 2
2

03 03 23

ρ =
−

+ Γ + Γ ′

∗

( )
( )

 (4b)

where d03  =  Γ03  +  i(Δ3  −  Δ2). The strong pump E2 
through dressing splitting level 2〉 produces homologous 
primary dressing states G2±〉. The Hamiltonian for pri-

mary energy can be written as ̂
⎡
⎣
⎢

⎤
⎦
⎥H

G

G

0

1 i
2

2 2
=−

− ∆
′

∗�
( )

;  

from the equation  λ± = ±′ ±〉 〉̂H G GG2 22
, we can obtain  

eigenvalues λ = −∆ + ∆ ++ ( )/G4 2G 2 2
2

2
2

2
 and G2λ =−  

G4 22 2
2

2
2−∆ − ∆ +( )/ , which define the position of level 

+〉G2  and −〉G2  relative to level 2〉. Considering the sequen-
tial double-dressing effect of E2 and E4, we can obtain the 
density-matrix element

G G G

d G G d G d d

i

/ /
,S

S
23 3
3 2 2 3

23 3
2

33 2
2

03 4
2

43 03 23

ρ =
−

+ Γ + + Γ ′

∗

( / )
( )

 (4c)

where d43  =  Γ43  +  i(Δ3  −  Δ4). For the sequential double-
dressing FWM, the outer dressing field E4 (ω4, k4, G4) drives 
the transition δ γ〉( ) ↔ 〉4 22 0, and the inner dressing field 
E2 dresses level 2〉 (figure 1(d1)). When E2 and E4 sequen-
tially dress each other, the primarily dressed states ±〉G2  are 
split into secondary dressed states G G4 2± ±〉, namely E4 
splits ±〉G2  into G G4 2± +〉 if Δ4  >  0, or splits G2−〉 into 
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± −〉G G4 2  if Δ4  <  0. The Hamiltonian for secondary energy 

can be written as 
⎡

⎣
⎢

⎤

⎦
⎥H

G

G 0
4 4

4

″=−
∆′
∗� , where λ∆ =∆ −′ ±G4 4 2 . 

From the relation ̂H G G G GG G4 2 4 24 2
″ λ± ± = ± ±± ±〉 〉, we 

can obtain eigenvalues λ = ∆ ± ∆ +′ ′± + ( )/G4 2G G 4 4
2

4
2

4 2  or 

G4 2G G 4 4
2

4
2

4 2λ = ∆ ± ∆ +′ ′± − ( )/ . Because of the double-

dressing effect, S23 3
3( )ρ  is modified directly by the intensity G2

2 
and G4

2.
When considering the parallel double-dressing effect of E2 

and E4, the density-matrix element can be given by

ρ =
−

+ Γ + Γ +′ ′

∗

( ) ( )/
( ) G G G

d G G d d G d

i

/ /
.S

S
23 3
3 2 2 3

23 3
2

33 2
2

03 03 23 4
2

43
 (4d)

Where d43′   =  Γ43  +  i(Δ2  −  Δ4). Here, this double-dressing 
scheme is called a parallel dressing scheme because the two 
dressing fields are independent and parallel-dressed levels 〉2  
and 〉0  (figure 1(d1)), respectively. And two dressing terms 
G i2

2
03 3 2/ [ ( )]Γ + ∆ −∆  and G i4

2
43 2 4/ [ ( )]Γ + ∆ −∆  are par-

allel in equation (4d).
Last, considering the triple-dressing effect of E2, E3 and 

E4 simultaneously in figure 1(d2), the density-matrix element 
is obtained:

ρ =
−

+ Γ + + Γ +′ ′

∗

( ) ( )/ /
( ) G G G

d G G d G d d G d

i

/ /
.S

S
23 3
3 2 2 3

23 3
2

33 2
2

03 4
2

43 03 23 3
2

03

 (4e)

Where d03′   =  Γ03  +  i(Δ2  −  Δ3). When coupled with single 
atom-like cavities, the dressing terms G2

2, G3
2 and G4

2 in the 
denominator (dressing effect) of equation  (4), which results 
from the resonantly induced spontaneous florescence by 
E2 (equation (4b)) or E2  +  E4 (equations (4c) and (4d)) or 
E2  +  E3  +  E4 (equation (4e)) can cause the vacuum-induced 
Rabi splitting.

