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Residential Appliances Direct Load Control
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Abstract—The relatively fixed residential day-ahead real-time
electricity price reflects insufficient information of the market, so
the response of residential energy management system (EMS) to
the real-time pricing (RTP) is not complete and therefore retailers
are exposed to the risk of price fluctuation in balance market. Di-
rect load control (DLC) in cooperative game is proposed in this
paper. A cooperative game union comprised of some users and a
retailer is established to minimize the union costs. The union pro-
vides an opportunity to access the balance market indirectly for
residents and to reduce risks and costs for the retailer. In addi-
tion, Shapley value which embodies the fairness is used in union
profits allocation. The method that avoids bidding for residential
users simplifies the thresholds of residents to participate inmarket.
Furthermore, the DLC union contributes to imbalance self-man-
agement for the retailer, which helps him avoid paying for the reg-
ulation cost involved in the deviation between the total quantity
bought at markets and the actual consumption. The achievement
of union’s goal respects the constraints set by users. The method
that alleviates the disturbance of DLC to residents meets the dual
goals of being both fully responsive and non-disruptive.

Index Terms—Cooperative game, direct load control, power
market, smart grid.

I. INTRODUCTION

T HE recent evolution of the power systems towards a
deregulated market environment together with a smart

grid integrated of advanced metering infrastructure (AMI) and
communication technologies is offering residential customers
a way to access markets. With AMI and other emerging grid
“cyber-infrastructure” developments, it is becoming increas-
ingly feasible to provide the system services and to integrate
retail demand-side capabilities into wholesale energy markets
by control loads [1], [2]. The participation of residential users
in demand response programs, such as direct load control,
will play an important role in providing ancillary services and
promoting the prosperity of power market.
Conventionally, the controlled objects of DLC are large

business users equipped with high-power electrical appliances,
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such as heating ventilation air conditioning (HVAC), etc. DLC
of ordinary residents are ignored because of the difficulties and
the high cost of control. Power markets are often inefficient
and not fully competitive, in part because retail-customer
loads do not participate in the markets. Electricity costs vary
substantially from hour to hour, often by a factor of ten within
a single day. As most customers buy electricity as they always
have—under time-invariant prices that are set days or months
even years ahead of actual use, consumers are fully insulated
from the volatility of wholesale electricity markets [3]. The
relatively fixed price makes the retailer exposed to the risk in
power market. The impressive strides made in metering and
load control technologies enable the utility or load serving
entity to maintain a continuous two-way communication with
its customers' appliances, in real time. Therefore, more re-
cently, utility as well as independent system operator (ISO)
has focused their interest on the potential of demand response
in the residential and small commercial sectors [4]. Thermo-
statically controlled loads (TCL), such as refrigerators, air
conditioners(ACs), and electric water heaters, etc., and plug-in
hybrid electric vehicles (PHVEs) are popular controlled objects
and excellent candidates to DLC implemented in residential
sector [5]–[9]. Recently, as a new building material, phase
change energy storage material (PCM), has raised concern in
the field of demand response [10].
DLC is a common load management program to shape the

load curve to increase the system reliability and reduce the
system operating cost. The coordination between DLC dispatch
and unit commitment was discussed and a method for DLC
dispatch with the objective of minimizing system operational
costs was present in [11]. Reducing system peak and the
peak-to-average ratio (PAR) in load demand were the main
DLC objectives to improve system operating efficiency [12],
[13]. Normally, economy and comfort are contradictory. The
disturbance of the DLC to users was taken into consideration,
and a multi-objective method was used to trade-off the con-
tradiction between the economy and comfort in [14] and [15].
A DLC scheduling algorithm was discussed and a modified
genetic algorithm (GA) called iterative deepening GA (IDGA)
was proposed in [16]. However, centralized DLC leads to high
operating costs and has been a factor in recent reductions in the
amount of emergency demand responses available to regional
transmission system operators [17].
Electricity demands, with the advantages of fast reaction,

smooth activation, low expected costs, and well-dispersed
in the distribution grid, are potential candidates to provide
auxiliary service, such as frequency regulation [18]–[21]. Most
researches concerned on control strategy research after load
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imbalance or the high price incident. In fact, the main reason
of the imbalance is the fluctuations of demands. Therefore, it
is very important to balance the market clearing quantity and
the actual consumption at the retailing side in new markets.
The offering-generation and bidding-consumption imbalance
management implemented on both generation and demand
sides of the market can reduce the system's imbalanced power.
The development of communication technology makes the

