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Abstract-The nonlinear viscoelastic large deformation incremental variational equations based on the 
T.L. and U.L. approaches are derived. The finite element formulation and solution procedure are 
developed for three-dimensional problems. Compared to the U.L. approach, the T.L. approach is simple 
and saves computer time. The computational results of a nonlinear viscoelastic large deformation 
cantilever and a hollow thick viscoelastic cylinder with a steel casing are in reasonable agreement with 
Yang and Lianis [J. Appl. Mech. 41,635-640 (1974)J and Shen et al., Compuf. Struct. Mech. Appl. 2,43-54 
(1987), in Chinese], and the effects of material incompressibility on stress analysis are discussed. 

1. INTRODUCTION 

Owing to the extensive application of polymers, and 
along with an increasing demand for work reliability 
for rocket solid propellants, the researches on stress 
and strain of the viscoelastic solid have been impelled 
to develop rapidly. 

For viscoelastic problems of complex geometric 
shape and loading situation, the finite element 
method is one of the most effective approaches. Since 
1965, a lot of papers have been published. They can 
be divided into two kinds: 

(I) The first kind which includes most of the 
papers, is where the problems are solved directly in 
the time domain by use of an incremental step-by- 
step process. Using linear integral and differential 
constitutive relations, Zienkiewicz ef al. [l, 21, 
White [3], Argyris et a/. [4] and Srinatha and Lewis [5] 
compile the finite element programs of stress analysis 
for two-dimensional plane and axisymmetric vis- 
coelastic solids. The computational results are in 
good agreement with the analytic solution. 

(2) The second kind is that, by use of elas- 
ticity-viscoelasticity correspondence, principle vis- 
coelastic problems are translated into elastic 
problems in Laplace domain, then the elastic prob- 
lems are solved by the finite element method. After 
that, by applying the inverse Laplace technique, the 
solution of the initial viscoelastic problems can be 
obtained. According to this method, Adey and Breb- 
bia [6] analysed a hollow thick viscoelastic cylinder 
with a steel casing under uniform internal pressure. 

However, all of the above-mentioned papers con- 
cern only the two-dimensional linear viscoelastic 
small deformation problems. 

As for viscoelastic large deformation problems, 
until 1974 approximate and numerical solutions were 
only obtained for simple one-dimensional linear vis- 
coelastic problems, such as beam and frame. Rogers 
and Lee [7], and Holden [8] got the deflections of the 
viscoelastic cantilever under constant uniform load 
and constant concentrated load, respectively. Yang 
and Lianis [9] solved viscoelastic beams and frames 
by the finite element method with a bar finite element. 
The geometrical nonlinearity is accounted for a mid- 
point-tangent incremental approach together with 
coordinate transformation at every step. But this 
method is difficult to extend into two- and three- 
dimensional viscoelastic large deformation problems. 

From the general continuum mechanics principles, 
the authors have solved linear viscoelastic large 
deformation problems by using the U.L. approach 
[lo, 1 I]. Since the incremental constitutive equation 
represented by Kirchhoff stress increment tensors and 
Green strain increment tensors must be transformed 
to an alternate form expressed by updated Kirchhoff 
stress increment tensors and updated Green strain 
increment tensors, the continued equilibrium 
equation in the U.L. approach is rendered rather 
complicated. But in the T.L. approach the constitu- 
tive equation represented by Kirchhoff stress incre- 
ment tensors and Green strain increment tensors can 
be applied directly, so the continued equilibrium is 
rather simple. In addition, the T.L. approach can 
avoid modifying the nodal coordinate after every 
increment step, therefore the computer time can be 
saved. These are reasons why the T.L. approach 
arouses more interest for viscoelastic large defor- 
mation problems and these will be introduced in this 
paper. 
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Using the nonlinear viscoelastic constitutive 
equation and based upon the virtual work principle 
of T.L. and U.L. approaches, respectively, the finite 
element equations of the three-dimensional nonlinear 
viscoelastic large deformation problem are derived in 
this paper. The results of viscoelastic cantilever beam 
arc just the same with those in Ref. [l I]. The 
calculation confirms that so long as the constitutive 
relation is identical, the results calculated by both 
approaches are the same. The computational results 
of large deformation nonlinear viscoelastic cantilever 
and a hollow thick viscoelastic cylinder with a steel 
casing are in reasonable agreement with Refs [9, IO]. 
The effects of material incompressibility on stress 
analysis are discussed. 