Similarly, in the V-type system we can obtain the 
density-matrix element for kS1 and kS2 via the path-

way 00
0
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1

00
2

10
32 S2 1→ →( ) ( ) ( ) ( )ρ ρ ρ ρ→

ω ω ω−
 (anti-Stokes signal) and 

00
0

10
1

00
2

20
31 S1 1→ →( ) ( ) ( ) ( )ρ ρ ρ ρ→

ω ω ω−
 (Stokes signal) as

ρ =
−

′ ′

∗
( ) G G G

d d d

i
,S

S
10 1
3 1 2 2

20 00 10
 (5)

G G G

d d d

i
.S

S
20 2
3 1 1 2

10 00 20

( )

″
ρ =

− ∗

 (6)

Where d10′   =  Γ10  +  iΔ2, d00′   =  Γ00  +  i(Δ2 – Δ1), 
d10  =  Γ10  +  iΔ1. d00  =  Γ00  +  i(Δ1 – Δ2) and d20″   =  Γ20  +  iΔ1.

Last, we calculate amplitude quadrature and phase quadra-
ture summation of three-mode squeezing from the frequency 
domain. According to the Heisenberg motion equation: 

a t a Hd d , ii i I/ [ ]/=� � � and the input-output theory developed by 
Gardiner and Collett, the motion equations of two-mode can 
be written as

a

t
a a a a

d

d
i e 2 ,S

S S S S
2

2 c 2 1 3
i in

2
p( )γ γ κ γ= − ∆ − + + +θ+�

� � � � (7a)

a

t
a a a a

d

d
i e 2 .S

S S S S
3

3 c 3 1 2
i

3
inp( )γ γ κ γ= − ∆ − + + +θ+�

� � � � (7b)

Additionally, the motion equations of three-mode can be 
obtained as

a

t
a a a a

d

d
i e 2 ,S

S S S S
1

1 c 1 1 2
i in

1
p( )γ γ κ γ= − ∆ − + + +θ+�

� � � � (8a)

a

t
a a a

a a

d

d
i e

e 2 ,

S
S S S

S S
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2 c 2 1 1
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2 3
i

2
in

p

p

γ γ κ

κ γ

= − ∆ − + +
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θ
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+

+

�
� � �

� �

( )
 

(8b)

a

t
a a a a

d

d
i e 2 .S

S S S S
3

3 c 3 2 2
i

2
inp( )γ γ κ γ= − ∆ − + + +θ+�

� � � � (8c)

Where ai
in�  (i  =  S1, S2 and S3) denotes the injected field opera-

tor, θp is the relative phase between pump lights and the seed-
ing lights, γ denotes the decay rate of signals, and γc is the 
inter-cavity losses.

Taking the Fourier transformation ∫ω π= ω−� �( ) ( ) /O tO td e 2ti  

of equations (7) and (8), we can get aS2�  and aS3�  of two-mode 
and aS1� , aS2�  and aS3�  of three-mode. The amplitude and phase 
operator are described with the electromagnetic field anni-
hilation operator a X iYi i i= +� ��  and the commutation rela-
tion is a a, 1i i[ ] =+� � . Then, considering boundary condition 
a a a2i i i

o in( ) ( ) ( )ω γ ω ω= −  the inseparability criterion of the 
two-mode entanglement state is given by

δ δ

γ κ γ ω δ ω δ ω

γ ω δ ω δ ω
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2
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c
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(9)

Where X X X 2d S S
in

2
in

3
in

1
( )/= +� � � , X X X 2d S S

in
2

in
3

in

2
( )/= −� � � , Y d

in

1
=�  

Y Y 2S S2
in

3
in

+� �( )/ , Y Y Y 2d S S
in

2
in

3
in

2
( )/= −� � � . X d

in

1
� , X d

in

2
� , Y d

in

1
�  and 

Y d
in

2
�  are the amplitude quadrature summation, and difference, 
phase quadrature summation and difference, respectively. 
Equation (9) intimates that two-mode entanglement is deter-
mined by nonlinear coefficient κ1.

Similarly, the inseparability criterion of three-mode entan-
glement with θp  =  0 is given by
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Where 2
1
2

2
2κ κ κ= +  and 2

c
2 2( ) ( )η γ γ ω= + + ∆+ .X i

in�  and  
Y i

in�  are the amplitude and phase quadratures of the input 
modes. Equations  (10a)–(10c) intimate that three-mode 
entanglement is related to three optical gain adjustable factors 
g1, g2 and g3 and two nonlinear coefficients κ1 and κ2. The 
following investigation on quantum-correlation variances is 
based on the criterion shown in equations (9) and (10a)–(10c)

3. Numerical simulation and analysis

3.1. Double-dressed two-mode entanglement multichannel  
in atom-like cavity

In this section  we will present the results of the numerical 
calculation. To simplify the presentation, the parameters are 
normalized to γ  +  γc. We define SNL as shot-noise limit 
with nonlinear gain coefficients G1(κ1)  =  cosh2(κ1)  =  0 and 
G2(κ2)  =  cosh2(κ2)  =  0, and our condition is SNL  =  0 dB. 
This means the entanglement is equivalent to the correlation 
variances which lie below zero, and it is ‘noise’ when the vari-
ances are greater than or equal to SNL. When the injection 
field is a coherent field, and its fluctuations are the same as the 
vacuum fluctuations, then

δ ω δ ω δ ω

δ ω δ ω δ ω

= = =

= = =� � �

� � �( ) ( ) ( ) /

( ) ( ) ( ) /

X X X

Y Y Y

1 4,

1 4.

