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An artificial neural network (ANN) was applied successfully to predict flow boiling curves. The databases
used in the analysis are from the 1960’s, including 1,305 data points which cover these parameter ranges:
pressureP=100–1,000 kPa, mass flow rateG=40–500 kg/m2·s, inlet subcooling∆Tsub=0–35◦C, wall superheat
∆Tw=10–300◦C and heat fluxQ=20–8,000 kW/m2. The proposed methodology allows us to achieve accurate re-
sults, thus it is suitable for the processing of the boiling curve data. The effects of the main parameters on flow boiling
curves were analyzed using the ANN. The heat flux increases with increasing inlet subcooling for all heat transfer
modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat
fluxes will increase with an increase in the mass flow rate. Pressure plays a predominant role and improves heat transfer
in all boiling regions except the film boiling region. There are slight differences between the steady and the transient
boiling curves in all boiling regions except the nucleate region. The transient boiling curve lies below the corresponding
steady boiling curve.

KEYWORDS: artificial neural network, boiling curve, pressure, mass flow rate, inlet subcooling, heat flux, heat
transfer

I. Introduction

Flow boiling has been studied by many researchers in the
last century and undoubtedly will continue to be studied in the
future. One reason is because flow boiling has an extremely
high heat transfer coefficient, it has been widely employed in
energy conversion systems such as nuclear power reactor sys-
tems, chemical processes, oil systems, refrigeration systems
and so on. Another reason is because there are many factors
that have an influence on flow boiling. Hence, it is an ex-
tremely complex and illusive process.1) Boiling curves, which
show qualitatively the dependence on the wall heat fluxQ on
the wall superheat∆Tw (defined as the difference between the
wall temperatureTw and the saturation temperatureTs of the
fluid) are very important for evaluating the effectiveness of
the emergency core cooling system of a water cooled nuclear
reactor. Researchers such as Berenson,2) Spiegler,3) Bergles4)

and others5–12)have all used boiling curves since Nukiyama13)

presented the first boiling curve in 1934. In general, these
boiling curves do not always include nucleate boiling, tran-
sition boiling and film boiling regions, as shown inFig. 1.
They often show just one or two of the three parts. For highly
subcooled flow boiling, there is an additional region between
transition and film boiling, the intermediate film boiling re-
gion, where the heat flux is nearly independent of the wall
superheat. Thus none of these boiling curves may be used as
a database in the analysis of nuclear reactor thermohydraulics
and/or safety. We have to use the correlations such as Jens-
Lottes,14) Thom,15) Rohsenow16) or Chen17) for nucleate boil-
ing, Tong,18) Milich,19) King20) or Berenson21) for transition
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Fig. 1 Schematic diagram for flow boiling curves

boiling and Groeneveld22) or Bromley23) for film boiling to
calculate the heat transfer coefficient. In the calculation pro-
cess, the different correlations will be used in different heat
transfer regions. The heat transfer coefficient is discontinuous
when one carries out the reactor thermohydraulic and safety
analyses in all flow boiling regions, therefore the correlation
must be changed according to heat transfer modes. So far,
complete theoretical correlations have not been developed to
predict the boiling heat flux or heat transfer coefficient in all
boiling regions specifically as a function of wall superheat.11)

To solve this problem, the authors trained an artificial neural
network (ANN) using the data of the past four decades that
have been tabulated inTable 1. The ANN can be used to pre-
dict a complete boiling curve. The heat flux, as a function of
wall superheat, may be obtained using the ANN.

II. Artificial Neural Network (ANN)

The ANN consists of a layer of input neurons, a layer of
output neurons and one or more hidden layers which are made
up of many interconnected simple nonlinear neurons. Exter-
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Table 1 Database of flow boiling

Ref. No. Test section Boiling medium Variable factors Type of boiling

6) Stainless steel and Inconel; Water P=0.1, G=100–400, BC and CD
Circular duct (tube); ∆Tsub=10–80,
DO=19.1 and 15.9 Tw=270–800
δ=1.65, 0.89 and 1.02
L=4, 3.5

8) DO=13.1 andδ=0.559 for Water P=0.1, G=68–203, BC and CD
Zircaloy; DO=14.0 and ∆Tsub=0–28,
δ=0.635 for Al;
DO=12.7 andδ=0.38 for
Inconel;DO=12.7 and
δ=0.38 for Cu; Tube

9) DO=16.1, δ=0.8, L=3.66; Water P=0.1–0.4, G=25–75, BC and CD
Tube ∆Tsub=33–81

10) Monel;DO=10,δ=0.15, Water and P=0.1–1.0, G=25–500, BC and CD
L=0.05; Tube N2 ∆Tsub=5–50