information interaction more convenient. Based on the two-way
communication technology platform, a real-time optimization
approach for two-way direct load control of central air-condi-
tioning chillers was proposed in [22]. Furthermore, automatic
power control (APC) is expected to be accomplished in the
household equipped with intelligent electrical appliances and
EMS. According to the real-time electricity price information,
EMS supervises energy consumption scheduling under the
constraints set by users. Reducing household electricity bill
was a common management objective of APC [23], [24]; an
autonomous and distributed demand-side energy management
system among users that used game theory was present in [25].
However, the incentive to cooperate with users was a simple
pricing mechanism that lacked of consideration about new
market environment.
It is important to design the compensation scheme in the new

operating environment [26]. Demand side bidding is a common
compensation mode used in large consumers [27]. Usually, re-
gional transmission organization (RTO) dispatches the load of
which the bidding is the lowest and gives corresponding com-
pensation. However, working out an optimal bidding strategy is
difficult for generators and large consumers, let alone residents.
The implementation of demand side bidding by residents causes
inconvenience to RTO as well as residents.
Aiming at issues mentioned above, this paper presents a DLC

model in cooperative game between residents and a retailer. The
model proposes an agent mechanism that residential appliances
would be controlled by the retailer. It is feasible way that col-
laborating with retailer to comprise larger entity to access the
market for residents. Distributing residential load control to re-
tailers reduces DLC scale in residents. In order to simplify the
thresholds for residents to participate in DLC program in com-
petitive market, the compensation method that union profit allo-
cation based on cooperative game was proposed. Demand side
resources involvement will make the market more competitive
and efficient.
The motivation of this paper is to provide indirect opportuni-

ties to access balance market for residential users, and to reduce
risks for the retailer and costs for all the members in the union.
In addition, building this union can achieve power balance be-
tween the electricity purchasing and consumption at the retail
side, and eliminate the inconvenience caused by the implemen-
tation of demand biding to residents.

II. DIRECT LOAD CONTROL IN COOPERATIVE GAME

We take NordPool as an example. Bids for each of the 24
contract periods must be submitted to NordPool before noon,
as presented in the timeline in Fig. 1. Then, household EMS
calculates the optimal power schedule to minimize the elec-
tricity bill within constrains set by the user after reception of

Fig. 1. NordPool’s spot market timeline.

Fig. 2. DLC framework.

the price information. The household controlled objects include
TCL, PHVE, washer, etc.
Day ahead RTP, which is hypothetical tariff to residents

by default and is adjusted once a day, reflects Elspot market
(day-ahead spot market) state. The household EMS only
respond to day-ahead market. As Elbas market (hour-ahead
balance market) price information isn't available for residents,
the demand response in residents cannot fully reflect the costs
of production. Therefore, the retailer bears the risk of price
fluctuation completely in Elbas market and markets operate
inefficiently.
As an agent of the union, retailer controls union load directly.

On one hand, users can access the balance market indirectly
and benefit from the market. On the other hand, the retailer can
reduce the market costs and risks effectively. The union DLC
framework is shown in Fig. 2. Residents in the union will sent
control constrains to the retailer's agent servicer, such as the in-
door temperature at sample point, PHVE during charging time,
charging and washing time interval, etc. The control constrains
set by customers can alleviate the DLC disturbance to them. The
Retailer, with the target tominimize cost, plans the power sched-
uling and coordinates controlled appliances in the union, ac-
cording to Elbas forecast price information. As the price in bal-
ance market is adjusted hourly and the bilateral deal is allowed,
the union load scheduling can be adjusted more in real-time ac-
cording to the latest price information. In this way, the demand
responses in residents can respond not only to Elspot market
price but also to the Elbas'. As loads can be adjusted according
to the price fluctuation, the profit will be increased and the risk
will be reduced.
The union profits are allocated daily. In cooperation game,

Shapley value method is widely used in profits allocation.
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Shapley value emphasizing fairness allocates profits to the
union members as the marginal contribution to the union profits
[28]. The union profits allocation that removes the process of
direct market bidding of residents is more likely to implement
in residents.

