IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 12, DECEMBER 2015

2489

A Fine-Resolution Frequency Estimator
in the Odd-DFT Domain
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Abstract—Although many frequency estimation methods are
available, few are designed for high-quality speech and audio pro-
cessing systems, which typically use the modified discrete cosine
transform (MDCT) as their analysis filter bank. In this letter, we
propose a low complexity frequency estimator that is suitable for
MDCT-based systems and that operates in the odd-DFT domain.
Taking a complex exponential in noise as the input and deriving
the analytical expression of its odd-DFT coefficient, we obtain an
interpolated odd-DFT-based frequency estimator. Experiments
show that the proposed estimator outperforms all other reported
odd-DFT/MDCT domain estimators and has precision that is
similar to that of representative DFT domain frequency estima-
tors. The overhead for incorporating this estimator into a speech
and audio processing system is small due to the simple odd-DFT
to MDCT conversion. The corresponding magnitude and phase
estimators are also proposed in this letter.

Index Terms—Audio processing, frequency estimation, MDCT,
odd-DFT.

I. INTRODUCTION

REQUENCY estimation is a fundamental signal pro-

cessing problem that is relevant to a wide range of
applications, such as communication, instrumentation, med-
ical and audio. The odd frequency discrete Fourier transform
(0dd-DFT) domain method that we propose in this letter is
designed for audio applications that use the modified discrete
cosine transform (MDCT) filter bank [1], [2] as their basic
analysis/synthesis framework, e.g., high-quality audio analysis,
modification and coding. Low complexity of the estimator and
low overhead for incorporating it into audio applications are
our major concerns.

Although many low complexity estimation approaches exist
[3]-[7], the majority of these methods require a high overhead
to be incorporated into MDCT-analysis-based audio systems.
This is because they require a separate signal analysis proce-
dure, such as linear prediction, subspace decomposition, or dis-
crete Fourier transform (DFT). But this separate module can not
be re-utilized by the audio system.

To obtain the low overhead algorithms, two classes of estima-
tors have been proposed over the past decade. One class oper-
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ates with the MDCT coefficients provided by the audio system
directly [8]. However, the magnitude of MDCT is known to
be modulated by phase information, which greatly impacts the
estimator precision, particularly when noise exists. Although
efforts have been made to compensate such modulation [9],
[10] or to obtain more accurate estimations through an itera-
tive method [11], none of these methods are immune to the
effect of the phase modulation. Investigations on the perfor-
mances of these MDCT domain algorithms under noisy con-
ditions show that their mean square errors (MSE) perform simi-
larly and are all slightly far from the Cramer-Rao bound (CRB)
(above 10 dB) [12]. The other class uses the odd-DFT coeffi-
cients to obtain the estimated value [13], [14] and then obtains
the required MDCT from odd-DFT [15], [16]. In this way, the
effect of phase modulation can be avoided. However, the ex-
isting odd-DFT domain estimators are based on an approximate
fitting function; thus, their precisions are even worse than those
of the MDCT domain methods.

The motivation of this letter is to obtain an accurate low com-
plexity frequency estimator in the odd-DFT domain. The major
contributions can be summarized as follows: (i) the analytical
expression of the odd-DFT coefficients for a sinusoidal signal
is derived; (ii) an interpolated odd-DFT-based frequency esti-
mator is proposed. Experiments show that the proposed method
has a similar MSE level as the DFT domain estimators, which
is considerably less than the reported methods in the odd-DFT
and MDCT domains. In addition, the proposed method is more
applicable for MDCT-based applications than a DFT domain
estimator since it allows the use of a window function required
for perfect reconstruction and has lower complexity.

The rest of this letter is organized as follows: in Section II, the
relationship between the odd-DFT and MDCT coefficients and
the description of the odd-DFT domain frequency estimation
are presented. The odd-DFT domain sinusoidal analysis and the
proposed estimator are given in Section III Simulation results
are presented in Section IV, and the conclusions are drawn in
Section V.