24) Correlation Water BC and CD

25) DO=12.7; Tube Water P=0.1, G=34–102, CD
∆Tsub=0–28

26) Ni; DO=32,δ=5.575, Water P=0.1–1.0, BC and CD
L=0.05; Tube G=100–200,

∆Tsub=30

27) Correlation CD

28) Cu;DO=32,δ=11, Water P=0.1–1.2, G=25–500, BC
L=0.05; Tube ∆Tsub=3–30

29) Correlation Water BC and CD

30) Cu;DO=95.3, δ=41.3, Water P=0.1, G=136, BC and CD
L=0.0572; Tube ∆Tsub=0

31) Cu,DO=95.3, δ=41.3, Water P=0.1, G=68–203, BC, CD and
L=0.0572; Tube ∆Tsub=0–28 DE

32) Cu,DO=95.3, δ=41.3, Water P=0.1, G=136, BC and CD
L=0.0572; Tube ∆Tsub=0–28

33) Correlation Water BC and CD

(Note) DO : Tube outside diameter (mm),δ: Tube wall thickness (mm), L : Tube length (m), P: Pressure (MPa), G: Mass flow rate (kg/m2·s),
∆Tsub: Inlet subcooling (◦C), Tw: Initial wall temperature (◦C). BC: Nucleate boiling, CD: Transition boiling, DE: Film boiling

nal data enter the ANN through the input nodes. The output
data are obtained from the output nodes after nonlinear trans-
formations. The ANN is characterized by the network struc-
ture: the weights by which the network will learn to associate
a given output with a given input, neural activation properties
and the learning rules which modify the weights of neurons.
The weight adaptation algorithm which we adopted in this
paper was the Back-Propagation (BP) algorithm.

A net inputv j to a neuron in a hidden layerk is calculated
by the formula

v j =
n∑

i =1

w j i oi + θ j , (1)

wheren is the number ofk−1 layer neurons, the weights are

denoted byw j i , and the threshold offset byθ j .
The output of the neuronoj is given by an activation func-

tion. Many different activation functions are in common
use, such as sigmoid, hyperbolic tangent,etc. The function
adopted for the present study was

oj = 1/(1 + exp(−v j )). (2)

Signal processing of the unit neuron is shown inFig. 2.
The procedure for training the weightsw j i is to improve

the weights in order to reduce the average system errorEAV

EAV = 1

2N

N∑
n=1

∑
j

(dj (n) − oj (n))2, (3)

wheredj (n) is the desired output. Improved values of the
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Fig. 2 Artificial neural network

weights can be achieved by taking incremental changes∆w j i

proportional to∂EAV/∂w j i , that is

∆w j i = −η(∂EAV/∂w j i ), (4)

whereη is the learning rate which has typical values lying
between 0.001 and 1.0. From this, the new weights for step
m+1 are given as

w j i (m + 1) = αw j i (m) + ηδ j oi , (5)

where a momentum coefficient or an acceleration parameter
denoted byα is used to improve the training time andδ j is
given by

δk = (dk − ok)ok(1 − ok) (6)

for output neurons and

δ j = oj (1 − oj )
∑

k

δkwk j (7)

for hidden neurons.
Figure 3 shows the signal flow chart andFig. 4 shows

the N-S chart of the calculating code. Artificial neural net-
works have the advantage that a formal model structure to fit
the experimental data is not required. The role of the ANN
is to predict parameters required by the analytical correla-
tion. However these parameters were instead set to a constant
value obtained by the usual best-fitting techniques. The pro-
posed methodology is expected to allow us to achieve accu-
rate results in boiling curve data processing. The databases,
as listed in Table 1, are experimental data from the 1960’s.
They contain 1,305 data points that cover the following pa-
rameter ranges:

PressureP: 100–1,000 kPa
Mass flow rateG: 40–500 kg/m2·s
Inlet subcooling∆Tsub: 0–35◦C
Wall superheat∆Tw: 10–300◦C
Heat fluxQ: 20–8,000 kW/m2.

Cybenko34) reported that ANN’s with two hidden layers are

sufficient for S-type activation functions (sigmoid and hyper-
bolic tangent functions). However, one hidden layer is enough
for a small ANN. Lippman35,36) reported that the maximum
node number of the hidden layerK equals(M+1)N, where
M is the node number of the input layer andN is that of the
output layer.

