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A B S T R A C T

The multi-order quantum beating effect of three-photon temporal interference generated by three nondegenerate
fluorescence sources is studied. The third-order temporal correlation function of three nondegenerate photons
results from the superposition of two-photon and three-photon bunching, multi-order quantum beating and
temporal interference of three-photon. The simulate results show strong quantum beating and photon bunching
behavior. The visibility of interference pattern, and the switching between photon bunching and beating effect
can be modulated by the frequency difference, bandwidth of photons and the relative time delay of detectors.
Such controllable coherent signal has potential applications as router and logic gate in quantum communication
and information processing.

Introduction

The two-photon interference is one of the most important me-
chanisms for understanding quantum theory and realizing quantum
information processing. The first- and second-order interference of two
independent light beams has been studied extensively with different
light sources, such as coherent light [1–4], thermal light sources [5–7],
and nonclassical light sources [8,9]. According to the superposition
principle in Feynman’s path integral theory [10], two-photon inter-
ference is not the interference between two individual photons, but the
interference resulting from different Feynman paths [11]. That is, two-
photon interference with thermal light is not caused by the statistical
correlation of the intensity fluctuations [12]. The two-photon inter-
ference with nondegenerate paired photons has also been demonstrated
[13]. When two photons are in different frequencies, the two-photon
interference can be measured as a quantum beating in time domain
[14,15].

The two-photon interference plays an important role in quantum
imaging. The first two-photon ghost-imaging experiment was demon-
strated by using entangled photon pairs of spontaneous parametric
down-conversion in 1995 [16]. After then, it is found that ghost ima-
ging can be realized with chaotic thermal light [12,17]. Compared to
two-photon entangled sources, the disadvantage of classical light in
ghost imaging is the limited visibility. In principle, the visibility of
entangled sources can be as high as 100%, while the visibility of

classical light cannot exceed 50% [18]. On the other hand, in order to
obtain high visibility, two-photon entangled sources should have low
counting rates. Comparatively, the visibility of classical sources is in-
dependent of the intensity, which can be very high.

Recently, it is found that high-order interference may help to boost
the visibility of classical sources. For three-photon and four-photon
interference of two coherent sources, the visibility can be attained
81.8% and 94.4%, respectively [19]. Moreover, the visibility of Han-
bury Brown and Twiss (HBT) interference for classical light grows ra-
pidly with the order of interference. It is expected in theory that the
visibility of thermal light can achieve 100% by measuring the Nth-order
correlation [20,21]. Multiphoton interference of classical light provides
a method to obtain high visibility and counting rates for ghost imaging.
However, the main attention has been focused on second-order inter-
ference for a long time. Discussions about multiphoton interference are
very little until now, and it is only restricted to degenerate photons.
High-order interference of nondegenerate photons includes important
mechanisms, such as multi-order quantum beating effect. It is useful to
realize quantum information processing.

In this paper we present multi-order quantum beating effect gen-
erated by third-order temporal interference of three nondegenerate
thermal sources. We analyze multi-order quantum beating and three-
photon bunching effect at different frequency bandwidth, frequency
deference and relative time delay of three fluorescence sources. We
adjust the visibility of thermal light imaging by the effect of quantum
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beating.

Theoretical model

We will discuss third-order interference of three fluorescence
sources based on the superposition principle in Feynman’s path integral
theory. Fig. 1(a) is the experimental setup for measuring third-order
temporal correlation function. Three independent fluorescence beams
pass through non-polarizing beam splitters BS1 and BS2, and then be
detected by three photon detectors D1, D2 and D3, respectively. The
distances between the sources and three detectors are all equal. The
output of the detectors is input into the three-photon coincidence count
system. For simplicity, the polarizations and intensities in three paths
are assumed to be the same.