2. THE INCREMENTAL VARIATIONAL EQUATIONS OF 
T.L. AND U.L. APPROACHES 

As the incremental theory is used to analyse 
the solid deformation, the formulation begins by 
dividing the loading path of the solid body prob- 
lem into a number of equilibrium states, such as 
QVN @v fiw+ II 3 3 3 , Cl(“) is the initial state of the 
deformation, Q(“, fl@ + ‘) are two intermediate neigh- 
bouring states. Let the rectangular Cartesian coordi- 
nates of the position of the point in Q(O), QcN’ and 
0.’ + ‘) states be represented by x,, X, and Y,, 
i = 1, 2, 3 respectively. 

Base on the T.L. and U.L. approaches in the 
equilibrium state W+ ‘I, we can obtain the virtual 
work equations, respectively, as follows [l2]: 

sss 
jAS,,SAt,, + S,,6(fAuk,,Auk,,) - AP,&Au, 

ii 

+ [S,$At,, - P,,sAui]j dv”’ 

- 

ss 
(AT, + T,)S Au, ds”’ = 0 (1) 

S” 

jA*S,$A*t,, +a,,6(fAun,,Aui,,) - ApJAu, 

+ [a,,6A*~,, - p,SAu,]) dv’.” 

- (AT, + T,)SAu, ds’“’ = 0, (2) 

5” 

where S,, and AS,, are the Kirchhoff stress tensor and 
its increment; Ac,~ is Green strain increment tensor, 
which has omitted the product of the displacement 
increments; P, and r, are body force and surface force 
on S,, which are referred to the initial state fir”). In 
eqn (2) A*S,, and A*t,, are the updated Kirchhoff 
stress increment tensor and updated Green strain 
increment tensor, only the product of displacement 
increments has been omitted in the A*(,,; CT,, is the 
Euler stress tensor, and the body force p, and the 
surface force on S, are defined to the W”’ state. 

3. CONSTITIJTIVE EQUATION 

The large strain capability of many solid propel- 
lants and similar materials requires that the 
stress-strain relation should be formulated in terms 
of the appropriate stress and strain tensors. The 
convolution must be so written that the stress in a 
material element depends on the deformation history 
of that element. This is most easily handled by means 
of a Lagrangian analysis using symmetric Kirchhoff 
stress tensors and Green strain tensors, as both 
measures consider a material element referred to a 
specific reference frame that is usually taken as the 
original unstressed configuration. This substitution of 
Lagrangian variables was first introduced by Chris- 
tenson [I31 and then employed in the hereditary 
integral mode1 by Swanson and Christenson [ 141. For 
the multiaxial stress condition it may be given as 
follows: 

(s,,} = g(t) 
s 

’ E(< - c’)[A] y dr, (3) 
0 

where the g(t) is the strain softening (or pressure- 
hardening) function which seems to successfully cor- 
rect the discrepancy between experimental data and 
those predicted by linear viscoelasticity. 

The matrix [A ] in the three-dimensional problem is 
expressed by 

v V 
I-- 

l-v 1-v 

0 

I-2v 

2(1 -v) 

(SYM) 
I -2v 

2(1 - v) 

I -2v 

2(1-v) 

(4) 
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and Fpq = tpq - 6,,aAT. In eqn (3) we assume the 
Poisson’s ratio v is nearly constant, as pointed out 
by Schapery [ 151. 