The initial weights heavily affect the performance of the
BP ANN. Thus the problem is to use an algorithm which will
allow the ANN to work properly and yield the final weights to
achieve accurate results. Wilde37) suggested that the training
of the ANN could begin by making a random guess for the
weights. Do not allow zero as a guess for a weight as it may
stay stuck at zero during the back-propagation procedure. The
parameters describing the boiling conditions which were pro-
vided to the ANN as the inputs are shown inTable 2. It was
found that the input signals do not share the same importance
regarding the ANN accuracy and that the most important pa-
rameter was the wall superheat∆Tw.

III. Prediction of Flow Boiling Curves by ANN

An ANN was trained for predicting flow boiling curves
based on the databases shown in Table 1. The input param-
eters are listed in Table 2. The output is the heat flux in
kW/m2. One can obtain the results conveniently if one in-
puts the required parameters into the ANN. For example,
if P=0.2 MPa,∆Tsub=15◦C andG=200 kg/m2·s are the in-
put conditions, the steady and transient boiling curves can be
obtained by the ANN as shown inFig. 5. Figure 6 shows
the results obtained by the ANN. The experimental data and
Lee’s24) correlation data were also plotted in Fig. 6. The
agreement between experimental data and the ANN results
are quite satisfactory.Figure 7 shows the comparison be-
tween the heat fluxes obtained by the ANN and by experi-
ments. The accuracy is±30%. There are 1,305 data points in
the database, of which 1,010 data points are inside the error
band of±30% and 295 data points are outside. The relative
error E is defined as

E = QANN − QEXP

QEXP
× 100%, (8)

whereQANN is the heat flux predicted by the ANN andQEXP

is that obtained by experiments.
The average errorEAVG is 24.86%, which is defined as

EAVG = 1

N

N∑
i =1

|E|i , (9)

whereN=1,305.
The root-mean-square error RMS is 42.33%, which is de-

fined as

RMS=
√√√√ 1

N

N∑
i =1

E2
i . (10)

Figure 8 shows the effects of inlet subcooling on the boil-
ing curves. Cheng’s data were also plotted in Fig. 8 in order
to verify the ANN. In general, for all heat transfer modes
encountered, the heat flux increases with increasing inlet sub-
cooling. This conclusion agrees with that of Chen,6) Cheng30)

and Ragheb.25) However, in the film boiling and nucleate boil-
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Fig. 3 Signal flow chart (layout)

Table 2 Input parameters of ANN for flow boiling

Input nodes X(1) X(2) X(3) X(4) X(5)

Parameters Pressure in kPa Mass flow rate in kg/m2·s Inlet subcooling in◦C Wall superheat in◦C Steady-state or transient state

Fig. 4 N-S flow chart (layout)

ing regions, this effect is very small. Therefore, the effect of
inlet subcooling on boiling curves can be neglected in the nu-
cleate and film boiling regions. Jens and Lottes14) presented a
correlation for nucleate boiling when pressure is in the range
0.7 MPa≤P≤17.2 MPa as follows:
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Fig. 5 Boiling curves obtained by ANN

∆TW = 25

(
Q

106

)0.25

exp

(−P

6.2

)
, (11)

where ∆TW=TW−TS; TW is the wall temperature and TS is
the saturated temperature of fluids.

Thom15) also presented a correlation for nucleate boiling
when pressure is in the range 5.17 MPa≤P≤13.79 MPa as
follows:

∆TW = 0.0225Q0.5 exp

( −P

8.69

)
. (12)

These correlations show that the heat flux in the nucleate boil-
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Fig. 6 Comparison between the results obtained by ANN and ex-
periments (I)
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Fig. 7 Comparison between the results obtained by ANN and ex-
periments (II)

Fig. 8 The effect of inlet subcooling on boiling curves (I)

ing region is only related to the pressure and the wall super-
heat. The results obtained by the ANN show that the inlet
subcooling effect on nucleate boiling is sufficiently small and
that one can neglect it.

However, Fig. 9 shows that the influences of inlet subcool-
ing are very small for all boiling regions except critical heat
flux (CHF). The same trends were found in Huang’s experi-

mental data.10) It should be emphasized that inlet subcooling
has significant effect on CHF as shown in Fig. 9.

Figure 10 shows the effect of mass flow rate on boiling
curves. It indicates that the mass flow rate has no significant
effect on nucleate boiling curves. As mentioned above, the
Jens-Lottes and the Thom correlations give the same conclu-
sion. The transition boiling and the film boiling heat fluxes
will increase with an increase of mass flow rate. However, the
effect of mass flow rate on the film boiling curve is less than
that on the transition boiling curve. An increase of mass flow
rate improves the heat transfer in the transition boiling region,
obviously due to the more efficient vapor transport ability and
increased flow turbulence.