The superposition principle in Feynman’s path integral theory is
based on the indistinguishability of different alternatives. Fig. 1(b)
shows that there are twenty-seven different cases to emit three photons
by three independent sources, which are named as source indis-
tinguishable terms. The first one is all three photons emitted by ST1. The
second one is photon A emitted by ST1, photon B emitted by ST2, and
photon C emitted by ST3, respectively. Other possibilities of source in-
distinguishable terms are shown in Fig. 1(b). Although the frequencies
of the photons emitted by three independent sources are different, these
different alternatives can be regard as indistinguishable if the time
measurement uncertainty of the detection system is less than ω1/ ij [22],
where ωijis the frequency difference of two sources. In each case, there
are six different ways to trigger a three-photon coincidence count (as
shown in Fig. 1(c)), which are defined as path entanglement or indis-
tinguishable terms. For example, A→D1, B→D2, C→D3 means photon
A triggers detectors D1, photon B triggers detectors D2 and photon C
triggers detectors D3, respectively. The combine effect of source and
path indistinguishable terms results in interference of three photons.

Three-photon interference is the result of the coherent superposition
of three-photon probability amplitudes, which depend on indis-
tinguishable ways to trigger a three-photon coincidence count. The jth
detected three-photon probability distribution is
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Fig. 1. (a) Experimental setup to measure third-order temporal correlation function of thermal sources. ST1, ST2 and ST3 are three independent fluorescence sources.
D1, D2 and D3 are three single-photon detectors. BS1: 1:2 beam splitter. BS2: 1:1 beam splitter. CCC: three-photon coincidence count detection system. (b) Twenty-
seven different cases to emit three photons by three independent sources. (c) Three independent photons A, B, C have six different ways to trigger three-photon
detection event.
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Other terms in Eq. (1) are defined similarly. Where φ j1 A B C, ,
(φ j2 A B C, ,

)
is the initial phase of photon A (B, C) emitted by source ST1(ST2) in the
jth detected photon pair. The extra phase π/2 is due to the photon re-
flected by the beam splitter will gain an extra phase comparing to the
transmitted one. For the point thermal sources, Feynman’s photon
propagator is defined as

=
−

→ → −
K

i k r ω t
r

exp[ ( · )]
αβ

αβ αβ α β

αβ (4)

→
kαβ and →rαβ are the wave and position vectors of the photon emitted by
STα and detected at Dβ, respectively. ωα and tβ are the frequency and
time for the photon that is emitted by STα and detected at Dβ, respec-
tively (α, β =1, 2, 3). The final three-photon probability distribution is
the sum of all detected probability distribution
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where 〈 〉. .. is ensemble average of all detected three-photon probability
distribution. Since three thermal sources are independent, the ensemble
average of phase 〈 〉−eiφ φα jβ μ jν ( =α 1, 2, 3, =β A B C, , ) equal zero. To
simplify the calculation of temporal correlation, we assume that the
frequency bandwidths of three sources are same,

= = =ω ω ω ωΔ Δ Δ Δ1 2 3 , and three detectors have an equal distance
from sources. Substituting Eq. (4) into Eq. (5), the normalized three-
order temporal correlation function can be deduced as

= + + + +P t t t a b c d( , , ) 1(3)
1 2 3 (6)

where

= ⎡
⎣

− ⎤
⎦

+ ⎡
⎣

− ⎤
⎦

+

⎡
⎣

− ⎤
⎦

+ ⎡
⎣

− ⎤
⎦

⎡
⎣

− ⎤
⎦

⎡
⎣

− ⎤
⎦

a c ω t t c ω t t

c ω t t c ω t t c ω t t

c ω t t

1
3

sin Δ ( )
2

1
3

sin Δ ( )
2

1
3

sin Δ ( )
2

2
9

sin Δ ( )
2

sin Δ ( )
2

sin Δ ( )
2

2 1 2 2 2 3

2 3 1 1 2 2 3

3 1

(7)

= ⎡
⎣

− ⎤
⎦

× − −

+ − − + − −

+ ⎡
⎣

− ⎤
⎦

× − −

+ − − + − −

+ ⎡
⎣

− ⎤
⎦

× − −

+ − − + − −

b c ω t t t t ω ω

t t ω ω t t ω ω

c ω t t t t ω ω

t t ω ω t t ω ω

c ω t t t t ω ω

t t ω ω t t ω ω

2
9

sin Δ ( )
2

{cos[( )( )]

cos[( )( )] cos[( )( )]}
2
9

sin Δ ( )
2

{cos[( )( )]

cos[( )( )] cos[( )( )]}
2
9

sin Δ ( )
2

{cos[( )( )]

cos[( )( )] cos[( )( )]}

2 1 2
1 2 1 2

1 2 1 3 1 2 2 3

2 2 3
2 3 1 2

2 3 1 3 2 3 2 3

2 3 1
3 1 1 2

3 1 1 3 3 1 2 3 (8)

