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� Solubility of PAHs in SCW/H2 was

studied by MD simulations.

� Increasing temperature and den-

sity enhanced solubility behaviors.

� It was observed that hydrogen

penetrated water shells.

� Hydrogen promoted the dispersion

of PAH oil droplets.
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a b s t r a c t

Violates containing polycyclic aromatic hydrocarbons (PAHs) were precipitated in the

process of fast pyrolysis and gasification of coal and organic substances. PAHs are one of

bottlenecks of entire coal gasification for hydrogen production. In current work, the solu-

bility of PAH oil droplets in supercritical water/hydrogen circumstances were investigated

based on molecular dynamics simulation, which was beneficial for understanding the

solubility behaviors of PAHs in supercritical water/hydrogen environment. The results

showed that heavy PAHs were rather stable in the water phase. Supercritical water along

with hydrogen promoted the miscibility of PAHs compared with that of pure supercritical

water. Furthermore, high density and high temperature facilitated the rapid solvation of

PAHs in supercritical water/hydrogen environment. This paper is expected to provide a

theoretical support for the development of complete coal gasification technology for

hydrogen production.
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Table 1 e System of PAHs solubility in SCW/hydrogen
environment.

System Number of water
molecules

Hydrogen content
(vol%)

PAHs-SCW/

hydrogen

1713 13.00

3426 6.97

5139 4.76
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Introduction

Coal, as one of fossil resources, still takes an important part in

energy structure, extremely in the winter heating period of

cold areas. Direct combustion of coal causes severe environ-

mental pollution, especially CO2 emission [1e3]. Thus, how to

achieve clean and efficient utilization of coal is a crucial topic

of scientific research. Notably, coal and biomass can react

with water to produce hydrogen [4e6]. Hydrogen could be

used for clean combustion, heating, power generation and

energy storage. Especially, supercritical water (SCW,

temperature > 647.4 K and pressure > 22.1 MPa) [7e9] gasifi-

cation for hydrogen production is an ideal approach of effi-

cient and clean utilization of fossil fuels [10,11]. Supercritical

water gasification of coal [10,11] or organicwastes [12e15], as a

clean and efficient approach of energy utilization, has very

broad application aspects and prospects in the future. How-

ever, there are some problems, such as coke formation, low

carbon conversion, and the decomposition and conversion of

polycyclic aromatic hydrocarbons (PAHs) and other macro-

molecular compounds. The internal mechanism in complex

molecular system is urged to be further explored, which is

conducive to promoting the efficient and clean utilization of

energy and sustainable development. Notably, molecular

simulation can be adopted to study intrinsic mechanisms in

the process of hydrogen production from coal gasification,

such as the pyrolysis and gasification mechanism of coal

[16e18], PAHs [19] and other molecular model compounds

[12,20], which can provide a theoretical basis for the devel-

opment and industrialization of hydrogen production.

Molecular dynamics (MD)simulation can be applied to

illustrate and reveal internal behaviors and mechanisms on

molecular scale in complexmolecular system [19,21], which is

one of theoretical computation approaches. Numerical

studies [22,23] also have been used. Researchers had studied

the diffusion properties of gases in supercritical water based

on MD simulation. For instance, the diffusion behavior of

carbon dioxide in supercritical water was simulated by Cai

et al. [24,25]. The results manifested that the diffusion coeffi-

cient increased with temperature, whereas it decreased with

pressure [24,25]. Actually, the varying temperature and pres-

sure directly bear on the parameters of supercritical stream,

involving density, viscosity as well as thermal conductivity

[26]. For oxygen diffusion in supercritical water, there were

few reports on account of experimental constraint; extremely

the Darken equation was not valid for oxygen diffusion in

supercritical water [27]. For hydrogen diffusion in supercritical

water, Zhao et al. [28e30] obtained the diffusion properties

under different statuses. Diffusion coefficients and correla-

tions of various solutes in water at supercritical state have

been estimated and calculated. Moreover, it was speculated

that high diffusivity of reactants was a crucial factor, which is

responsible for high degradation efficiency of oxidation re-

actions [31,32] in supercritical water. In addition, violates

containing PAHs precipitate in the process of fast pyrolysis of

coal and organic substances. PAHs have become one of bot-

tlenecks in complete coal conversion for generating hydrogen

[19,33]. Ever since Modell put forward SCW gasification [34] for

hydrogen production, this technology has been dramatically
developed. SCW gasification can not just improve the utili-

zation efficiency of fossil fuels and organic wastes [35,36], but

reduce environmental pollution [37e40]. Dissolution of PAHs

and mixtures [41e43] in water at supercritical state had been

explored and studied. It was revealed that supercritical water

has great solubility abilities for organic substances including

PAHs, which deserves extensive investigations [41e44]. In this

article, MD calculations were applied to investigate the

miscibility of PAHs with supercritical water/hydrogen for

illustrating solubility behaviors and structures in the solvent.