III. MODEL

Many existing peak demand management programs that uti-
lize direct load control are disruptive and can have significant
impacts on the end user. Load control schemes must meet the
dual goals of being both fully responsive and non-disruptive [1].
In the cooperative game, let denote union, denote any coali-
tion in the union, where , and denote any member in
the union. In control model, the constraint conditions are set
by users in person, So that the control objective is achieved
non-disruptively.

A. Household Appliances Model

Household appliances are controllable load including TCL,
PHVE, washer and dryer, dishwasher, etc. They become an im-
portant kind of object of DLC because of their ability to store
and shift energy.
1) Individual TCL Model: We model the temperature state

evolution of an individual TCL with a discrete time difference
equation used in [5] and [8]:

(1)

where is the indoor temperature at time step , is the
ambient temperature, and is a noise process. The dimension-
less TCL parameter equals , where is a TCL's
thermal capacitance, is its thermal resistance, and is the
simulation time step. , the temperature gain when a TCL is
ON, equals , where is a TCL's energy transfer
rate, which is positive for cooling TCLs and negative for heating
TCLs according to our conventions. The power consumed by
TCLwhen it is on, , is equal to , where
is its coefficient of performance (COP). The control variable
is a dimensionless discrete variable equal to 1 when the TCL is
ON and 0 when the TCL is OFF.
For each user at time , the sample

temperature is within the tolerance of set temperature deviation.
Let denote the temperature set point, and denote the
dead-band width:

(2)

2) PHVE Model: For each user , the predetermined total
daily energy consumption is . For example, A PHEV needs
16 kWh to cover a distance of 40 miles daily [2]. The user needs
to select the beginning and the end of a
time interval that PHVE can be scheduled. Clearly, .
For example, a user may select 8:00 PM and 7:00 AM for its
PHEV to have it ready before going to work, out of this in-
terval, PHVE is in work state and charging is prohibited. We
assume that the charging power is constant during the charging

period. The charged capacity of a PHVE needs to meet its re-
quired predetermined daily consumption. Therefore, we have
the following equation:

(3)

and

(4)

where denotes charging power, denote state of charge,
denote load control horizon, and de-

note the enabled charging time. The control variable is a
dimensionless discrete variable equal to 1 when charging and 0
when waiting.
The duration of charging denoted by is set up to prolong

the service life of batteries:

(5)

3) Washer Model: The user needs to select the beginning
and the end of a time interval that WASHER

can be scheduled. The washing process usually needs to be fin-
ished in the duration without interruption, that is

(6)

and

(7)

(8)

where the control variable is a dimensionless dis-
crete variable equal to 1 when washing otherwise 0.

denote the enabled washing time.

B. Retailer’s Settlement Model
Normally, the generating process is relatively stable and the

unit can follow the automatic generation control (AGC) instruc-
tion to produce. Unit failure rate is very low. Even outage ap-
pears, the load can be balanced by other units and the regulation
cost is easy to calculate. However, load fluctuation in consump-
tion is relatively frequent, and the regulation cost is not easy to
calculate. Most regulation cost is caused by load fluctuation, so
the retailer should pay for the additional cost involved in the
deviation between market clearing quantity and the actual con-
sumption.
Functioning as a balancing market to the Elspot day-ahead

market, Elbas offers opportunities to reduce risk and increase
profit. Elbas plays an important complementary role in creating
an efficient power market. It offers an alternative to the bal-
ancing market for all or some of the imbalances a member may
have after the day-ahead trades are final.
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The income of producer was defined in [29]. Here, the cost of
retailer is comprised of Elspot cost, Elbas cost, and regulation
cost:

(9)

where denote the price of energy bought at Elbas in hour
and denote the quantity bought at Elbas in hour ;
denote the Spot market price when energy is delivered,

denote energy delivered from the spot market and denote
the quantity bid in the Spot market at time ; denote en-
ergy not delivered from the Elbas market and denote the
regulation cost.
The regulation cost function is defined as

(10)

where is the deviation between market clearing quantity and
the actual consumption. It is defined as

(11)

where is the electricity consumed by the union at time . Let
denote the electricity consumed by the coalition at time

, and denote the electricity consumed by the set at
time , which is the complementary set of . denotes the set
of household appliances such as washer and dryer, refrigerator,
dishwasher, AC, PHEV, etc.:

(12)

and

(13)

Energy delivered from the spot market is defined to be

when
when

(14)

and energy not delivered from the Elbas market is defined to be

when
when

(15)

The additional regulation cost is based on the deviation be-
tween the total quantities bought at two markets and the actual
consumption. When the actual consumption equals to the total
quantities, there is no regulation cost. If the actual consumption
is greater than the total quantities, units load have to be adjusted
upward, and the retailer needs to pay for up regulation cost and
vice versa, shown as Fig. 3.