Fig. 9 The effects of inlet subcooling on boiling curves (II)

Fig. 10 Effect of mass flow rate on boiling curves
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Pressure plays a predominant role and improves heat trans-
fer in all boiling regions except the film boiling region.
Figure 11 shows the effect of pressure on boiling curves. In
this figure, the results obtained by the ANN were compared
with those of selected references.10, 24, 38) The ANN results
agree well with the references’ data. An increase in pressure

Fig. 11 The effects of pressure on boiling curves

clearly improves the heat transfer in nucleate and transition
boiling regions. In the nucleate boiling region, pressure is
the only parameter which has an effect on the boiling curve
in the Jens-Lottes and Thom correlations. However, the in-
fluence of pressure on the film boiling curve is less than that
on other boiling modes. Shiotsu’s experimental data39) also
demonstrated the minimal effect of pressure on film boiling.

Figure 12 shows the comparison between the steady
boiling curve and the transient curve obtained by the
ANN. Figure 12(a) was plotted under the conditions of
P=0.1 MPa, G=200 kg/m2·s and ∆Tsub=5◦C. For Fig.
12(b), P=0.4 MPa, G=200 kg/m2·s and ∆Tsub=5◦C. Figures
12(a) and (b) show that there are no obvious differences
between the steady and the transient boiling curves. Figure
12(c) under the conditions P=0.8 MPa, G=500 kg/m2·s and
∆Tsub=29◦C shows that there is a slight difference between
them in all boiling regions except in the nucleate boiling re-
gion. The parameters of pressure P, mass flow rate G and

Fig. 12 The comparison between steady boiling curve and tran-
sient one
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inlet subcooling ∆Tsub in Fig. 12(c) are higher than those of
Figs. 12(a) and (b). Thus the differences between the steady
and the transient boiling curves are influenced by such pa-
rameters as pressure P, mass flow rate G and inlet subcool-
ing ∆Tsub. Figure 12(c) also shows that the transient boil-
ing curve lies below the corresponding steady one. Huang10)

reported that there is no significant difference between the
transient and the steady boiling curves in all boiling regimes
for the parameter ranges of P<0.7 MPa, G<300 kg/m2·s and
∆Tsub<15◦C. Beyond these ranges, however, the difference
becomes obvious in the transition boiling regime. Good
agreement between the results obtained by the ANN and
Huang’s report was found.

As mentioned above, all of the parameters (pressure P,
mass flow rate G and inlet subcooling ∆Tsub) can influence
the transition boiling curve. Thus we can say that transition
boiling is a complex physical phenomenon. It involves un-
steady processes in the liquid and vapor phases of the test
fluid, in the wall and at the boundaries of these media. Indeed,
it is an intermediate heat transfer mode where the surface tem-
perature is too high to maintain stable nucleate boiling but too
low to maintain stable film boiling. Tong40) called transition
boiling “partial film boiling.” A great number of parameters
have an effect on transition boiling curves. Kalinin41) reported
that the following factors can affect transition boiling curves:
parameters of the test section (shape, size, and roughness of
the heat surface), thermophysical properties of material, boil-
ing medium properties (hydrodynamic, thermodynamic, ther-
mophysical), process conditions, characteristics of the force
fields and the test section orientation relative to these fields,
free or finite liquid volume velocity of the channel liquid or
external flow past a test section. Although satisfactory results
were obtained in our present paper, further studies are needed
in order to improve the method of predicting boiling curves,
especially of transition boiling curves, since only the parame-
ters listed in Table 2 were selected as the input parameters to
train the ANN.

IV. Discussions

It is well known that the heat transfer experimental data can
be presented only in two different approaches following tra-
ditional research methods: representing the experimental data
with the most compact set of equations although they may
be empirical or semi-empirical or presenting them as boiling
curves. Empirical or semi-empirical correlations are always
the best-fit relationships of some experimental data with rea-
sonable simplifying assumptions. They are limited in their
range of application depending on the limitations of the ex-
perimental data. It is very difficult to theoretically perform a
perfect correlation for all regions of heat transfer even though
researchers can get the experimental data over a wide range.
Boiling curves may be used to directly express the heat trans-
fer under some conditions. However, it is inconvenient and
difficult if the boiling curves are applied for the analytical
codes of nuclear power systems. Therefore it is highly de-
sirable to have some models that have the advantages of the
above two approaches and may overcome their disadvantages.

