Blank

发表第一作者或者通讯作者SCI论文140余篇,影响因子之和超过1600在这些论文中,影响因子大于10的论文有70余篇。ESI高被引40余篇、ESI热点论文20余篇,单篇论文SCI引用超过100次的64篇,超过200次的40篇,超过300次的23篇,超过400次的15篇,超过500次的7篇,超过1000次的2篇,单篇引用最高1360次,总共被SCI引用23000余次 (数据来自Web of Science检索,Baolin Guo (郭保林) | Publons), H指数75

 

Representative publications

[1]. Guo B.L.*, Dong R.N., Liang Y.P., Li M., Haemostatic materials for wound healing applications, Nature Reviews Chemistry 2021, 5, 773–791. (Invited Review, Impact factor: 34.571ESI 热点论文,SCI引用293)

[2]. Guo B.L.*, Liang Y.P., Dong R.N., Physical dynamic double-network hydrogels as dressings to facilitate tissue repair, Nature Protocols 2023, 18 (11), 3322-3354. (Invited Paper, Impact factor: 14.8)

[3]. Zhao X., Guo B.L.*, Wu H., Liang Y.P., Ma P.X.*, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing, Nature Communications 2018, 9: 2784. (Impact factor: 17.694, ESI 高被引论文, ESI 热点论文, SCI引用772)

[4]. Guo B.L., Glavas L., Albertsson A-C., Biodegradable and electrically conducting polymers for biomedical applications, Progress in Polymer Science 2013, 38, 1263-1286. (Impact factor: 31.281, ESI 高被引论文, SCI引用430)

[5]. Dong R., Zhang H., Guo B.L.*, Emerging hemostatic materials for non-compressible hemorrhage control, National Science Review, 2022, 9(11), nwac162 (Impact factor: 23.178)

[6]. Yang Y., Wang J., Huang S., Li M., Chen J., Pei DD., Tang Z., Guo, B. L.*, Bacterial responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing, National Science Review, 2024, 11, nwae044 (Impact factor: 23.178)

[7]. Zhao, X., Huang, Y., Li, Z., Chen, J., Luo, J., Bai, L., Huang, H., Cao, E., Yin, Z., Han, Y., Guo, B. L.*, Injectable Self‐Expanding/Self‐Propelling Hydrogel Adhesive with Procoagulant Activity and Rapid Gelation for Lethal Massive Hemorrhage Management. Advanced Materials 2024, 36, 2308701.

[8]. Zhao X., Liang Y., Huang Y., He J., Han Y., Guo B.L.*, Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self‐healing, antioxidant and NIR/pH stimulus‐responsiveness for multidrug‐resistant bacterial infection and removable wound dressing, Advanced Functional Materials, 2020, 30(17), 1910748. (Impact factor: 19.924, ESI高被引论文, SCI引用500)

[9]. Yang Y., Li M., Pan G., Chen J., Guo B.L.*, Multiple stimuli-responsive nanozyme-based cryogels with controlled NO release as self-adaptive wound dressing for infected wound healing, Advanced Functional Materials, 2023, 13 (31), 2214089(Impact factor: 19.924ESI高被引论文)

[10]. Wu Y., Wang L., Guo B.L.*, Ma P.X., Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy, ACS Nano 2017, 11(6), 5646-5659. (Impact factor: 18.027, ESI 高被引论文, SCI引用349)

[11]. Liang Y., Li Z., Huang Y., Yu R., Guo B.L.*, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing, ACS Nano 2021, 15, 4, 7078–7093. (Impact factor: 18.027, ESI 高被引论文SCI引用527, 入选中国百篇最具影响力国际学术论文)

[12]. Liang Y., He J.H., Guo B.L.*, Functional hydrogels as wound dressing to enhance wound healing, ACS Nano 2021, 15 (8), 12687-12722. (Impact factor: 18.027ESI 高被引论文ESI 热点论文, SCI引用940)