S S S

S S S

2
1

in 2
2

in 2
3

in

2
1

in 2
2

in 2
3

in

Firstly, we investigate two-mode entanglement under the 
influence of the sequential double-dressing effect of the strong 
pumping beams E2 and E3 in the Λ-type three-level system. 
Figure 2 shows the 3D and contour-line simulation of the cor-

relation variances δ δ− + + <� �� �( ) ( )X X Y Y 1S S S S
2

2
0

3
0 2

2
0

3
0

 

via equation  (9), which gives the panorama of output cav-
ity mode under different conditions. As declared in [17], we 
have known the entanglement profile can be modified by a 
single dressing field through vacuum Rabi splitting, vacuum-
induced enhancement and suppression of entanglement. As 
shown in figures 2(a) and (b), scanning Δ2 and Δ3 at Δ  =  0 
in figure  2(a1) and Δ and Δ2 (Δ3) at Δ3 (Δ2)  =  0 in fig-
ure 2(a2) without the dressing effect, it always comes out as 
an inverted single-peak (one-channel) stand for an all-bright-
state, with resonant laser frequency and cavity frequency 
(i.e. Δ2  =  Δ3  =  Δ  =  0) the maximum entanglement is  −30 
dB in figures 2(a1) and (a2). Considering the single dressing 
effect of E2, the typical vacuum Rabi splitting of entangle-
ment appears when set to G2  =  30 MHz and scan Δ and Δ3 at 
Δ2  =  0 in figure 2(b2), the left and right peaks of figure 2(b2) 
correspond to the |G2+〉 and |G2−〉 levels created by E2 as 
show in figure  2(d1), respectively. The maximum entangle-
ment doublet is located asymmetrically due to Δ2  =  0 and 
the maximum entanglement is  −20 dB. When scan Δ2 and 
Δ at Δ3  =  0 in figure  2(b3), we can see that the quantum 
variances profile shows a pure suppression of entanglement 
duo to real energy level |2〉 turning into a virtual energy 
level (dark state) as shown in figure  2(d2), and the dressed 

suppression condition is Δ2  =  Δ3  =  0. Specifically, when Δ2 
and Δ are scanned at Δ3  >  0 in figure 2(b4), the variances 
change from pure-suppression (dip) (figure 2(b3)) to left-
enhancement (peak)-right-suppression (dip). Here, ω23  >  ω3, 
the coupling field can only resonate with |G2−〉 as shown in 
figure 2(d3); firstly satisfies the dressed enhancement condi-
tion 0G3 2λ∆ + =− , then the dressed suppression condition 
Δ2  =  Δ3, so the correlation variances is the left-bright-right-
dark state (figure 2(b4)). Meanwhile, the anti-crossing behav-
ior of entanglement is obtained in figure 2(b1) when scan Δ3 
and Δ2 at Δ  =  0, which clearly exhibits a dip and two thick 
peaks (two-channel) in figure 2(b1), the suppression condition 
is at the line Δ2  =  Δ3. From figures 2(a) and (b), we can know 
that the single-channel entanglement without dressing effect 
may be split into double channel via single dressing effect, 
which is decided by the dressing term G i2