= ⎡
⎣

− ⎤
⎦

⎡
⎣

− ⎤
⎦

⎡
⎣

− ⎤
⎦

× − − + − −

+ − − + − −

+ − − + − −

+ − − + − −

+ − −

c c ω t t c ω t t c ω t t

t t ω ω t t ω ω

t t ω ω t t ω ω

t t ω ω t t ω ω

t t ω ω t t ω ω

t t ω ω

4
27

sin Δ ( )
2

sin Δ ( )
2

sin Δ ( )
2

{cos[( )( )] cos[( )( )]

cos[( )( )] cos[( )( )]

cos[( )( )] cos[( )( )]

cos[( )( )] cos[( )( )]

cos[( )( )]}

1 2 2 3 3 1

1 2 1 2 2 3 1 2

3 1 1 2 1 2 1 3

2 3 1 3 3 1 1 3

1 2 2 3 2 3 2 3

3 1 2 3 (9)

= ⎡
⎣

− ⎤
⎦

⎡
⎣

− ⎤
⎦

⎡
⎣

− ⎤
⎦

× − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

+ − + − + −

d c ω t t c ω t t c ω t t

ω t t ω t t ω t t

ω t t ω t t ω t t

ω t t ω t t ω t t

ω t t ω t t ω t t

ω t t ω t t ω t t

ω t t ω t t ω t t

2
27

sin Δ ( )
2

sin Δ ( )
2

sin Δ ( )
2

{cos[ ( ) ( ) ( )]

cos[ ( ) ( ) ( )]

cos[ ( ) ( ) ( )]

cos[ ( ) ( ) ( )]

cos[ ( ) ( ) ( )]

cos[ ( ) ( ) ( )]}

1 2 2 3 3 1

1 1 2 2 2 3 3 3 1

1 1 2 3 2 3 2 3 1

2 1 2 1 2 3 3 3 1

2 1 2 3 2 3 1 3 1

3 1 2 1 2 3 2 3 1

3 1 2 2 2 3 1 3 1 (10)

In above equations =c x x xsin ( ) sin / , =t i( 1, 2, 3)i is the registra-
tion time of the photo detection event at D1, D2 and D3, respectively.
Fig. 2 shows the simulation results of each term in Eq. (6). The pattern
of term a (Eq. (7)) shows a dominant peak which results from the su-
perposition of three two-photon bunching and a three-photon
bunching. Term b (Eq. (8)) is the second-order frequency beating term
of two photons. c (Eq. (9)) is the third-order frequency beating term. d
(Eq. (10)) is the third-order temporal interference term of three photon
among different quantum paths. One can see that the patterns of term b,
c and d are almost same except for amplitude difference. They all show
six secondary peaks around the dominant peak. The contribution of
term d is smaller than other terms. The combine simulation result of
third-order correlation function P t t t( , , )(3)

1 2 3 includes two-photon and
three-photon bunching, multi-order frequency beating and temporal
interference of three-photon. Therefore, we can say that the third-order
correlated pattern includes all information in the pattern of second-
order correlation. From above equations, one can predict that, the term

− − =t t ω ω i jcos( )( ) ( , 1, 2, 3)i j i j is responsible for introducing inter-
ference caused by frequency beating and times difference due to path
difference reaching coincident counter. When = =t t t1 2 3, correlation
function achieves its maximum value =P 6(3) . Accordingly, the visi-
bility of correlation pattern is = − + ≈v I I I I( )/( ) 71%max min max min ,
which exceeds the 50% thermal sources limit of second-order inter-
ference. Where I I( )max min is the maximal (minimal) value of the mea-
sured interference pattern. If three photons are degenerate, frequency
beating will disappear, this case is three-photon bunching. Eq. (6) is
simplified as