For the thermorheologically simple materials, the 
reduced time < is given by 

5= s ’ drl - (‘= ’ dv 
0 arts) ’ s *aTo’ (5) 

Let the extension modulus be described by a Prony 
series as 

E(t) = f &exp(-cr,t). 
k=l 

(6) 

If we define the convolution at a particular time t, as 

{CT,),, 1 = g,(c) s ‘” 4 
0 

exp[-cr,(t,, - ()][A]w dz 
ar 

(7) 

and 

then a recursion relation can be easily developed to 

compute {(%)n.k ) 

Considering the g,(t) = g,, _ , (c) + Ag, (E), we can get 
the Kirchhoff stress increments at the interval At,, as 
follows: 

~(As ) ) =gtcj4[1 -exp(-cc,B,,At,,)l[Al{Ae,,} 
,, nl (ax ~,,At,,) 

-k- ,(c)U - exp(-ak&4)1 

- Ag,, (t )ew( - ah 4&,,)) 16% I,, ,,A I 

(10) 

where 

and 

The first term on the right side represents the stress 
increments produced by the strain increments at the 
interval At,, , and the second term expresses the relax- 
ation stresses. Obviously, when we calculate the 
displacement increments at time t,,. the function 
Ag(c) at time t,, with Ag(c) at time t,,_ , carries on a 
modification repeatedly. The computational practice 
shows that the substitution of Ag(c) at time t,,_ , for 
Ag(c) at time At, produces only a small influence on 
results. 

4. CONTINUED EQUlLlBRIUM EQUATION 

Substituting eqn (10) into eqn (I), we may obtain 
the continued equilibrium equation of nonlinear 
viscoelastic large deformation problems by use of 
the T.L. approach as follows: 

where 

kn (6 1 [Cl C&q - QAT)SAc,, 

x k,,-,@)V -ev(-~,4At,,)l 

- Ag,,(c)exP(-a,B,At,,)}sA~,, 

+ [S,, 6 At,, - p8, Au,]} dv’O, 

- (AT,+ T,)aAu,ds”‘=O 

-% 

h 

- 
Fig. 1. Cantilever beam. 

(11) 

(12) 
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b-----_-i i_- 
Ts=lO.l6cm 0.3074cm 

Fig. 2. Deflections of a cantilever under constant uni- 
form load (ql’/E(O)I) = K /3 (I--large deformation, f-large 

deformation and strain softening). 

Substituting the relations between A*.!?,, and AS,, as 

well as A*tij and AC, [12] and eqn (10) into eqn (2), 
we can also write the continued equilibrium equation 
of the nonlinear viscoelastic large deformation by use 
of the U.L. approach in the following form: 

i ax ax ax ax 
g,[C]--““22 A*c*,,SA*t,, 

D(” ax ax ax ax r r < d 

1 
+ 2 a,,6 W, Au,,, 1 

-Ag,((~)exp(-a,B”A~,~)}&~~6A*e,, 
I .\ 

+ [ai,SA*ci, - p,SAu,] - Ap,SAu, dv’,” 

0.2 0.4 0.6 0.8 1.0 

’ two-dimensional finite 

element method by Yang 

- three-dimensional finite 

element method 

Fig. 3. Deflections of a cantilever under constant con- 
centrated load (PP/E(O)I) = 7r/3 (s-small deformation, 
I-large deformation, f-large deformation and strain 

softening). 

- (AT+ T)6Au, dstN’ = 0. (13) 

ST 

If the effects of changing temperature and strain- 
softening function are not taken into consideration, 

namelyB,=B,,= l,andg(t)= l,Ag(t)=O,eqn(l3) 
is simplified to eqn (16) in Ref. [l 11. 