2
03 3 2/[ ( )]Γ + ∆ −∆  

in equation (4b).
Next, we consider the sequential double-dressing effect  

of E2 and E4 influence on entanglement profile in 
 figures  2(c1)–(c6). Through adding a dressing field E4 the 
triple-channel appears in figures  2(c1), (c2), (c5) and (c6). 
According to equation (4c), the reason why a triple-bright-state  
or dual-dark state (dressed pictures as illustrated in 
 figure  2(d4)) are generated is that the E2 creates homolo-
gous primary dressing states |G2±〉. Then, E4 is tuned close 
to one of the primarily dressed states |G2−〉 (or |G2+〉) and 
through sequential dressing coupling |G2−〉 generates the two 
secondary dressed states |G4  ±  G2−〉, namely there is inter-
action and competition between the two dressing fields of 
sequential mode. The double-dressing vacuum Rabi splitting 
of entanglement (figure 2(c2)) appears when scan Δ and Δ3 
go from negative to positive at Δ2  =  Δ4  =  0. It is an inverted 
two-dip and three-thin-peak (three-channel) profile generated 
by sequential E2  +  E4 in figure 2(c2). In this case, both E2 
and E4 contribute to two bright states and one dark state but, 
due to two dressing field windows induced by the E2 and E4, 
overlap and interact with each other, one of the primary split-
ting doublets is split into the secondary dressed doublet. The 
three peaks in figure 2(c2), from left to right, correspond to 
|G2+〉, |G4  +  G2−〉 and |G4  −  G2−〉 as shown in figure 2(d4). 
One can see the double-dressing anti-crossing behaviors of 
entanglement express clearly the three-bright-state (three 
thick peaks) and dual-dark-state when Δ2 and Δ3 are scanned 
in figure 2(c1) (the maximum entanglement is  −15 dB), Δ2 
and Δ4 are scanned in figure 2(c5) and Δ3 and Δ4 are scanned 
in figure 2(c6), respectively. Here, all of the correlation vari-
ances are suppressed twice (two dark states) along two dif-
ferent curves among three plump peaks. When Δ2 and Δ are 
scanned at Δ3  =  Δ4  =  0 in figure 2(c3), there will be twice 
the two-photon resonance absorption (figure 2(d5)), so cor-
relation variances are one-bright (|G4  +  G2−〉) and two-dark 
states (|2〉 and |G2−〉), and the dressed suppression condition 
is Δ2  =  Δ3  =  ±30 MHz. Meanwhile, the double dressed 
enhancement/suppression of entanglement can be observed 
when scan Δ2 and Δ go from negative to positive at Δ4  =  0 
and Δ3  =  10 MHz in figure 2(c4). As shown in  figure 2(d6), 
first it satisfies the dressing resonance enhancement with 
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Figure 2. The 3D and contour-line simulation of correlation variances (I) X X Y Y 1S S S S
2

2
0

3
0 2

2
0

3
0

δ δ− + + <� �� �( ) ( )   based on equation (9) 

with aS3
in�  and a 2

in
Ѕ�  injecting in figure 1(c). Results show that without any dressing fields scan Δ2 and Δ3 at Δ  =  0 in (a1) and scan Δ and Δ2 

(Δ3) at Δ3 (Δ2)  =  0 in (a2); with the single dressing effect of E2 scan Δ2 and Δ3 at Δ  =  0 in (b1), scan Δ and Δ3 at Δ2  =  0 in (b2), scan 
Δ and Δ2 at Δ3  =  0 in (b3) and scan Δ and Δ2 at Δ3  =  10 MHz in (b4); with the sequential double-dressing effect of E2 and E4 scan Δ2 
and Δ3 at Δ  =  Δ4  =  0 in (c1), scan Δ and Δ3 at Δ2  =  Δ4  =  0 in (c2), scan Δ and Δ2 at Δ3  =  Δ4  =  0 in (c3), scan Δ and Δ2 at Δ3  =  10 
MHz and Δ4  =  0 in (c4), scan Δ2 and Δ4 at Δ  =  Δ3  =  0 in (c5) and scan Δ3 and Δ3 at Δ  =  Δ2  =  0 in (c6), respectively. The zero plane 
shows the SNL and the two-color bar denotes the normalized intensity value of correlation variances. (d1)–(d6) are the dressed state 
diagrams.
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|G4  −  G2−〉, then the dressing absorption suppression with 
|G2−〉, last the dressing enhancement with |G4  +  G2−〉, so cor-
relation variances are the left-bright-middle-dark-right-bright 
state (figure 2(c4)). Therefore, the triple-channel entangle-
ment of two-mode can be obtained via sequential double-
dressing effect. Similar experimental results for sequential 
double dressing is obtained in [26], which also verifies the 
theoretical simulations exhibited in figure 2. Above all, dual-
suppression with dual-dark-state denoted by the dressing 
term G Gi i2

2
03 3 2 4

2
43 3 4/[ ( )] /[ ( )]Γ + ∆ −∆ + Γ + ∆ −∆  in 

equation (4c).
It is worth noting that the diagrams (3D and contour-line) 

in figures 2(a2), (b2)–(b4) and (c2)–(c4) with scanning cavity 
detuning and frequency detuning are thinner than those with 
scanning two-frequency detuning in figures 2(a1), (b1), (c1), 
(c5) and (c6). It intimates that the cavity has a great influence 
on entanglement, which induces the lateral squash of entan-
glement spectrum. In comparison with figures 2(a1), (b1) and 
(c1), the maximum entanglement significantly reduced with 
the increase of quantum channels, which complies with the 
law of conservation of energy.

Overall, two-mode entanglement is determined by dressing 
enhanced nonlinear gain G1(κ1). The sequential double dress-
ing can effectively modify the two-mode entanglement pro-
cess via double vacuum Rabi splitting, dressed anti-crossing 
behavior and vacuum-induced enhancement/suppression of 

entanglement, which are induced by the sequential double-dress-
ing term G Gi i2

2
03 3 2 4

2
43 3 4/[ ( )] /[ ( )]Γ + ∆ −∆ + Γ + ∆ −∆ . 