C. Cooperative Game Model

Under RTP day-ahead, the demand response to the cost of
power market is not fully responsive. Retailers undertake the en-
tire risk in the balance market so that the market is inefficient. In

Fig. 3. Regulation problem.

the union, the retailer can schedule power consumption within
the constraints set by users to reduce the union bought electricity
costs. Then, union profits would be allocated for all union mem-
bers.
1) Optimization Problem: Electricity payments between re-

tailer and users are counterbalanced within the union, so the
union electricity cost is electricity purchasing cost of re-
tailers in the market. We are now ready to formulate the energy
consumption scheduling problem of the union as the following
optimization problem:

(16)
subject to the following constraints:
For retailer, the quantity sold at Elbas will be limited in the

quantity biding in the Spot market:

(17)

For each TCL, that will satisfy the temperature constraints in
(2). For each PHVE, that will satisfy constraints in (3), (4), and
(5). For each washer, that will satisfy constraints in (6), (7), and
(8).
2) Profits Allocation: The profits of each coalition

is denoted by , and defined as the decrement in electricity
purchasing cost of the coalition denoted by . There are not
union profits if no player accesses balance market besides the
retailer. Clearly, only the coalition including the retailer can pro-
duce profits, because the retailer is the only agent in the union to
access balance market. The profits of members are allocated ac-
cording to Shapley value, which are formulated as the following
equations:

(18)

and

(19)

where denote the allocated profits value of the member
, , and are amounts of members in the union and in the
coalition , respectively.
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D. EMS Model
Household EMS plans the energy consumption scheduling

of all appliances to reduce the user's total electricity payment
denoted by , within the upcoming scheduling horizon. The
problem is obtained as

(20)

The appliances will satisfy the constraints in (3)–(8).

IV. ALGORITHM AND DYNAMIC ADJUSTMENT

A static decision-making consist in scheduling switches
status of appliances and developing an Elbas bidding strategy
for a upcoming time, according to the electricity price fore-
casting. Actually, the market forecasting information change
from hour to hour as the new data adds. Thanks to bilateral
deal, retailer may adjust the current scheduling dynamically
in advance to respond to the change of market information.
During actual operation, the retailer predicts Elbas price every
hour. The forecasting model used here is ARIMA electricity
price forecasting model in [30]. Based on price forecasting
together with the bilateral deal plan, scheduling of appliances'
switch and Elbas bidding strategy of retailer for a upcoming
time are formulated and adjusted constantly. In the coming
hour, appliances will be controlled according to the latest
scheduling. The specific process is as follows:
a) Update the forecasting data of electricity price in balance

market.
b) Update parameters of the existing model, such as PHVE

remaining energy, current switch state, etc.
c) Solve the decision-making model
d) Adjust the energy consumption scheduling and bidding

strategy.
e) Control appliances in the union according to the latest

scheduling in the coming hour.
f) Allocate the union profits after the scheduling of the

whole day has been delivered.
Algorithm of the DLC model in cooperative game was coded

with Matlab, and called for Cplex to solve the decision making
process. Program flow chart is shown in Fig. 4.

V. SIMULATION RESULTS
In this section, we present simulation results. In our con-

sidered benchmark, there are members in the union
including one retailer and five customers/users who subscribe
for the DLC services. We assume that each user has 3 appli-
ances with transferable loads, that is to say, with soft energy
consumption scheduling constraints set by users. Such appli-
ances may include ACs (rated power: 4 kW), PHVEs (rated
power: 5 kW, daily usage: 15 kWh), washer (rated power: 0.6
kW), etc. In addition, we take some fixed loads into account,
which are uncontrollable. It is reasonable to assume that most
users have electric cars to be charged sometime from late after-
noon to early morning of the next day. For simplicity, we as-
sume that for all PHVEs and

for all washers. The indoor tem-
perature is set at with a tolerance of , but there are
diversities in the sample time. Of course, parameters of user's

Fig. 4. Program flow chart.