5. THE FINITE ELEMENT FORMULATION 

By using the 20-node three-dimensional isopara- 

metric element and considering the relaxation stress 
and temperature stress as initial stresses, the finite 
element formulae may be derived from eqns (11) and 
(13), respectively: 

isA~)Wol+ tK1) + K11 {Au) 

= {AQ} + {AE} + {AZ} + {AT} (14) 

Table 1. Deflections calculated by three-dimensional isoparametric element under the concentrated 
load (- W/L) 

XII 
Time (h) Approach 0.2 0.4 0.6 0.8 I.0 

0 T.L. 0.01591 0.06392 0.13729 0.22736 0.32577 
U.L. 0.01591 0.06392 0.13729 0.22736 0.32577 

1 T.L. 0.01703 0.06793 0.14464 0.23768 0.33892 
U.L. 0.01703 0.06793 0.14465 0.23770 0.33894 

10 T.L. 0.02227 0.08835 0. I8754 0.30742 0.43799 
U.L. 0.02227 0.08836 0.18754 0.30742 0.43799 

20 T.L. 0.02532 0.09999 0.21164 0.34613 0.49255 
U.L. 0.02532 0.09999 0.21164 0.34613 0.49255 
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Fig. 4. A hollow thick viscoelastic cylinder with a steel 
casing. 

= {AQ’) + {AE’} + {AZ’} + (AT’]. (15) and 

The form of the matrix [KG] in the three-dimen- 
sional problem was described in Ref. [1 I]. The dis- 
crepancy between eqn (15) and eqn (17) in Ref. [l 1] 
is that eqn (15) includes strain softening function and 
a time-temperature shift factor. 

In eqn (14) [K,] represents the stiffness matrix of 
a small deformation. [KU] and [K,] are initial displace- 
ment and initial stress matrices, which consider effects 
of large deformation and are given by 

(16) 

where the matrices [G] and [M] are given in the 
Appendix. In the terms of the right side of eqn (14), 
{AQ} and {AE} represent the nodal forces produced 
by load increments and non-equilibrium residual, 
respectively, and {AI} and {AT} express the nodal 
forces induced by relaxation stress and temperature 
stress and may be described, respectively, as follows: 

{AZ} = ’ ’ 
sss 

’ ([$I + PLIY c Ic%L r.n) 
-I -I -1 k 

x {g,-l(c)[l -exp(-ak4WI 

- Ag,(C)exP(-akB,Af,,)} IJI dt drl 4 (17) I 

x [C]6,,ctA7-]J] d< drt d[. (18) 

In accordance with the above-mentioned two ap- 
proaches, the programs of three-dimensional non- 
linear viscoelastic large deformation with 14 and 
eight Gauss integration points have been written. The 
latter is suitable only for the stress analysis of nearly 
incompressible solids. 

Time (h) 

0.0 
1.0 
1.5 
2.0 

Table 2. Distribution of radial stresses at large deformation (-u,./JP~) 

r/r? 
0.5625 0.6875 0.8125 0.9375 

Deformation situation 
2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D 

0.8803 0.8612 0.7410 0.7295 0.6612 0.6532 0.6124 0.6058 
0.9006 0.8783 0.7759 0.7577 0.7044 0.6885 0.6596 0.6453 
0.9043 0.8811 0.7843 0.7644 0.7155 0.6974 0.6724 0.6556 
0.9070 0.8827 0.7904 0.7688 0.7236 0.7034 0.6817 0.6625 

Table 3. Distribution of tangential stresses at large deformation (-a,)/~,,) 

Time (h) 

0.0 
1.0 
1.5 
2.0 

0.5625 

2-D 3-D 

0.0300 0.0438 
0.1292 0.1385 
0.1566 0.1635 
0.1754 0.1803 

rirz 
0.6875 0.8125 

Deformation situation 
2-D 3-D 2-D 3-D 

0.1706 0.1850 0.2584 0.2646 
0.2652 0.2659 0.3410 0.3377 
0.2904 0.2876 0.3645 0.3575 
0.3084 0.3024 0.3816 0.3709 

0.9375 

2-D 3-D 

0.3095 0.3 142 
0.3878 0.3824 
0.4100 0.4008 
0.4262 0.4134 
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Table 4. Stresses (u,/p,) in a hollow thick incompressible viscoelastic cylinder with a 
casing (E = 7037 e-osxs9’ MPa. ~8 = 0.499, EC = 2.1 I I GPa, Y, = 0.3015, p0 = 3 MPa) 