This work is willing to offer a theoretical support for the

development of entire coal gasification technology for

hydrogen production, which is conducive to prompting the

sustainable development of energy and environment.
Simulation details and verifications

Naphthalene (NAP) was adopted as light PAHs in current

work, while benzo [ghi]perylene (Bghip) were selected as

heavy PAHs. The reliability of a MD simulation primarily de-

pends on the force field applied. The validity of COMPASS in

the hydrocarbons/SCW environment had been verified

[45e47]. The non-bonding interaction between particles was

described by COMPASS force field in this paper. For simula-

tions, a cubic box with periodic boundaries was established to

simulate the environment at supercritical state. An oil droplet

containing PAHmolecules was located at the center of the box

in MD simulations. The left space of the box was full of water

molecules. Water densities were ranging from 0.1 g/cm3 to

0.3 g/cm3 and relevant details were illustrated in Table 1. The

whole calculations were based on a molecular dynamics

module Forcite integrated in the software package of Mate-

rials Studio (Accelrys Inc.), which ran on the Dell Precision

WorkStation T7500 Tower. Radial distribution function [41]

(RDF) was obtained by the Forcite trajectory files.

Recorded. As shown in Fig. 1, the broadened peak of the

RDF between oxygen atoms contained in water was 5.2 �A and

the intensity of the peak declined, which was in line with the

former reports [41] verifying the simulations. A typical mo-

lecular dynamics simulation on the dissolution of PAHs is

illuminated as bellows. First, the bulk phase of PAHs was

constructed and the stable bulk structure of PAHs was ob-

tained by an anneal operation based on NPT ensemble. Based

on the research, an oil droplet about 15 �A in radius containing

60 wt% Bghip (weight ratio) and 40 wt% NAP (Bghip60NAP40)

was acquired from the bulk phase and placed at the center of a

cubic box 80 �A on every edge. When the dissolution was

applied in hydrogen and supercritical water solvent, 254

hydrogen molecules were contained [1,43]. Furthermore, the
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Fig. 1 e Radial distribution function curve of water at 683 K.

Fig. 2 e Solubility of PAHs in solvent C H O. (a) ~ (d) SCW;

(e) ~ (f) SCW/Hydrogen.
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box was filled with water molecules whose density was

adjusted by the number of water molecules, as mentioned

above. Later, a MD simulation was conducted based on NVT

ensemble and lasting 500 ps Besides, the atom based and

Ewald summation methods were chosen for van der Waals

and electrostatic, respectively. During the theoretical calcu-

lations, temperature oscillation was regulated by NHL

thermostat.
Results and discussions

PAHs solubility behaviors in pure SCW and SCW/Hydrogen
circumstances

The solubility of PAH (Bghip60NAP40) oil droplets in pure SCW

and SCW/hydrogen circumstances was applied at the water

density of 0.1 g/cm3 and the temperature of 683 K, as shown in

Fig. 2.

At the time of 125 ps, light NAP molecules were evidently

dissolved in supercritical water, while Bghip molecules were
rather stable and remained in oil droplets, as observed in Fig. 2

(a)e(c). It was confirmed that heavy PAHmolecules weremore

difficult to be dissolved than light ones in supercritical water

[41e43]. The oil droplet was gradually dissolved in water

phase with the time increasing. And the droplet was

dramatically dissolved in water when the time reached 500 ps

It was also found that nanoaggregates occurred during the

simulations, which was primarily resulted from face-to-face,

p-offset and T-shaped stacking among aromatic molecules

[41,47]. Beside, compared with pure water, the PAHs dissolu-

tion was much quicker in supercritical water/hydrogen envi-

ronment, as displayed in Fig. 2 (e)e(f). And the oil droplet was

basically dissolved at 170 ps, which was evenmore significant

than that of pure water at 375 ps It was revealed that the ex-

istence of hydrogen promoted the dispersion of PAH

aggregates.