Fig. 5. Users’ power scheduling and retailer’s purchasing strategy in balance
market when not allied.

EMS can be set according to the actual situation. The horizon
of DLC is from 17:00 to 17:00 of the next day with a step of 10
min.
Fig. 5 shows the power scheduling of the 5 users when they

are not in the union and corresponding strategy of retailer in
the balance market. In this situation, users' load is controlled by
their EMS rather than the retailer. EMS schedules consumption
according to Elspot price to achieve a minimum electricity pay-
ment. So the retailer cannot change actual consumption but reg-
ulate the bidding strategy in balance market. The regulation cost
is so high that the retailer has to buy or sale energy in balance
market to balance the deviation between the quantities bought
at Elspot market and the actual consumption. The retailer's pas-
sive strategy to follow the fluctuation of load makes him avoid
paying for the regulation cost but exposed to the risk of unstable
price in balance market. What is more, users can only respond
to spot price to reduce electricity payment, so they can't get ben-
efits from balance market.
The load is transferable when residents ally with retailer, as

shown in Fig. 6. Without the union, most residents' loads con-
centrate upon the off-peak of RTP, which is the response to the
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Fig. 6. Comparison between residents allied with retailer or not.

day-ahead market. With the union, appliances can be control by
the retailer within the constraints set by the user. The retailer
can't only strategically buy or sale energy in balance market
to avoid paying for regulation cost, but also strategically ad-
just consumption scheduling to increase union profits. In ad-
dition, bilateral deal, of which the agreed price is much lower
at given time, was allowed in the balanced market, so surplus
controllable load can be shifted to the time to reduce the union
cost. Through union agent direct control load, users can not
only respond to a day-ahead market but also respond to a more
real-time balance market. It meets the dual goals of being both
fully responsive and non-disruptive and increases the market ac-
tivity. Regulation cost is avoided due to the fact that the amount
of energy bought in markets equals to the actual consumption at
any time. It also meets the goal to achieve self-management of
the imbalance between the quantities bought at markets and the
actual consumption in the union.
PHVEs may be charged from 8:00 PM to 7:00 AM of the

next day, which is denoted by 19–84 (with a step of 10 min).
Here, 1 indicates 17:00 (the start time for DLC). SoC is 0 ini-
tially for all PHVEs, so charging time need is 3 h. Fig. 7 com-
pares PHVEs charging states and washers control strategy when
it is controlled by agent with the union and by EMS without
the union. The charging time of PHVEs controlled by EMS is
on RTP off-peak while it is on off-peak of the comprehensive
price of RTP and Elbas when it is controlled by the agent. The
washers control strategy is similar to that of PHVEs, except that
the washing time is 1 h. Fig. 8 describes the dynamic charging
scheduling in the union control mode. Capture time of lowest
electricity price signal is an important factor that affects PHVEs
charging scheduling. At the first scheduling time (17:00), the
Elbas price of 19–24 (20:00–21:00) and 43–54 (0:00–2:00) is
the lowest. Therefore, the charging time is scheduled prelim-
inarily at these three hours. At this time, the charging energy
hasn't been delivered from market, so the retail can still adjust
the scheduling according to subsequent price changes. After 2
hours, it is the time to make the third scheduling. As the Elbas
price becomes lower on 19–36 (20:00–23:00), the charging time
is rescheduled for this period and it hasn't started yet. At 20:00,
we assume that retailer makes a deal with wind farm at a low
price for 43–48 (0:00–1:00), and some PHVEs charging time is
shifted to this time. Therefore, the latest charging scheduling is
adjusted to 19–30 (20:00–22:00) and 43–48 (0:00–1:00). Due

Fig. 7. Final PHVEs charging scheduling and washers control strategy
scheduling.