Fig. 2. The simulation results of each term in Eq. (6). The wavelengths of three sources are set at 610 nm, 575 nm and 575.5 nm, respectively.
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Simulated results and discussions

We simulate third-order temporal correlation function of three
nondegenerate sources by employing Eqs. (6)–(10). The multi-order
fluorescence (FL) of nitrogen vacancy center in diamond [23,24] is
chosen as nondegenerate thermal sources. The third-order temporal
correlation function is depicted as the function of variables tij, where

= − =t t t i j( , 1, 2, 3)ij i j is the relative time delay between two detec-
tors. We will analyze the dependence of third-order temporal correla-
tion on frequency difference, bandwidth of thermal sources and the
relative time delay of detectors.

We first consider the effect of three-photon bunching. Fig. 3 depicts
the calculated third-order temporal correlation functions of three
thermal sources by varying bandwidth ωΔ of thermal sources from
0MHz to 10MHz. When fix the time position of detector D3 at =t 03 ,
the conditional third-order correlation function can be obtained.
Fig. 2(a) shows the conditional third-order correlation function as the
function of relative time delay t12. Fig. 2(b) is the 3-D third-order cor-
relation function as the function of the relative time delay t12 and t13. In
the simulation, the frequencies of three thermal sources are near de-
generate, the frequency beating term − −t t ω ωcos( )( )i j i j is approxi-
mately equal to constant 1. So, the third-order correlation function
mainly shows three-photon bunching peak. Quantum beating effect
almost disappears. When three detectors are in symmetrical time po-
sition, the three-photon amplitudes interfere constructively, the third-
order correlation function achieves its maximum value =P 6(3) . As the
bandwidth ωΔ of three sources is gradually increased, the period of the
term −c ω t tsin [Δ ( )]i j in Eq. (7) gradually decreases. As a result, the
bunching peak becomes more and more sharp. Simultaneously, the
secondary peaks around the dominant peak become weaker.

Now we focus on the quantum beating effect of three photons. Fig. 4
shows conditional third-order temporal correlation functions in the
direction of t12 when time t3 is fixed. Correlation curves are plotted by
varying the wavelength of FL source ST1 from 575 nm to 637 nm, and
fixing the others at 575 nm and 575.5 nm, respectively. When three FL
sources are near degenerate (Fig. 4(a1)), photon bunching effect is
dominant, correlation curve only shows a dominant peak which caused
by three photon bunching. As frequency of FL source ST1 increases, the

second- and third-order frequency beating term b and c, as well as the
interference term d of three nondegenerate photons become more and
more important in three-order temporal correlation function Eq. (6).
We can see the dominant peak becomes sharper, simultaneously, the
secondary peaks enhance. The secondary peaks can be attributed to
quantum path interference between two-photon bunching and three-
photon bunching. With the frequency of source ST1 further increasing,
the envelope of the correlation peak shows fast interference fringes and
the number of fringes increases dramatically. This result is caused by
the combined effect of three-photon bunching and second- and third-
order quantum beating. From Eqs. (8) to (9) we can see that both
second- and third-order quantum beating are determined by

− −t t ω ωcos( )( )i j i j . The oscillation frequency of secondary peaks is
proportional to the frequency deference −ω ω( )i j of three non-
degenerate photons. So the number of fringes increases with the in-
creasing of frequency deference.

Fig. 5 shows the 3-D third-order correlation function when t2 and t3
are scanned. Other conditions are as same as Fig. 4. With increasing of
the frequency deference −ω ω( )i j , we find the number and the intensity
of small peaks around the dominant peak increases and the intensity of
the bunching peak is suppressed due to conservation of energy. From
Eqs. (6) to (10) we can know the third-order correlation function is
modulated by the frequency beating term − −t t ω ωcos( )( )i j i j . When