II. PROBLEM DESCRIPTION

A. Odd-DFT Analysis

The odd-DFT, which is also called ODFT, is a frequency shift
version of common DFT Witlzl a half DFT bin. Using the twiddle
factor notation Wy = e 7~ the odd-DFT coefficient of an
N -point input signal z(n) is given by

N-1
Xo(k) = Y a(mWwy ", )
n=0
where & = 0,1,---, N — 1 is the bin index. In other words,

the odd-DFT coefficients are the samples of the discrete-time
Fourier transform (DTFT) taken directly between every two
neighboring DFT sample bins. For a single tone complex ex-
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ponential signal with frequency w = %’rl, its odd-DFT is equal
to the DFT of its frequency shifting signal at w’ = 23(1 — 1).
Therefore, technically speaking, the odd-DFT domain is also
suitable for estimating the signal’s frequency as the DFT do-
main does. These DFT-domain estimators can directly be used
in the ODFT domain with the output shifting a half bin.

The conversion from odd-DFT to MDCT is straightforward.
Here, we use Re(-) and I'm(-) to represent the real and imag-
inary parts of a complex value, respectively. For the odd-DFT
coefficient of a real-valued x(n), defining a phase factor (k) =
2v’r(k + %)ng with ny = % + % and taking the real part of its
phase shifting version, we obtain

N-1
Re (Xo(k)e*je(k)) = T;) z(n) cos 2ﬁw(n + ng) <A + %) ,
@)

which is the same as the definition of the MDCT. Clearly, the
MDCT coefficient X s (k) is the phase-modulated version of
the odd-DFT coefficient magnitude |Xo(k)|, ie., Xas(k) =
| Xo(k)|cos[/Xo(k) — 8(k)], and it can be computed from
Xo(k) as follows,

X (k) = Re(Xo(k))cosb{k) + Im(Xo(k))sinb(k). (3)

Only two real multiplications and one real addition are required
to compute one X 57 (k) value. The convenience of converting
the odd-DFT to MDCT makes the odd-DFT domain estimator
a candidate for MDCT-based applications [17].

B. Frequency Estimation in Odd-DFT Domain

We use a complex model in the following discussion. Al-
though the audio signals are generally real, they can be viewed
as consisting of a positive frequency component plus a nega-
tive (imaginary) component. Hence, using the complex model
can separate the error caused by the estimator and the influence
caused by the negative component. We consider a typical fre-
quency estimation problem with the signal modeled as a single
tone s(n) polluted by the additive noise w(n},

xz(n) = s(n) + w(n), N -1, €))

and windowed by h(n). For s(n) = Ael(“"*9) the amplitude
A, frequency w and initial phase ¢ are deterministic but un-
known constants. w(n) is zero-mean white complex Gaussian
noise with variance 2. The signal-to-noise ratio (SNR) is
defined as A%/o?. Define w = 271 = 27(ly + §), where
lo(0,1,---,N — 1) and (0 < & < 1) are the integer and
fractional parts of the digital frequency ! in the odd-DFT bin
scale, respectively. The objective is therefore to estimate the
values of I and ¢ using several odd-DFT coefficients of the
windowed signal z(n)h(n).
To make the algorithm applicable for MDCT-based audio ap-
plications, two aspects must be addressed.
 First, the windowing function h(n) must satisfy the
Princen-Bradley conditions [1], which is required by
the MDCT to achieve perfect reconstruction. However,
the windows that are commonly used in the existing
DFT-domain estimators, such as rectangular, hamming
or hanning, do not satisfy such conditions. Because the
window function significantly affects the performance
of an estimator [6], [18], these DFT domain estimators
will inevitably under-perform if the window is altered.
In this letter, we consider a typically used sine window

n=0,1, -
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h(n) = sin &(n+ %) and propose the corresponding
estimator.

» Second, the algorithm should target good performance for
real-valued inputs because the audio signals are in prac-
tice real valued. In fact, the transform domain estimation
of a real signal is equivalent to that of a complex one pol-
luted by its mirroring frequency, which will be illustrated
in Section IV. Moreover, the odd-DFT of a real signal is
symmetric, Xo (k) = Xo(N — k — 1), and the MDCT
takes the first % values only. Therefore we constrain the
bin index & to [0, & — 1] in the following discussion.