Fig. 8. Dynamic PHVEs charging scheduling.

to the validation of the agreement, the charging time on 0:00-
1:00 is forbidden to adjust and the charging time that can be
scheduled reduces to 2 h. In addition, it is the time to imple-
ment the scheduling on 20:00-21:00, and the charging time that
can be scheduled reduces to 1 hour. According to the subse-
quent price changes, PHVEs charging scheduling has been ad-
justed correspondingly. All PHVEs charging task is completed
at 1:00 and the final charging time is 19–24 (20:00–21:00) and
37–48 (23:00–1:00). Although the relative low price signal on
3:00–4:00 is captured when making scheduling at 23:00, the ad-
justable charging time remains only 1 h. Therefore, no charging
scheduling is arranged on this period.
Fig. 9 depicts the AC control strategy of a user who sets

sample temperature at between 14 and 37, under two kinds
of control mode. The sample temperature at timing point con-
centrates in the upper bound of constraint when AC is controlled
by EMS. While, the temperature changes more smoothly when
the AC is controlled by the agent and the temperature at the
upper bound of constraint is less than that of EMS mode. It
alleviates the disruption to the user in the union and acquires
a higher comfort level when AC is controlled by the agent.
Clearly, total energy consumption is identical, but consumptive
scheduling is different. The AC is started and stopped with a
delay when it is out of union control, but in advance when it
is within union control. AC load is shifted forward for 30 min
from 35 to 32. The reason is that AC control strategy is response
to nothing but Elspot price when AC is out of union control,
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Fig. 9. Final AC control strategy scheduling.

Fig. 10. Dynamic AC control state scheduling.

while it is comprehensive response to Elspot price and Elbas
price within union control.
Fig. 10 depicts the dynamic adjustment of AC control state

in the union. As shown in the figure, a small-scope fluctuation
of the price in balance market causes a large-scope adjustment,
which indicates that AC load is sensitive to electricity price. AC
load is finally delivered to the compromised region of RTP and
Elbas price in the Fig. 6. In the union, AC load can respond to
two markets' price information. Clearly, the transferable ability
of TCL is not as strong as that of PHVE. However, it has the
potential in DLC within a tolerable temperature deviation.

VI. UNION PROFITS ALLOCATION

Table I lists the cost of coalitions
including retailer, in the union

. Clearly, the cost will reduce with the enlargement
of the scale of coalition, because the union can schedule more
loads to the time interval of off-peak price.
Table II lists the allocated profits of members in the union.

Only the coalition including retailer will have profits, because
the retailer, as agent of the union, can access market directly.
Therefore, the allocated profit of retailer is absolutely domi-
nant in the union. Through allying with retailer, the user's elec-
tricity bill decreases about 4%. By cooperating with users, the
retailer's absolute costs decreases 54% and it's relative costs
reduces 7.56%. In the cooperative game union comprised of
users and retailer, the retailer, as the agent of union, controls

TABLE I
COST OF COALITIONS IN THE UNION

TABLE II
ALLOCATED PROFITS VALUE OF MEMBERS IN UNION

household appliances directly. All members of the union ben-
efit from balance market: users' electricity bills, retailers' costs
and market risks are all reduced.

VII. CONCLUSION
In order to improve the market activity and efficiency, a DLC

model in cooperative game among residential users and a re-
tailer was proposed in this paper. A large entity composed of
residential users and a retailer offers residents an opportunity to
participate in market competition indirectly and benefit from it.
As agent of residents, the retailer strategically adjusts power

scheduling and bidding strategy to respond to the market infor-
mation dynamically. Through DLC of residential appliances in
the union, the retailer balances the deviation between the quan-
tities bought at markets and the actual consumption. In addi-
tion, disruptions of DLC to residents are alleviated because the
goal is achieved completely within the boundaries of constrains
set by residents. What's more, it is fair to allocate profits for
members in the union according to their marginal contribution
to union profits, and the method of union profits allocation based
on Shapley value simplifies users' thresholds to access market.
The method proposed in this paper offers the retailer an oppor-
tunity to reduce risk and increase profits.
Scheduling end-use loads lean on DLC actions alone is not

adequate, some other control actions must be integrated with
DLC, such as price response. Only taking multiple control ac-
tions can achieve an ideal effect to improve efficiency and de-
crease risk. There are many interesting and worthy future re-
search directions to advance the residential appliances DLC ap-
proach in cooperative game. In the future, we plan to explore
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risk evaluation and management of DLC in cooperative game.
In addition, the issue of maximizing individual profits in the
union would be taken into account.
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