Such quantum three channels may increase the number of pos-
sible users or can be applied in secret sharing in a three-user.

3.2. Multi-dressed three-mode entanglement multichannel  
in atom-like cavity

We know that with nonlinear gain G1(κ1) increasing the two-
mode entanglement degree also increases. However, in such 
TC-FWM processes, three optical gain adjustable factors g1, 
g2 and g3 and two nonlinear gains G1(κ1) and G2(κ2) have dif-
ferent controllability for different nonseparability criteria. In 
studying three-mode states, we are often interested in which 
subsystems are responsible for the entanglement. Here, we 

simulate quantum correlation variances δ − +� �( )X XS S
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2
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3
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1 1
0

2
0

3
0

, X X YS S S
2

3
0

1
0 2

1
0

δ δ− + +�� �( ) (  

+ <� � )g Y Y 1S S2 2
0

3
0  and X X Y YS S S S

2
1

0
2

0 2
1

0
2

0
δ δ− + + +� �� �( ) (  

<� )g Y 1S3 3
0

 under the same condition and consider-

ing g1  =  g2  =  g3  =  1, so the differences of three modes 
are determined by three quadrature-amplitude differ-

ence correlations X XS S
2

2
0

3
0

δ −� �( ) , δ −� �( )X XS S
2

3
0

1
0

 and 

Figure 3. The 3D and contour-line simulation of correlation variances (I1) X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

δ δ− + + + <� � �� �( )〉 ( )  based on 

equation (10a) with aS1
in� , aS3

in�  and a 2
in
Ѕ�  injecting in figure 1(c). Results show that without dressing effect scan Δ2 and Δ3 at Δ  =  0 in (a1) 

and scan Δ and Δ2 (Δ3) at Δ3 (Δ2)  =  0 in (a2); with the single dressing effect of E2 scan Δ2 and Δ3 at Δ  =  0 in (b1), scan Δ and 
Δ3 at Δ2  =  0 in (b2) and scan Δ and Δ2 at Δ3  =  0 in (b3); with the sequential double-dressing effect of E2 and E4 scan Δ2 and Δ3 at 
Δ  =  Δ4  =  0 in (c1), scan Δ and Δ3 at Δ2  =  Δ4  =  0 in (c2), scan Δ and Δ2 at Δ3  =  Δ4  =  0 in (c3), scan Δ2 and Δ4 at Δ  =  Δ3  =  0 in 
(c4) and scan Δ3 and Δ4 at Δ  =  Δ2  =  0 in (c5), respectively. (d1)–(d5) are the same as (c1)–(c5) except with correlation variances (I2) 

X X Y Y g Y 1S S S S S
2

1
0

2
0 2

1
0

2
0

3 3
0

δ δ− + + + <� � �� �( ) ( )  based on equation (10c). The zero plane shows the SNL and the two-color bar denotes the 

normalized intensity value of correlation variances.
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X XS S
2

1
0

2
0

δ −� �( )  (three squeezing states). The satisfac-

tion of any pair of above inequalities is sufficient for full 
inseparability of three modes. It determines the following 
discussion about three-mode entanglement between crite-

ria δ δ− + + + <� � �� �( ) ( )X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

 and 

X X Y Y g Y 1S S S S S
2

1
0

2
0 2

1
0

2
0

3 3
0

δ δ− + + + <� � �� �( ) ( ) .

Figure 3 explains the sequential double-dressing 
effect of E2 and E4 influence on three-mode entan-
glement. It is seen from figure  3 that the correlation  

variances δ δ− + + + <� � �� �( ) ( )X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

 

and X X Y Y g Y 1S S S S S
2

1
0

2
0 2

1
0

2
0

3 3
0

δ δ− + + + <� � �� �( ) ( )  are 

smaller than the SNL. This indicates that the CV tripar-
tite entanglement criterion is satisfied. At the same time, 
the entanglement is accompanied by multispatial mode in 
each mode. And one can see that the variances profile of 
three-mode entanglement with sequential double dressing 
are similar to two-mode, as shown in figure 2; all phenom-
ena illustrated in figure  3 can be explained as before. This 
means that the profile of three-mode entanglement can be 
controlled via enhanced nonlinear gain G1(κ1). Similarly, E2 
creates homologous primary dressing states |G2+〉 & |G2−〉 
and splits the single-photon resonant peak (figures 3(a1) 
and (a2)) into a doublet (figures 3(b1) and (b2)) located at 
Δ2  =  ±G2  =  ±30 MHz. Then, the outer dressing field E4 
can exactly hit on one of the primary dressed state (such as 
|G2−〉), and create the secondarily dressed states |G4  ±  G2−〉. 
Reflecting on variances spectra, the single inverted dip in fig-
ure 3(b3) is split into two inverted dips and a peak, as illus-
trated in figures 3(c3) and (d3). The remaining pattern profiles 
of quantum correlation variances are same as figure 2, so here 
we do not display this again for simplicity. This indicates 
that three-mode entanglement three-channel can be achieved 
via sequential double dressing as well. Meantime, compar-
ing the 3D simulations of quantum correlation variances 

between δ δ− + + + <� � �� �( ) ( )X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