[13]. Maleki, A.*, He, J.H., Bochani, S., Nosrati, V., Shahbazi, M.A.*, Guo B.L.*, Multifunctional photoactive hydrogels for wound healing acceleration, ACS Nano 2021, 15 (12), 18895-18930. (Impact factor: 18.027, ESI 热点论文, SCI引用218)

[14]. Wang L., Wu Y, Guo B.L.*, Ma P.X.*, Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation and differentiation, ACS Nano 2015, 9(9), 9167-9179. (Impact factor: 18.027, SCI引用286)

[15]. Liang Y.P., Li M., Yang Y.T., Qiao L.P., Xu H.R., Guo B.L.*, pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing, ACS Nano, 2022, 16(2), 3194–3207.(Impact factor: 18.027, ESI 高被引论文,SCI引用303)

[16] Huang Y., Mu L., Zhao X., Han Y., Guo B.L.*, Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing, ACS Nano 2022, 16(8), 13022–13036. (Impact factor: 18.027, ESI 高被引论文,SCI引用160)

[17]. Zhao, X., Luo, J., Huang, Y., Mu, L., Chen, J., Liang, Z., Yin, Z., Chu, D., Han, Y.*, Guo, B. L.*, Injectable Antiswelling and High-Strength Bioactive Hydrogels with a Wet Adhesion and Rapid Gelling Process to Promote Sutureless Wound Closure and Scar-free Repair of Infectious Wounds. ACS Nano 2023, 17 (21), 22015-22034.

[18]. Dong R.N., Guo B.L.*, Smart wound dressings for wound healing, Nano Today 72021, 41, 101290. (Impact factor: 18.962, ESI 高被引论文,SCI引用310)

[19]. Li M., Pan G., Yang Y., Guo B.L.*, Smart aligned multi-layered conductive cryogels with hemostasis and breathability for coagulopathy epistaxis, nasal mucosal repair and bleeding monitoring, Nano Today 2023, 48, 101720 (Impact factor: 18.962)

[20]. Liang, Y., Xu, H., Han, Q., Xu, M., Zhang, J., Wang, J., Liu, X., Yin, Z., Guo, B. L.*, A Janus hydrogel sealant with instant wet adhesion and anti-swelling behavior for gastric perforation repair. Nano Today 2024, 54, 102105.

[21]. Zhuo, S., Liang, Y., Wu, Z., Zhao, X.*, Han, Y.*, Guo, B. L.*, Supramolecular hydrogels for wound repair and hemostasis. Materials Horizons 2024, 11, 37-101.

[22]. Zhao X., Wu H., Guo B.L.*, Dong R. Qui Y. Ma P.X., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials 2017, 122, 34-47. (Impact factor: 15.863, ESI 高被引论文, ESI 热点论文, SCI引用1350)

[23]. Qu J., Zhao X., Liang Y.P., Zhang T.L., Ma P.X., Guo B.L.*, Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing, Biomaterials 2018, 183, 185-199. (Impact factor: 15.863, ESI 高被引论文, ESI 热点论文, SCI引用1160)

[24]. Dong R., Ma P.X., Guo B.L.*, Conductive biomaterials for muscle tissue engineering, Biomaterials, 2020, 229, 119584. (Impact factor: 15.863, ESI 高被引论文,SCI引用213)

[25]. Wang L., Li T., Wang Z., Hou J., Liu S., Yang Q., Yu L., Guo W., Wang Y., Guo B.L.*, Huang W. *, Wu Y.*, Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration, Biomaterials 2022, 285, 121537. (Impact factor: 15.863)

[26]. Wu Y.B., Wang L., Zhao X., Hou S., Guo B.L.*, Ma P.X.*, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly, Biomaterials 2016, 104, 18-31. (Impact factor: 15.863)

[27]. Wu Y.B., Wang L., Guo B.L.*, Shao Y.P., Ma P.X.*, Electroactive biodegradable polyurethane significantly enhanced schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering, Biomaterials 2016, 87, 18-31. (Impact factor: 15.863)