Furthermore, the miscibility of oil droplet (Bghip60NAP40)

with supercritical water/hydrogen was applied at the water

density of 0.2 g/cm3, as seen in Fig. 3. The oil droplet was

immediately dispersed with time increasing. It was revealed

in the previous studies [48] that supercritical water clusters

provided OH and H free radicals, which greatly enhanced the

production of carbon monoxide and hydrogen. According to

Fig. 3 (a)e(c), water clusters and shells were surrounding with

the oil droplet, which was in accordance with preceding re-

ports [43,48] and this is essential to facilitate hydrogen gen-

eration [19,48] and production.
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Fig. 3 e Dissolution on PAHs (Bghip60NAP40) in SCW/

Hydrogen environment.
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PAH solubility behaviors at various hydrogen contents

The dissolution of PAHs (Bghip60NAP40) in supercritical water

and hydrogen was applied at various hydrogen contents.

Simultaneously, the temperature was fixed at 683 K. Then, at

the simulation time of 125 ps, the PAHs solubility structures

were as exhibited in Fig. 4. The results showed that solubility

behaviors and dissolution structures were different under the

three conditions. The solvation effect was themost significant
Fig. 4 e Miscibility of PAHs (Bghip60NAP40) with SCW/

Hydrogen at different hydrogen contents.
and evident at the time of 125 ps and the hydrogen content of

13 vol% (volume ratio). And the hydrogen pierced through

water shells or clusters and prompted the dispersion of oil

droplets.

Furthermore, the solubility and structure of PAHs

(Bghip60NAP40) in supercritical water/hydrogen separately at

125 ps and 500 ps were illustrated in Fig. 5. According to

Fig. 5 (a) and Fig.5 (b), Bghip molecules were not easy to be

dissolved into the supercritical solvent. The scale of oil

droplet decreased with the growth of time, as demonstrated

in Fig. 5 (c) and Fig. 5 (d). Compared Fig. 5 (b) with Fig. 5 (d),

the solubility performance at the density of 0.2 g/cm3 was

better than that of 0.1 g/cm3. It is observed that a small

droplet still exists in the solvent box in Fig. 5 (b), while in

Fig. 5 (d) only PAH monomers and aggregates could be found

in the solvent.

PAHs solubility behaviors under various temperatures

At after 125 ps, the oil droplet (Bghip60NAP40) solvation and

structure in supercritical water/hydrogen under the condition

of various temperatures were shown in Fig. 6. The water

density was 0.3 g/cm3 and the temperature was respectively

653 K, 683 K and 713 K.

As observed in Fig. 6, several PAH molecules had been

dissolved into water phase at after 125 ps Moreover, the in-

crease in temperature improved the dissolution ability on

PAHs, which was in accordance with the results of previous

reports [41e43]. By comparison, higher temperature has a

positive impact on the PAHs solubility in supercritical water

and hydrogen circumstances, as demonstrated in Fig. 6
Fig. 5 e Solubility of PAHs (Bghip60NAP40) in SCW/

Hydrogen solvent.
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Fig. 6 e Solubility of PAHs (Bghip60NAP40) in SCW/

Hydrogen environment at different temperatures.

Fig. 7 e Solubility of PAHs (Bghip60NAP40) in SCW/

Hydrogen environment after 125 ps at various

temperatures.
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(a)e(c). Relatively, solvation effect was the best at the tem-

perature of 713 K and simultaneously the distribution of PAH

molecules in solvent was themost homogeneous. In this case,

heavy PAHs were inclined to be successfully dissolved. Be-

sides, at after 125 ps, the miscibility effect of PAHs (Bghip60-

NAP40) droplets with supercritical water/hydrogen was

obtained at different temperatures, as indicated in Fig. 7. Even

about 80% of PAH molecules in the oil droplet were dissolved

into supercritical water/hydrogen environment at a short time

of 125 ps when the temperature reached 713 K. The compu-

tational results manifested that increasing temperature rein-

forced the oil droplet solvation in supercritical water/

hydrogen environment.
Conclusions

The solubility behaviors of PAHs in supercritical water/

hydrogen environment were investigated based on molecular

dynamics simulation, which was beneficial for understanding

the solubility behaviors of oil droplets in the supercritical

solvent. The results confirmed that Bghip aggregates were

rather stable in supercritical water and hydrogen environ-

ment, while NAP aggregates were liable to be rapidly and

completely dissolved. Compared with that of pure supercriti-

cal water, supercritical water and hydrogen jointly enhanced

the dissolution of PAH oil droplets. Furthermore, high water

density and high temperature prompted the solvation of PAHs

in supercritical water/hydrogen solvent. Approximately 80%

of the number of PAH molecules in oil droplet were success-

fully dissolved in supercritical water/hydrogen environment

at a short time of 125 ps and the temperature of 713 K. This

work is prospective to provide a theoretical support for the

development of complete coal gasification technology in su-

percritical water for hydrogen production.
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