−ω ω( )i j is small, the period of − −t t ω ωcos( )( )i j i j is large, so corre-
lation curve only shows a bunching peak. As −ω ω( )i j increases, the
period of − −t t ω ωcos( )( )i j i j becomes smaller. Six secondary peaks
around the dominant peak appear, which result from second- and third-
order quantum beating term in Eqs. (8) and (9). Further increasing
frequency deference −ω ω( )i j , the period of − −t t ω ωcos( )( )i j i j gra-
dually decreases. As a result, six small peaks continue to split around
each secondary peak. Finally, the correlation curve forms a nest-like
structure. At the same time, the frequency beating term

− −t t ω ωcos( )( )i j i j also modulate the intensity of the bunching peak.
With the increasing of frequency deference, the intensity of the sec-
ondary peaks increases, and the intensity differences between the
dominant peak and the secondary peaks become more and more small
(as shown in Fig. 5(a7-8)). It means that the visibility of third order
thermal light interference is reduced. This result suggests that we can
adjust the visibility of interference pattern by the effect of frequency
beating. Furthermore, such splitting signal can be used as switching and
router in quantum communication.

Finally, we analyze the time position of dominant peak changing
with the time delay of detectors, which is aimed to verify the existence
of point-to-point temporal correspondence between signals. As similar
as object and image plane in ghost imaging [17], signals in D1 and

Fig. 3. The calculated third-order temporal correlation functions of three photons by varying bandwidth ωΔ of all sources from 0MHz (1) to 10MHz (5). (a) The
conditional third-order correlation function P t t t( , , )(3)

1 2 3 when the detector D3 is fixed at =t 03 . (b) The 3-D third-order correlation function as the function of
relative time delay t12 and t13. The wavelengths of three sources are set at 574.5 nm, 575 nm and 575.5 nm, respectively.
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D2(D3) can be regard as the emission and accepted signals, respec-
tively. Fig. 6(b) shows the third-order temporal correlation functions
obtained by selecting time position of detector D1 from = −t μs21 to

=t μs21 and other two detector are scanned. For conditional third-order
correlation function in Fig. 6(a), time position of detector D3 is further
fixed at =t μs03 . When time position of D1 is set at = −t μs21 , we can see
the dominated peak appears at = = −t t μs22 3 . When time position of
D1moved to =t μs01 , the dominated peak appears at the position

= =t t μs02 3 . The dominated peak further shifts towards rightward
when the position of D1 is fixed at =t μs11 . With bunching peak shifted
with t1, other smaller interference peaks also change their position with
t1. We can conclude that any shift of time position in emission signal
causes a shift of correlation function in accepted signal. The results
clearly show point-to-point temporal correspondence between emission
and accepted signals. Such results also can be used to realize a transistor
switching and a photon bunching NOR logic gate [25].

Conclusion

In conclusion, we study multi-order quantum beating effect by
third-order temporal interference of three nondegenerate thermal
sources. The third-order temporal correlation function of three non-
degenerate thermal sources is derived, which includes two-photon and
three-photon bunching, multi-order quantum beating and temporal
interference of three-photon. We also simulate third-order temporal
correlation function at different frequency, bandwidth of photons and
the relative time delay of detectors. The results show strong quantum
beating and photon bunching behavior. The conversion between
bunching and beating effect is observed by changing frequency de-
ference and bandwidth of photons. It is demonstrated that the visibility
of interference pattern can be adjusted by the effect of beating. We also
observed that any shift of time position in emission signal causes a shift
of correlation peak in accepted signal, which verify point-to-point
temporal correspondence between emission and accepted signals. The
multi-order quantum beating and the conversion between bunching and
beating effect can be used to realize switching, router and NOR logic

Fig. 4. The conditional third-order temporal correlation functions of three nondegenerate photons. (a1)-(a8) The wavelength of source ST1 change from 575 nm to
637 nm, and the wavelengths of source ST2 and ST3 are fixed at 575 nm and 575.5 nm, respectively.

Fig. 5. The 3-D third-order temporal correlation functions of three nondegenerate photons. (a1)-(a8) The wavelength of source ST1 change from 575 nm to 637 nm,
and the wavelengths of source ST2 and ST3 are fixed at 575 nm and 575.5 nm, respectively.
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gate in quantum communication. Our studies are helpful to understand
higher-order interference of multiple light sources.
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