[28]. Xie M.H., Wang L., Guo B.L.*, Wang Z., Chen Y.E., Ma P.X.*, Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation, Biomaterials 2015, 71,158-167. (Impact factor: 15.863)

[29]. Liang Y.P., Zhao X., Hu T. Chen B., Yin Z. Ma P.X., Guo B.L.*, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photo-thermal antibacterial activity to promote full-thickness skin regeneration during wound healing, Small 2019, 15, 1900046. (Impact factor: 15.153, ESI 高被引论文, ESI 热点论文, SCI引用850,入选中国百篇最具影响力国际学术论文)

[30]. Yu R., Zhang H.L., Guo B.L.*, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering, Nano-Micro Letters 2022, 14:1. (Impact factor: 23.655, ESI 高被引论文, SCI引用230)

 

 

具体论文发表情况如下(* 通讯作者)

 

♦ 2023

 

[145]. Yang Y., Wang J., Huang S., Li M., Chen J., Pei DD., Tang Z., Guo, B. L.*, Bacterial responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing, National Science Review, 2024, 11, nwae044

[144].  Zhao, X., Huang, Y., Li, Z., Chen, J., Luo, J., Bai, L., Huang, H., Cao, E., Yin, Z., Han, Y., Guo, B. L.*, Injectable Self‐Expanding/Self‐Propelling Hydrogel Adhesive with Procoagulant Activity and Rapid Gelation for Lethal Massive Hemorrhage Management. Advanced Materials 2024, 36, 2308701.

[143].  Liang, Y., Xu, H., Han, Q., Xu, M., Zhang, J., Wang, J., Liu, X., Yin, Z., Guo, B. L.*, A Janus hydrogel sealant with instant wet adhesion and anti-swelling behavior for gastric perforation repair. Nano Today 2024, 54, 102105.

[142].  Chen, J., Zhao, X., Qiao, L., Huang, Y., Yang, Y., Chu, D., Guo, B. L.*, Multifunctional On‐Demand Removability Hydrogel Dressing Based on In‐Situ Formed AgNPs, Silk Microfibers and Hydrazide Hyaluronic Acid for Burn Wound Healing. Advanced Healthcare Materials 2024, 2303157.

[141].  Wang, J., He, J., Yang, Y., Jin, X., Li, J.*, Guo, B. L.*, Hemostatic, antibacterial, conductive and vascular regenerative integrated cryogel for accelerating the whole wound healing process. Chemical Engineering Journal 2024, 479, 147577.

[140].  Zhuo, S., Liang, Y., Wu, Z., Zhao, X.*, Han, Y.*, Guo, B. L.*, Supramolecular hydrogels for wound repair and hemostasis. Materials Horizons 2024, 11, 37-101.

[139]. Tang, Z., Yang, Y., Bao, S., Yu, D., Wu, H., Li, X., Guo, B. L.*, Guo, Z.*, Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: Triple growth factor for bone defect repair. Chemical Engineering Journal 2023, 478, 147095.

[138].  Qiao, L., Liang, Y., Chen, J., Huang, Y., Alsareii, S. A.*, Alamri, A. M., Harraz, F. A., Guo, B. L.*, Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioactive materials 2023, 30, 129-141.

[137]. Guo, B. L.*, Liang, Y., Dong, R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nature Protocols 2023, 18 (11), 3322-3354.

[136]. Peng, H., Li, H., Zhang, X., Tang, J., Liang, Y., Qiao, L., Zhu, Y., Hou, M., Wei, S., Zhang, Z., Liu, C., Li, X., Liang, B., Song, B., Guo, B. L.*, Zhang, J., 3D-exosomes laden multifunctional hydrogel enhances diabetic wound healing via accelerated angiogenesis. Chemical Engineering Journal 2023, 475, 146238.

[135]. Liang, Z., Luo, J., Liu, S., Gu, Y., Cui, Z., Zhu, Y., Yu, Z., Zhao, X.*, Guo, B. L.*, Song, B.*, Injectable, antibacterial, ROS scavenging and pro-angiogenic hydrogel adhesives promote chronic wound healing in diabetes via synergistic release of NMN and Mg2+. Chemical Engineering Journal 2023, 475, 146092.