 

and δ δ− + + + <� � �� �( ) ( )X X Y Y g Y 1S S S S S
2

1
0

2
0 2

1
0

2
0

3 3
0

 in fig-

ures 3(c1)–(c5) and (d1)–(d5), we can find that the graphs have 
similar entanglement spectra except that the maximum entan-
glement is different (−3.3 dB in figures  3(c1)–(c5) and  −1 
dB in figures 3(d1)–(d5)). Namely, the only difference is the 

degree of squeezing δ δ− > −� � � �( ) ( )X X X XS S S S
2

2
0

3
0 2

1
0

2
0

. 

As a matter of fact, the TC-FWM processes are based on the 
effective vacuum-induced SP process in equation (2) and the 
quantum PA process in equation (8), which generated Stokes 
photons aS1

+�  and aS3
+� , has similar quantum characteristics. 

Essentially, three-mode entanglement coming from TC-FWM 
processes can approximate two two-mode entanglement 
processes that origin from G1(κ1) and G2(κ2), respectively. 

Then, variances δ −� �( )X XS S
2

2
0

3
0

 and X XS S
2

1
0

2
0

δ −� �( )  are 

mainly determined by G1(κ1) (and can be modified by the 

dressing field in the Λ-type system) and G2(κ2), respectively. 
Through dressing controlling G1(κ1)  >  G2(κ2) we acquire 

X X X XS S S S
2

2
0

3
0 2

1
0

2
0

δ δ− > −� � � �( ) ( ) . It is also worth men-

tioning that the degree of three-mode entanglement is far less 
than two-mode entanglement when comparing with figures 2 
and 3. Here, both gain G1(κ1) and G2(κ2) compete with each 
other and affect three-mode entanglement in a Λ-V-type cas-
cade system, which leads to a reduction in the effective gain. 
Besides, the SP-SWM is generated from internal cascading 
the two SP-FWM; the coexistence of TC-FWM and SWM 
also influences the degree of three-mode entanglement, so the  
generated three-photon in TC-FWM is still far less than the 
two-photon procedure in SP-FWM. Last but not least, the non-
separability criteria for three-mode entanglement are stricter 
(at least simultaneously satisfying two of three criteria) than 
two-mode (only one criterion).

Taking it all into account, figure 3 demonstrates that three-
mode entanglement comes from the coupling of two nonlin-
ear gains G1(κ1) and G2(κ2). The enhanced G1(κ1) plays a 
dominant role which can control and optimize the profile of 
three-mode entanglement as well as two-mode. The degree of 
two-mode entanglement is bigger than three-mode entangle-
ment. Meanwhile, three-channel entanglement of three-mode 
can also be achieved by a sequential double-dressing effect 
in atom-like media as well as two-mode. Such three channels 
can be used in QKD to realize secure key one-to-triple distri-
bution and nonlocal quantum imaging. The quality of imag-
ing (e.g. the contrast and resolution) is significantly improved 
compared with the two-mode entanglement and can be well 
controlled by multiple parameters.

Next, we focus on three-mode entanglement dressed by the 
parallel double-dressing effect of E2 and E4 as shown in fig-
ures 4(a1)–(a6). From figure 3 we know different entanglement 
criteria have the same entanglement structure spectra, so in 
the following discussion we only concentrate on entanglement 

criterion δ δ− + + + <� � �� �( ) ( )X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

. 

We can see the profiles of parallel double-dressing correlation 

variances X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

δ δ− + + + <� � �� �( ) ( )   

in figures  4(a1)–(a6) have significant differences with the 
sequential double dressing in figures 2 and 3. In compariso n 
with the sequential double dressing makes three-channel 
entanglement in figures 2(c1), (c2), (c5), (c6) and 3(c1), (c2), 
(c5), (d1), (d2), (d5). We may observe four-channel entan-
glement with the parallel double dressing in figures  4(a1), 
(a5) and (a6). Here, the four thick peaks (four channels) in 
the spectra come from E2  +  E4 inducing two kinds of split-
ting. In the dressed picture, E2 and E4 are parallel and inde-
pendently drive the transition from |2〉  →  |0〉 and |4〉  →  |2〉, 
then create four dressed states |G2±〉 and |G4±〉, as shown 
in figure  4(c1). Two dressing-field windows induced by 
E2 and E4 separate with each other. The double-dressing 
anti-crossing behavior clearly expresses four bright states 
(four peaks) |G2±〉 and |G4±〉 and two dark states |2〉 and 
|0〉 induced by two dressing fields together when scan Δ2 
and Δ3 at Δ3  =  Δ4  =  0 in figure  4(a1), when scan Δ2 and 
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Δ4 at Δ  =  Δ3  =  0 figure  4(a5) and when scan Δ3 and Δ4 
at Δ  =  Δ2  =  0 in figure  4(a6). Simultaneously, these cor-
relation variances also are suppressed twice along the line 
Δ2  =  0 and Δ2  =  Δ3, as illustrated in figure  4(a1), along 