Artificial neural network may be one of these models. The

ANN is a simplified mathematical model of a biological neu-
ral network. It has the ability to learn directly from the ex-
perimental data. The ability to learn is one of the distinguish-
ing features of the ANN. The ANN, a physiconeural model
which may be inserted into the analytical codes, is used to pre-
dict the outputs as a function of input parameters after train-
ing according to the experimental data without the benefit of
a best-fit analysis. All of these characteristics prompted the
researchers to try to apply it for the study of heat transfer.
The ANN has very recently become a topic of academic re-
search of heat transfer and is still developing, especially for
simulating the complex physical processes such as flow boil-
ing heat transfer. Thibault42) evaluated the potential of the
ANN for correlating heat transfer data using three different
examples: a thermocouple lookup table, a series of correla-
tions between Nusselt and Rayleigh numbers for free convec-
tion around horizontal smooth cylinders and the problem of
natural convection along slender vertical cylinders with vari-
able surface heat flux. This paper clearly demonstrated that
the ANN methodology may be used efficiently to model and
correlate heat transfer data. Mahajan43) and Su44) presented
their ANN models which can be used to predict the pool boil-
ing curves. Mahajan trained a simple ANN for predicting the
boiling curves of FC-70. The ANN has two input parame-
ters, log Q and process index i , where i=1 for heating and
i=0 for cooling and one output, log ∆T . However, Maha-
jian presented only one figure in which the ANN model and
experimental boiling curve were compared. Su’s ANN has
seven input parameters, wall superheat, surface roughness,
surface inclination, steady-state or transient heating or cool-
ing, subcooling, pressure and type of boiling fluid and one
output parameter, heat flux. The ANN can be used for predict-
ing the pool boiling curves of water, n-pentane and methanol.
Jambunathan45) successfully applied the ANN for deducing
convective heat transfer coefficients from experimental data.
Mazzola46) pointed out that the ANN was likely to be suit-
able for thermalhydraulic and heat transfer data processing.
Su47, 48) reported that the ANN is a powerful and useful tool
for correlating pool and flow boiling heat transfer data. How-
ever their databases of flow boiling were very limited. In-
deed, a large quantity of experimental data for flow boiling
heat transfer has been presented up to now. Therefore, the
ANN can be used as a predictor of flow boiling heat trans-
fer based on a state-of-the-art database without knowing the
best-fit correlations due to the ANN’s black-box character-
istic. The predicted results can be obtained using the ANN
if the required parameters are inputted after the ANN train-
ing. The researchers must strive to collect all the experimental
data in order to train a perfect ANN in which all parameters
that have effects on flow boiling will be considered within
a wide parameter range. However the different experiments
have been done under different conditions. As described in
the last section, a number of parameters affect flow boiling
heat transfer. Therefore, it is very difficult to train a perfect
ANN which can be suitable for different databases in one step.
The present study demonstrates that the ANN can be used to
simulate the flow boiling behaviors appropriately based on
the known experimental data. Further work is in progress to
exploit an universal ANN using non-dimensionalized param-
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eters to overcome the difficulty of uniting the input parame-
ters.

V. Conclusions

An artificial neural network (ANN) was applied success-
fully to predict flow boiling curves. The ANN was trained
to predict flow boiling curves with a database composed of
experimental data from the 1960’s. It included 1,305 data
points that cover the following parameter ranges: pressure
P=100–1,000 kPa, mass flow rate G=40–500 kg/m2·s, inlet
subcooling ∆Tsub=0–35◦C, wall superheat ∆Tw=10–300◦C
and heat flux Q=20–8,000 kW/m2. The proposed methodol-
ogy allows accurate results to be achieved, thus the ANN is
suitable for boiling curve data processing.

The effects of the main parameters such as inlet subcooling,
mass flow rate, pressure, and steady/transient state on flow
boiling curves were analyzed and the following results were
obtained.
(1) Heat flux increases with increasing inlet subcooling in

the transition boiling regions. However, the effects of
inlet subcooling on boiling curves can be neglected in
the nucleate and film boiling regions.

(2) Mass flow rate has no significant effect on nucleate boil-
ing curves. The transition boiling and the film boiling
heat fluxes will increase with an increase in the mass
flow rate. The effects of mass flow rate on film boiling
curves are less than those on transition boiling curves.

(3) Pressure plays a predominant role and improves heat
transfer in all boiling regions except film boiling. An
increase in pressure clearly improves the heat transfer in
nucleate and transition boiling regions. The influence of
pressure on film boiling curves is less than on other boil-
ing modes.

(4) There are slight differences between the steady and the
transient boiling curves in all boiling regions except the
nucleate boiling region. The differences between them
are influenced by such parameters as pressure, mass flow
rate, inlet subcooling, etc. The differences will become
significant if these main parameters are greater in value.
The transient boiling curve lies below the corresponding
steady boiling curve.
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