Time (h) 
r Irz 

Solution 0.5625 0.6895 0.8125 0.9375 

0.0 

0.1 

0.5 

1.0 

Exact 0.7292 0.3921 0.1983 0.0767 
X-GIP 0.7005 0.3770 0.1922 0.0768 
l4-GIP -0.1191 0.0108 0.0016 -0.0255 
Exact 0.7300 0.3939 0.2006 0.0793 
8-GIP 0.7017 0.3797 0.1957 0.0807 
I4-GIP -0.1144 0.015 0.0059 -0.021 I 
Exact 0.733 I 0.4008 0.2100 0.0898 
8-GIP 0.7068 0.3902 0.2092 0.0962 
l4-GIP -0.0957 0.0302 0.0226 -0.0040 
Exact 0.7369 0.4093 0.2209 0.1027 
8-GIP 0.7 130 0.4030 0.2259 0.1152 
l4-GIP -0.0728 0.0518 0.0430 0.0171 

Table 5. Stresses (g,/p”) in a hollow thick nearly-incompressible viscoelastic cylinder 
(V = 0.499) with different casing (I h) 

r/r2 

4 W’a) Solution 0.5625 0.6875 0.8125 

Exact 0.7369 0.4093 0.2209 
2.111 8-GIP 0.7130 0.4030 0.2259 

l4-GIP - 0.0728 0.0518 0.0430 
Exact 0.9674 0.9268 0.9034 

211.1 X-GIP 0.9734 0.9445 0.928 I 
l4-GIP 0.8997 0.9113 0.9104 

0.9375 

0.1027 
0.1 IS2 
0.0171 
0.8887 
0.9178 
0.9082 

6. NUMERICAL RESULTS AND DISCCSSION 

(1) Cantilever beam under constant concentrated load 
at the free end 

For checking the correctness of eqn (11) and the 

program, the viscoelastic material, delrin acetal resin, 
is chosen in the calculation. This material was used 
by Rogers and Lee 171, Yan and Lianis [9], as well as 
the authors [lo, 1 l] for numerical examples. The 
relaxation modulus E(t) can be deduced from the 
experimental curves as follows: 

'(') _ O.&j8545 e-00003572hr + 0.~3155 ,-0 1170,. 

E(O) 

(19) 

The beam shown in Fig. 1 is divided uniformly by 
five elements, and its Poisson’s ratio is assumed to be 
0.4. The deflections on the bottom surface are calcu- 
lated by the T.L. approach from 0 to 20 h and are 
shown in Table 1, in which the results of the U.L. 
approach are taken from Ref. [I 11. 

The computational results confirm the conclusion 
first proposed by Bathe et a/. [16] that, so long as the 
constitutive equation is identical, the final results 
calculated by both approaches are the same. As the 
constitutive equation is represented by Kirchhoff 
stress tensors and Green strain tensors, such as the 
viscoelastic large deformation situation, the T.L. 
approach not only simplifies the continued equi- 
librium equation, but also avoids modifying the 

nodal coordinate after each incremental step, thus 
computer time may be saved. 

(2) Cantilever with the strain-softening efSect 

Applying the T.L. approach and using the strain- 
softening function g(c) taken from Ref. [14], we 
compute the large deflections of a nonlinear vis- 
coelastic cantilever under constant uniform load and 
constant concentrated load, respectively. The deflec- 
tion curves are shown in Figs 2 and 3 and the results 
obtained by Yang and Lianis [9] are provided for 
comparison. It is rational that the strain-softening 
effect causes the increase of deflection, and the greater 
the deformation of cantilever, the more remarkable 
the softening effects become. 