III. PARAMETER ESTIMATION METHOD

A. Sinusoidal Analysis in Odd-DFT Domain

The odd-DFT of a signal 2(n) windowed by h(n) is defined
as

N-1
k—i—% n
Xo(k) = 3 a(m)h(mWy ", 5)
n=0
Consider a noise-free sinusoidal signal
z(n) = s(n) = Ae]‘(%l’”‘b), 6)

by substituting (6) into (5), we have
N—-1
Xo(k) = 46 3" hmWE D" = A Ho (k — 1),
n=0

(7

where Hp (€) represents the odd-DFT of the window A(n), but
¢ is not limited to being an integer or non-negative. With £ = &
—1, we consider £ € [~ &, & here. It is clear that the odd-DFT
coefficients are primarily determined by the window function.

For the sine window h(n) = sin £ (n + %),

N-1
. 1 4+4n
Ho(ﬁ) = Z smﬁ <TL+ 5) WI(V ‘)

n=0

®)

1 1
sin ﬂ—é sin —ﬂ(%ﬂ)

Note that the two poles at 0 and —1 are canceled out by the zeros
at the same locations, the values of Hy (€) can be obtained using
L’Hospital’s rule in this case. Ho (€) has fast-fading side-lobes
as illustrated in Fig. 1; significant values appear only when ¢ is
near 0. Via further approximation on (8) for £ near 0 by

N—-1 1
WJV2 (£+§)

1.
= §s1n(ﬂ'£) l

Nsin(m€) _ N-i(ey 1)
H, N W2 2 9
one can obtain an analytical expression of (7) given by
AN sinrl :
Xo(k) = Y 10
ob) = s r 17" (10)
where
T 1 N -1 T
w_ﬁ<k+§>+ N 7Tl+§+(b. (11)

These results are the basis of the frequency estimator proposed
in this letter.

B. Frequency Estimation

Now we present the estimation algorithm for the frequency !
= lp + 4. We limit our algorithm to non-iterative and single
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Fig. 1. Plot of Hp(£), the odd-DFT magnitude of the sine window. The plot
shows the envelope of the normalized values and the amplified curve of values
near zero. Here, N — 2048.

frame based, and we use * to denote an estimated value of a pa-
rameter. The estimations of Iy and § are according to the values
of |Hp (€)| (as plotted in Fig. 1) with an interpolated method.

1) The Integer Part: Recall that the odd-DFT is a frequency
shift version of the DFT, the magnitude peak of the DFT at &
= [y for —0.5 < § < 0.5 corresponds to that of the odd-DFT
atk = [g for 0 < § < 1. Thus [, is estimated as

lo = arg;nax(lXo(k)\). (12)
For § = 0, a neighboring peak appears at k; = lp — 1; in this
case, the estimation result is still [ = k.

2) The Fractional Part: Because 6 = 0 has been addressed,
here we use Xo(lo) and its two immediate neighbors to ob-
tain the estimated value when 0 < 4 < 1. By denoting X; =
Xo(ly 4 1), i = 0,41, defining a ratio of the odd-DFT coeffi-

cients ag = ‘f{l‘ , and substituting (10) into the ratio, we can
obtain the relationship between ¢y and 4,
(1-48)(2-19)
N S A S A 13
o 5(1+9) (13)
Thus, a reasonable estimator of 4 is given by
R 3+a 7\/a2+14o¢ +1
d = - 2(170%) - for ap # 1, (14)
0.5 for ag = 1.

Because the main lobe of the sine window is three-bin wide (as
shown in Fig. 1), when § is close to 0 or 1, either | X _; | or | X 11|
is close to 0. Such a very small value is sensitive to noise and will
decrease the precision of the estimator. Therefore, we define two
other ratios, |XX—’01“ and ‘L‘ffl" , and substitute (10) into the ratios
again; consequently, two new estimators are obtained as

¢ [ Xol — [X 4]

] Bl bl 11 15
| Xo| + X _1] (15)

: 2| X 44|

b= 2 16
ol + X 11 (16)

Tests on these three estimators show that a combination of them
enhances the precision of the estimation, which will be given in
Section IV.