the line Δ2  =  0 and Δ2  =  Δ4 in figure 4(a5) and along the 
line Δ3  =  0 and Δ4  =  0 in figure  4(a6). Figures  4(a2) and 
4(a3) show that there are two pairs of vacuum Rabi splitting 
induced by G2 and G4 (dressed state diagram as shown in 

Figure 4. The 3D and contour-line simulation of correlation variances (I1) δ δ− + + + <� � �� �( ) ( )X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

 based on 

equation (10a) with aS1
in� , aS3

in�  and a 2
in
Ѕ�  injecting in figure 1(c). Results show that with the parallel double-dressing effect of E2 and E4 scan 

Δ2 and Δ3 at Δ  =  Δ4  =  0 in (a1), scan Δ and Δ2 at Δ3  =  Δ4  =  0 in (a2), scan Δ and Δ3 at Δ2  =  Δ4  =  0 in (a3), scan Δ and Δ4 at 
Δ2  =  Δ3  =  0 in (a4), scan Δ2 and Δ4 at Δ  =  Δ3  =  0 in (a5) and scan Δ3 and Δ4 at Δ  =  Δ2  =  0 in (a6), respectively. (b1)–(b6) are the 
same as (a1)–(a6) except with the triple-dressing effect of E2, E3 and E4. The zero plane shows the SNL and the two-color bar denotes the 
normalized intensity value of correlation variances. (c1)–(c6) are the dressed state diagrams.
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figures  4(c2) and (c3)), respectively. However, there is also 
a difference in figures 4(a2) and (a3) due to Δ2 playing dif-
ferent roles in the two dressing terms G i2

2
03 3 2/[ ( )]Γ + ∆ −∆  

and G i4
2

43 2 4/[ ( )]Γ + ∆ −∆ . When scan Δ and Δ2 at 
Δ3  =  Δ4  =  0 only with G i2

2
03 3 2/[ ( )]Γ + ∆ −∆ , we should 

obtain a pure suppression of entanglement such as in fig-
ures  2(b3) and 3(b3), or else with G i4

2
43 2 4/[ ( )]Γ + ∆ −∆ , 

the standard vacuum Rabi splitting dual peaks will appear as 
illustrated in figures 2(b2) and 3(b2). Then, we can see that the 
profile of entanglement in figure 4(a2) is the two dressing terms 
G i2

2
03 3 2/[ ( )]Γ + ∆ −∆  and G i4

2
43 2 4/[ ( )]Γ + ∆ −∆  interact-

ing as a consequence. When scan Δ and Δ3 at Δ2  =  Δ4  =  0 
in figure  4(a3), it displays a vacuum Rabi splitting doublet 
of entanglement (decided by G i2

2
03 3 2/[ ( )]Γ + ∆ −∆  ). 

Similarly, by scanning Δ and Δ4, a pure suppression of entan-
glement (dressed state diagram as shown in figure  4(c4)) 
comes from G i4

2
43 2 4/[ ( )]Γ + ∆ −∆  in figure 4(a4). The posi-

tions of these enhanced peaks are determined by the homolo-
gous Rabi frequency and the dressing field detuning: here, 
Δ3  =  ±G4  =  ±30 MHz, Δ2  =  ±G2  =  ±30 MHz. According 
to dressed state analysis and equation  (4d), the suppressed-
dip conditions in figures  4(a2) and (a4) are Δ2  =  Δ3  =  0 
and Δ4  =  Δ3  =  0, respectively. Here, parallel double dress-
ing splits up four channels, all of double vacuum Rabi split-
ting; dressed anti-crossing behavior and vacuum-induced 
enhancement/suppression are induced by the dressing terms 
G i2

2
03 3 2/[ ( )]Γ + ∆ −∆  and G i4

2
43 2 4/[ ( )]Γ + ∆ −∆ .