[134]. He, J., Li, Z., Wang, J., Li, T., Chen, J., Duan, X.*, Guo, B. L.*, Photothermal antibacterial antioxidant conductive self-healing hydrogel with nitric oxide release accelerates diabetic wound healing. Composites Part B: Engineering 2023, 266, 110985.

[133]. Zhao, X., Luo, J., Huang, Y., Mu, L., Chen, J., Liang, Z., Yin, Z., Chu, D., Han, Y.*, Guo, B. L.*, Injectable Antiswelling and High-Strength Bioactive Hydrogels with a Wet Adhesion and Rapid Gelling Process to Promote Sutureless Wound Closure and Scar-free Repair of Infectious Wounds. ACS Nano 2023, 17 (21), 22015-22034.

[132]. Zhang, Y., Li, M., Wang, Y., Han, F., Shen, K., Luo, L., Li, Y., Jia, Y., Zhang, J., Cai, W., Wang, K., Zhao, M., Wang, J., Gao, X., Tian, C., Guo, B. L.*, Hu, D.*, Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission. Bioactive Materials 2023, 26, 323-336.

[131]. Wang, W., Jia, B., Xu, H., Li, Z., Qiao, L., Zhao, Y., Huang, H., Zhao, X.*, Guo, B. L.*, Multiple bonds crosslinked antibacterial, conductive and antioxidant hydrogel adhesives with high stretchability and rapid self-healing for MRSA infected motion skin wound healing. Chemical Engineering Journal 2023, 468, 143362.

[130]. Zhang, J., Liang, Y., Deng, Z., Xu, H., Zhang, H., Guo, B. L.*, Zhang, J.*, Adhesive Ion-Conducting Hydrogel Strain Sensor with High Sensitivity, Long-Term Stability, and Extreme Temperature Tolerance. ACS Applied Materials & Interfaces 2023, 15 (25), 29902-29913.

[129]. Yang, Y., Li, M., Pan, G., Chen, J., Guo, B. L.*, Multiple Stimuli-Responsive Nanozyme-Based Cryogels with Controlled NO Release as Self-Adaptive Wound Dressing for Infected Wound Healing. Advanced Functional Materials 2023, 33 (31), 2214089.

[128]. Mu, L., Dong, R., Guo, B. L.*, Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Advanced Healthcare Materials 2023, 12 (10), 2202699.

[127]. Liang, Y., Qiao, L., Qiao, B., Guo, B. L.*, Conductive hydrogels for tissue repair. Chemical Science 2023, 14 (12), 3091-3116.

[126]. Shi, M., Dong, R., Hu, J., Guo, B. L.*, Conductive self-healing biodegradable hydrogel based on hyaluronic acid-grafted-polyaniline as cell recruitment niches and cell delivery carrier for myogenic differentiation and skeletal muscle regeneration. Chemical Engineering Journal 2023, 457, 141110.

[125]. Li M., Pan G., Yang Y., Guo B.L.*, Smart aligned multi-layered conductive cryogels with hemostasis and breathability for coagulopathy epistaxis, nasal mucosal repair and bleeding monitoring, Nano Today 2023, 48, 101720

 

♦ 2022

 

[124]. Dong R., Zhang H., Guo B.L.*, Emerging hemostatic materials for non-compressible hemorrhage control, National Science Review, 2022, 9(11), nwac162,  (Impact factor: 23.178)

[123]. Huang Y., Mu L., Zhao X., Han Y., Guo B.L.*, Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing, ACS Nano 2022, 16, 8, 13022–13036. (Impact factor: 18.027)

[122]. Liang Y.Q., Xu H.R., Li Z.L., Zhangji A., Guo B.L.*, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing, Nano-Micro Letters 2022, 14, 185.  

[121]. Yu R., Li Z., Pan G., Guo B.L.*, Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing, Science China Chemistry, 2022, 65, https://doi.org/10.1007/s11426-022-1322-5 (2022 Emerging Investigator Issue, 新锐科学家专辑).