C. Magnitude and Phase Estimation

With the estimated frequency value, [=1 o+ ) , wWe can obtain
the magnitude,

[ Xo|  2m8(1-4)
|H(-§)|  Nsin(ré)

A= (17)

|X0‘7
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1070k with noise: (14)

without noise: = = = (14) (15)

14 . . ‘'
0 0.2 04
Digital Frequency (3)

0.6 0.8 1

Fig. 2. MSE of the three frequency estimation equations (14), (15) and (16).
The fractional part § varies from 0 to 1 with a step of 0.01. A pure single complex
exponential is used in the test without noise, and its noise polluted counterpart
with SNR = 80 is used in the test with noise.

and the initial phase

- 77 N-1 . =«
Ford =0,A4 = 21Xo(1)| because |H(0)| = &

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present the simulation results of the pro-
posed estimator. According to the audio applications, we set
the window length to N = 2048, sampling frequency to f; =
44.1 kHz, and magnitude to A = 1. ¢ is generated randomly
in the range (—#, 7) obeying a uniform distribution. All of the
results are the averages of 10 000 independent runs.

A. The Combined Estimator and Its Complexity

In this test, the performances of the three equations (14), (15)
and (16) in Section III-B for the frequency estimation of a single
tone complex exponential signal are compared. The comparison
was conducted under both noisy and noiseless conditions when
the fractional part 4 changes from 0 to 1. The MSE curves are
given in Fig. 2. This plot shows that although the SNR is set to
80 dB for the noisy case, the noise greatly affects the precision
when 4 is close to 0 or 1, making the MSE curves deviate more
from the noiseless ones. None of the equations outperform the
others for most of the § values.

To decrease the estimation error, the proposed estimator is a
combination of these three equations,

(15) for &g > als—0.5-~/2;
(14) for apls—0.54+/2 < do < aols—0.5-~/2;
(16) for & < awls—0.54~/2;

where -y is the width centered at § = 0.5 and &y is the calcu-
lated ratio. We repeated this test with various SNRs and found
that v = 0.2 is a good choice. The computational complexity of
the proposed estimator consists of a division, one or two com-
parison(s) and a calculation according to one of the formulas of
(14)-(16). For low complexity implementation, set v = 0 and
use (15) for | X 1| > | X 1] and (16) for the other case. The di-
vision and the square-root operation in (14) are avoided. In the
following test, we present the results of these two combination
settings.

B. Estimation for a Complex Signal

Simulations were performed to verify the frequency estima-
tion precision of the proposed odd-DFT domain estimator (in
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Fig. 3. Plot of the MSE vs. SNR of different frequency estimators for single
tone complex exponential input. N = 2048, and ¢ is set randomly obeying a
uniform distribution in the range of 0 to 1.

combined form) with a single complex exponential signal. For
comparison, two odd-DFT domain estimators (Ferreira’s single
rule [13] and combined [14]), three MDCT domain estimators
(Merdjani [8], Zhang [11] and Dun [10]), and two DFT domain
estimators (Quinn [5] and Candan [7]) are taken as benchmarks.
The single-frame-based envelope method without iteration is
used for Zhang’s estimator [11]. The fractional part J is set to be
uniformly distributed in the range (0,1). For all of the odd-DFT
and MDCT domain estimators, the sine window is used. For the
two DFT domain estimators [5], [7], we only consider the rect-
angular window case. This is because using the sine window
greatly changes the signal spectrum and significantly degrades
the performance of a DFT domain estimator.