(3) A hollow thick viscoelastic cylinder with a steel 
casing under t&form internal pressure 

The geometry of a hollow thick viscoelastic cylin- 
der with a steel casing is shown in Fig. 4. The top and 
bottom surfaces are fixed and uniform internal 
pressure pa is taken as 3 MPa. To decrease the 

Table 6. Stress (u,/p”) in a hollow nearly-incompressible 
viscoelastic cylinder of different Poisson’s ratio with a steel 

casing (I h) 

/’ 1 
v Solution 0.5625 0.6875r rLO.8l25 0.9375 

0.5 Exact 0.9674 0.9268 0.9034 0.8887 
0.4999 8-GIP 0.9750 0.9478 0.9323 0.9227 

I4-GIP 0.2841 0.6369 0.7684 0.8328 
0.499 8-GIP 0.9734 0.9445 0.9281 0.9178 

l4-GIP 0.8997 0.91 I3 0.9104 0.9082 
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computational workload, we take only a sector re- 
gion 0 = IS’ in the calculation and divide it into 25 
element and 228 nodes. The viscoelastic behaviour 
can be expressed by a Maxwell model. 

The relaxation modulus E and Poisson’s ratio v 
are, respectively, E = 703.7 e~0.88889’ MPa, v = 0.4. 
The outer steel casing has the properties 
E, = 21 I.1 GPa, v, = 0.3015. For lack of better 
information, the pressure hardening function g(c) 
was taken as unity. 

The exact solution and results of this work in a 
small deformation situation are in good agreement. 
The radial and tangential stresses evaluated by the 
T.L. approach in the large deformation situation are 
shown in Tables 2 and 3, in which the values of stress 
in a two-dimensional large deformation situation are 
taken from Ref. [IO]. 

It can be found that the radial and tangential 
stresses in the viscoelastic cylinder increase gradually 
along with the increase in time. The trend that the 
stresses in the viscoelastic cylinder approach the 
internal pressure along with the increase of time in the 
plane-strain situation is slightly stronger than that in 
the three-dimensional deformation situation. 

For the stress analysis of nearly incompressible 
viscoelastic solid, a code had been developed by 

Yadagiri and Reddy [17], using isoparametric el- 
ements with selective integration procedure, which is 
a third-order Gauss rule for deviatoric response and 
second-order Gauss rule for volumetric response. In 
the present work, according to the form of the 
constitutive eqn (3), in which the material response is 
not separated into shearing and volumetric com- 
ponents, reduced numerical integration is employed 
for computing the element stiffness matrices and then 
the general formulation is simpler than Ref. [17]. The 
results obtained using eight and 14 Gauss integration 
points (GIP) along with the closed form solution 
(exact solution for v = 0.5) are given in Table 4. It is 
seen from Table 4 that the present work also gives 
good results for nearly incompressible viscoelastic 
structure, and it can be found from Table 5 that, 
along with increase of modulus of casing, although 
the stress values from using 14 Gauss integration 
points approach exact values, the regularity of stress 
distribution along the radial direction is still wrong. 

Along with the increase of Poisson’s ratio v of 
viscoelastic nearly-incompressible materials, not only 
the regularity of radial stress distribution but also the 
stress values, which are obtained by 14 Gauss inte- 
gration points and shown in Table 6, are incorrect, 
and the maximum error of the radial stresses ob- 
tained by eight Gauss integration points is less than 
4%. 

7. CONCLUSION 

In the analysis of viscoelastic large deformation 
problems, the T. L. approach not only simplifies the 
continued equilibrium equation, but also avoids 

modifying the nodal coordinate after each incremen- 
tal step, thus computer time may be saved. 

Complex nonlinear viscoelastic behaviour rep- 
resented by strain softening function g(c) can easily 
be completed in the finite element method. Results 
confirm that the larger the deformation of viscoelastic 
solid, the larger the effect of its strain-softening. 

For the stress analysis of a nearly incompressible 
viscoelastic solid, the use of reduced integration in the 
calculation of element stiffness matrices has proved to 
lead to a dramatic improvement in results. 
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