[120]. Wan Z., He J., Yang Y., Chong T., Wang J., Guo B.L.*, Xue L.*, Injectable adhesive self-healing biocompatible hydrogel for haemostasis, wound healing, and postoperative tissue adhesion prevention in nephron-sparing surgery, Acta Biomaterialia 2022, 152, 157-170

[119].  Yang   Y., Xu H., Li M., Li Z., Zhang H., Guo B.L.*, Zhang J.*, Antibacterial conductive UV-blocking adhesion hydrogel dressing with mild on-demand removability accelerated drug-resistant bacteria-infected wound healing, ACS Applied Materials & Interfaces, 2022, 14, 41726-41741

[118]. Zhang Z., Zhao X., Wang C., Huang Y., Han Y., Guo B.L.*, Injectable conductive micro-cryogel as a muscle stem cell carrier improves myogenic proliferation, differentiation and in situ skeletal muscle regeneration, Acta Biomaterialia 2022, 151, 197-209

[117]. Wang W., Li Z., Xu H., Qiao L., Zhang X., Zhao Y., Dong Z., Huang H., Zhao X.*, Guo B.L.*, Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability, Materials & Design 2022, 222, 111041.

[116]. Yang Y., Du Y., Zhang J., Zhang H., Guo B.L.*, Structural and functional design of electrospun nanofibers for hemostasis and wound healing, Advanced Fiber Materials 2022, 4,1027-1057.

[115]. Yu R, Li M, Li Z, Pan G, Liang Y, Guo B.L.*, Supramolecular thermo-contracting adhesive hydrogel with self-removability simultaneously enhancing noninvasive wound closure and MRSA-infected wound healing, Advanced Healthcare Materials 2022, 11, 2102749. 

[114]. Wang L., Li T., Wang Z., Hou J., Liu S., Yang Q., Yu L., Guo W., Wang Y., Guo B.L.*, Huang W. *, Wu Y.*, Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration, Biomaterials 2022, 285, 121537. 

[113]. Chen J., He J., Yang Y., Qiao L., Hu J., Zhang J., Guo B.L.*, Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing, Acta Biomaterialia 2022, 146, 119-130. 

[112]. Wang C., Liang Y., Huang Y., Li M., Guo B.L.*, Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/polydopamine for non-compressible hemostasis and infectious wound repair, Journal of Materials Science & Technology 2022, 121, 207-219.

[111]. Li Y., He J., Zhou J., Li Z., Liu L., Hu S., Guo B.L.*, Wang W. *, A conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair, Biomaterials Science 2022, 10 (5), 1326-1341.

[110]. Liang Y.P., Li M., Yang Y.T., Qiao L.P., Xu H.R., Guo B.L.*, pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing, ACS Nano, 2022, 16(2), 3194–3207.

[109]. Shi M.T., Bai L., Li Z.L., Hu T.L., Yin Z.H., Guo B.L.*, Micropatterned electroactive elastomer patch based on poly(glycerol sebacate)-graphene for cardiac tissue repair, Biofabrication 2022, 14, 035001.

[108]. Zhao X., Zhang Z., Luo J., Wu Z., Yang Z., Zhou S., Tu Y., Huang Y., Han Y. *, Guo B.L.*, Applied Materials Today 2022, 26, 101365.  

[107]. Huang Y., Bai L., Yang Y., Yin Z.H., Guo B.L.*, Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing, Journal of Colloid and Interface Science 2022, 608, 2278-2289.

[106]. Wang K, Dong R, Tang J, Li H, Dang J, Zhang Z, Yu Z, Guo B.L.*, Yi C.G.*, Biomimetic 3D aligned conductive tubular cryogel scaffolds with mechanical anisotropy for 3D cell alignment, differentiation and in vivo skeletal muscle regeneration, Chemical Engineering Journal 2022, 428, 131017.