Fig. 3 presents the MSE of these estimators as the SNR varies.
The CRB [19] for frequency estimation is also plotted. The
number following ‘Proposed’ in the legend is the value of ~.
The three MDCT domain estimators are far from the CRB be-
cause of their inherent phase-modulation effect. The two Fer-
reira’s odd-DFT domain methods exhibit considerable bias be-
cause of the approximate fitting function they use. The pro-
posed odd-DFT domain estimator (with v = 0 and v = 0.2)
and the two DFT domain estimators closely follow the CRB.
For the proposed method, only when the SNR is greater than
100 dB does some slight difference appear between v = 0 and
~ = 0.2. Therefore the proposed odd-DFT domain estimator is
among the best estimators and is the most suitable method for
sine-window-based audio applications.

C. Estimation for a Real Signal

The influence of the negative (imaginary) frequency compo-
nent of a real signal to the frequency estimation is presented in
this part. Here, we use s(n) = Asin[wn + ¢] as the input, and
w varies from 0 to 7. The MSE curves of different estimators
at SNR = 100 dB are shown in Fig. 4. The single-frame-based
envelope method with a maximum of 10 iterations is used for
Zhang’s estimator [11] here. Most of the curves in the plot are
nearly even-symmetric with respect to 5 because the 27-period
of a discrete signal’s spectrum makes the influence of the nega-
tive frequency component increases when w is close to 0 or 7.
However, two of the MDCT estimators [8], [11] exhibit large
deviations because the additive noise considerably affects them
when a bin value is close to 0. For the two Ferreira estimators
[13], [14], the errors are nearly constant because their fitting
function brings larger errors than the negative frequency does.
All other estimators exhibit an obvious error decrease when w

IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 12, DECEMBER 2015

Ferreira[13] v Zhang[11] + Candan[7]
o Ferreira[14] A Dun[10] = = = Proposed-0.2
0y Merdjani[8] Quinn5] O Proposed-0 Y]
— . v o
2 D N (N e N N v &
E 5 % v e v . 1
W e e . o )
s wVVe - v v CREAY Vo,
t VB 9 v v
2 © v v i
\
R 1 B
&\%AAAAAAAAAAAAA%@
107t ‘ﬁa+++++++++ﬁ—ﬁ’
‘ Sooogaond ‘
0 0.2 04 0.6 08 1

Frequency o (n rad/s)

Fig. 4. MSE of the frequency estimators while w varies from 0 to 7. Here, we
use a set of the I values, and § is set randomly, obeying a uniform distribution
in the range of 0 to 1 for each . SNR. = 100 dB.
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Fig. 5. Plot of the MSE vs. SNR of different frequency estimators for single
tone real-valued input. N = 2048, I; = 46, and ¢ is set randomly, obeying
uniform distribution in the range 0 to 1. Thus, w & 0.0457, corresponding to
approximately 1 kHz with f, = 44.1 kHz and N = 2048.

varies from 0 to 5. The proposed odd-DFT domain estimator
(for both « values) shows smaller errors than the DFT-domain
estimators [5], [7], this is because the sine window is used.
Although the sine window is not a maximum side-lobe decay
window that is used to obtain high imaginary component inter-
ference rejection estimator [20], it ensures better resistance to
the imaginary frequency than the rectangular window does.

We also tested the variances at different SNRs for frequencies
near w = 0.0457, corresponding to approximately 1 kHz with
fs = 44.1 kHz and N = 2048. The result is given in Fig. 5.
The bound CRB-Real ~ 2CRB [21] is used. As shown, the
curves are similar to that of the complex signal input case shown
in Fig. 3, but the two DFT-domain estimators [5], [7] exhibit
either comparable or larger bias here. The proposed estimator is
the smallest biased among the sine window-based non-iterative
estimators.

V. CONCLUSIONS

This letter presents an interpolated odd-DFT-based sinu-
soidal frequency estimator with fine resolution. The estimator
is based on the derived analytical expression of the odd-DFT
coefficient for a sine windowed sinusoidal signal. The pro-
posed frequency estimator outperforms other odd-DFT and
MDCT domain methods. Its fine resolution, which is similar
to a modern interpolated DFT estimator, together with its low
complexity ensures that it is a good choice for MDCT-based
audio applications. The magnitude and phase estimators are
also provided in this letter. Further, the method can also be gen-
eralized to other window cases through numerical simulations.
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