Figures 4(b1)–(b6) show the triple-dressing effect of 
E2, E3 and E4 and its influence on three-mode entangle-
ment. In particular, we can see the correlation variances 

X X g Y Y Y 1S S S S S
2

2
0

3
0 2

1 1
0

2
0

3
0

δ δ− + + + <� � �� �( ) ( )  exhibiting  

six thick peaks (six channels) in figures 4(b1) and (b6), i.e. 
triplet anti-crossing behaviors appear with three dark states 
(the triple dressed phenomenological model, as shown 
in figure  4(c5)) when triplet splitting acts on three-mode 
entanglement. It results from the competition between 
the multi-dressed effect of G i3

2
03 2 3/[ ( )]Γ + ∆ −∆  and 

G Gi i2
2

03 3 2 4
2

43 3 4/[ ( )] /[ ( )]Γ + ∆ −∆ + Γ + ∆ −∆  in equa-
tion  (4e). When scan Δ2 and Δ3 at Δ  =  Δ4  =  0, the cor-
relation variances illustrate the dark states along the line 
Δ2  =  0, Δ3  =  0 and Δ2  =  Δ3 in figure 4(b1). When scan Δ3 
and Δ4 at Δ2  =  Δ4  =  0, figure  4(b6) illustrates orthogonal 
double ‘  +  ’ shape vacuum-induced suppression (three dark 
states) of entanglement along the line Δ3  =  ±30 MHz and 
Δ4  =  0. In comparison with figures 4(b5) and 2(c5), we can 
see that the mid peak in figure 2(c5) is spit into double peaks 
by the dressing effect of E4 when Δ2 and Δ4 are scanned at 
Δ2  =  Δ4  =  0 in figure 4(b5). Specifically, when scan Δ and 
Δ2 at Δ3  =  Δ4  =  0 (as shown in figure 4(b2)), there are also 
three dark states from the first dressing effect leading to the 
suppression of entanglement, as shown in figures 2(b3) and 
3(b3); then the second and third dressing split into two dips 
at Δ2  =  ±30 MHz, respectively. Similarly, the triple vacuum 
Rabi splitting of entanglement appears in figure 4(b3) when 

scan Δ and Δ3 at Δ2  =  Δ4  =  0, which come from the double 
vacuum Rabi splitting (as shown in figures 2(c2) and 3(c2), 
(d2)). Moreover, the middle peak (figure 4(b3)) at Δ3  =  0 
is dressed, splitting two peaks. When scan Δ and Δ4 at 
Δ2  =  Δ3  =  0 in figure 4(b4), there is a pure suppression dip 
as shown in figure 4(a4). Further, our numerical results show 
the lateral squeezing effect of the cavity and that an increase 
in the cavity detuning Δ leads to a significant decrease the 
degree of three-mode entanglement in figures 4(a2)–(a4) and 
(b2)–(b4). It is worth mentioning that the switching between 
multichannels can be used for QKD that realizes secure key 
one-to-multiple distribution.

Above all, when considering triple-dressing progression of 
E2, E3 and E4, the homologous three dressing-field windows 
induced by the E2, E3 and E4 will interfere each other, and 
simultaneously the duo to self-dressing effect of E2 and E3, 
the whole process in figures 4(b1)–(b6) are very complex and 
difficult to analyze. The triple anti-crossing behaviors, vacuum 
Rabi splitting and enhancement/suppression of entanglement 
are derived from triple dressing. All of them are  the consequence 
of interaction between dressing terms G i3

2
03 2 3/[ ( )]Γ + ∆ −∆  

and G Gi i2
2

03 3 2 4
2

43 3 4/[ ( )] /[ ( )]Γ + ∆ −∆ + Γ + ∆ −∆ . As 
discussed above, figures 3 and 4 show the any-cavity mode 
of three-mode entanglement can be effectively modified by 
the multi-dressed effect through switching the dressed multi-
channel. We may use the multichannel of three-mode entan-
glement to share arbitrary quantum states among multi-users 
at once and realize nonlocal quantum imaging without a beam 
splitter.

4. Conclusion

In summary, we use FWM and TC-FWM in Pr3+: YSO vapor 
to generate two- and three-mode entanglement states of the 
electromagnetic field. Additionally, the influence of the multi-
dressing PA-FWM process on two- and three-mode entangle-
ment has been discussed theoretically. We can conclude that 
the degree of three-mode entanglement is determined by the 
coupling of two nonlinear gains. The three-mode entanglement 
profile can be controlled and optimized by the multi-dressing 
field via multiple vacuum Rabi splitting, enhancement/sup-
pression and anti-crossing behaviors of entanglement as well 
as two-mode. Specifically, both two- and three-mode entangle-
ment with single and sequential double dressing can give rise 
to two and three quantum channels, as shown in figures 2 and 
3, and three-mode entanglement with parallel double and triple 
dressing leads to four and six quantum channels in figure 4, 
respectively. The triple-mode entanglement state proposed in 
the current work can be used for the implementation of a triple-
mode entangled source, where the generation efficiency of the 
entangled triple-beam and degree of entanglement will be sig-
nificantly enhanced by nonlinear susceptibility and quantum 
gain. This shows that entanglement channels can be distributed 
to many parties for QKD, effectively increasing the number of 
available channels from one channel.
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