[105]. Hu T., Shi M., Zhao X., Liang Y., Bi L., Zhang Z., Liu S., Chen B., Duan X.L.*, Guo B.L.*, Biomimetic 3D aligned conductive tubular cryogel scaffolds with mechanical anisotropy for 3D cell alignment, differentiation and in vivo skeletal muscle regeneration, Chemical Engineering Journal 2022, 428, 131017.

[104]. Yang Y., Liang Y., Chen J., Duan X.L. *, Guo B.L.*, Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing, Bioactive Materials 2022, 15, 8, 341-354.

[103]. Yu R., Zhang H.L., Guo B.L.*, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering, Nano-Micro Letters 2022, 14, 1.

[102]. Li M., Liang Y.P, Liang Y.Q., Pan G.Y., Guo B.L.*, Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds, Chemical Engineering Journal 2022, 427, 132039.

 

 

♦ 2021

 

[101]. Maleki, A.*, He, J.H., Bochani, S., Nosrati, V., Shahbazi, M.A.*, Guo B.L.*, Multifunctional photoactive hydrogels for wound healing acceleration, ACS Nano 2021, 15 (12), 18895-18930.

[100]. Ruo N.D., Guo B.L.*, Smart wound dressings for wound healing, Nano Today 2021, 41, 101290.

[99]. Liang Y., He J.H., Guo B.L.*, Functional hydrogels as wound dressing to enhance wound healing, ACS Nano 2021, 15 (8), 12687-12722.

[98]. Huang Y., Zhao X., Wang C.B., Chen J., Liang Y.Q., Li Z.L, Han Y., Guo B.L.*, High-strength anti-bacterial composite cryogel for lethal noncompressible hemorrhage hemostasissynergistic physical hemostasis and chemical hemostasis, Chemical Engineering Journal 2022, 427, 131977. 

[97]. Li Z.L. Yu R, Guo B.L.*, Shape memory and self-healing polymers based on dynamic covalent bonds and dynamic non-covalent interactions: synthesis, mechanism and application, ACS Applied Bio Materials 2021, 15, 4 (8), 5926-59434. (Invited paper)

[96]. Guo B.L.* Dong R.N., Liang Y.P. Li M., Haemostatic materials for wound healing applications, Nature Reviews Chemistry 2021, 5, 773–791.(Invited paper)

[95]. Liang Y., Li M., Huang Y., Guo B.L.*, An integrated strategy for rapid hemostasis during tumor resection and prevention of postoperative tumor recurrence of hepatocellular carcinoma by anti-bacterial shape memory cryogel, Small 2021, 17 (38), 2101356.

[94]. Liang Y., Li Z., Huang Y., Yu R., Guo B.L.*, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing, ACS Nano 2021, 15, 4, 7078–7093.

[93]. Chen B., Liang Y., Zhang J., Bai L., Xu M., Han Q., Han X., Xiu J., Li M., Zhou X., Guo B.L.*, Yin Z.H.*, Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg2+/curcumin from injectable self-healing hydrogels, Theranostics 2021, 11(12): 5911–5925.

[92]. Deng Z., Rui Y. Guo B.L.*, Stimuli-responsive conductive hydrogels: design, property and applications, Materials Chemistry Frontiers 2021, 5, 2092-2123. (Invited paper)

[91]. He J., Zhang Z., Yang Y., Ren F., Li J., Zhu S., Ma F., Wu R., Lv Y., He G., Guo B.L.*, Chu D.*, Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing, Nano-Micro Letters 2021, 13, 80.

[90]. Yu R., Yang Y., He J., Li M., Guo B.L.*, Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing, Chemical Engineering Journal 2021, 417, 128278.

[89]. Zhao X., Liang Y., Guo B.L.*, Yin Z., Zhu D., Han Y. *, Injectable dry cryogels with excellent blood-sucking expansion and blood clotting to cease hemorrhage for lethal deep-wounds, coagulopathy and tissue regeneration, Chemical Engineering Journal 2021, 403, 126329. 

 

♦ 2020

 

[88]. Li M., Liang Y., He J., Zhang H., Guo B.L.*, Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing, Chemistry of Materials, 2020, 32, 23, 9937–9953. (Chemistry of Materials Lectureship and Best Paper Award)

[87]. Li M., Zhang Z.Y., Liang Y.P., He J.H., Guo B.L.*, Multifunctional tissue-adhesive cryogel wound dressing for rapid nonpressing surface hemorrhage and wound repair, ACS Applied Materials & Interfaces, 2020, 12, 32, 35856–35872. 

[86]. Huang Y., Zhao X., Zhang Z., Liang Y.P., Yin Z.H., Chen B.J., Bai L., Han Y., Guo B.L.*, Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing, Chemistry of Materials, 2020, 32, 15, 6595–6610. 

[85]. Zhang B., He J., Shi M., Liang Y., Guo B.L.*, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration, Chemical Engineering Journal, 2020, 400, 125994.

[84]. Prasopthum A., Deng Z., Khan I.M., Yin Z., Guo B.L.*, Yang J.*, Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells, Biomaterials Science, 2020, 8, 4287-4298.

[83]. Jeyakkumar P,, Liang Y,, Guo M,, Lu S,, Xu D,, Li X,, Guo B.L., He G,, Chu D,, Zhang M., Emissive metallacyclecrosslinked supramolecular networks with tunable crosslinking densities for bacterial imaging and killing, Angewandte Chemie International Edition, Accept.

[82]. Chen B., Liang Y., Bai L., Xu M., Zhang J., Guo B.L.*, Yin Z. *, Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model, Chemical Engineering Journal, 2020, 396, 125335.

[81]. Liang Y., Chen B., Li M., He J., Yin Z. Guo B.L.*, Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing, Biomacromolecules, 2020, 21, 5, 1841-1852 (Invited paper)

[80]. He J., Shi M., Liang Y., Guo B.L.*, Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds, Chemical Engineering Journal, 2020, 394, 124888.

[79]. He J., Liang Y., Shi M., Guo B.L.*, Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing, Chemical Engineering Journal, 2020, 385, 123464.

[78]. Deng Z., Wang H., Ma P.X., Guo B.L.*, Self-healing conductive hydrogels: preparation, properties and applications, Nanoscale, 2020, 12, 1224-1246. (Invited paper)

[77]. Zhao X., Liang Y., Huang Y., He J., Han Y., Guo B.L.*, Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self‐healing, antioxidant and NIR/pH stimulus‐responsiveness for multidrug‐resistant bacterial infection and removable wound dressing, Advanced Functional Materials, 2020, 30(17), 1910748.

[76]. Dong R., Ma P.X., Guo B.L.*, Conductive biomaterials for muscle tissue engineering, Biomaterials, 2020, 229, 119584.

 

♦ 2019

 

[75]. Liang Y.P., Zhao X., Hu T. Han Y., Guo B.L.*, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin, Journal of Colloid and Interface Science 2019, 556, 514-528.

[74]. Qu J., Liang Y., Shi M., Guo B.L.*, Gao Y.*, Yin Z.*, Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release, International Journal of Biological Macromolecules 2019, 140, 255-264.

[73]. 李勐, 郭保林*, 导电高分子生物材料在组织工程中的应用,科学通报, 2019, 64: 2410–2424. (邀请综述). Li M, Guo B.L.*, Conductive polymeric biomaterials for tissue regeneration applications (in Chinese). Chinese Science Bulletin, 2019, 64: 2410–2424. (Invited paper)

[72]. Wang L., Wu Y.*, Hu T., Ma P.X., Guo B.L.*, Aligned, conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation, Acta Biomaterialia 2019, 96, 175-187.

[71]. Li M., Chen J., Shi M., Zhang H.L., Ma P.X., Guo B.L.*, Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing, Chemical Engineering Journal 2019, 375, 121999. 

[70]. Hu T., Wu YB., Zhao X., Liang Y.P., Wang L., Bi L.Y., Ma P.X., Guo B.L.*, Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering, Chemical Engineering Journal 2019, 366, 208-222.

[69]. Liang Y.P., Zhao X., Hu T. Chen B., Yin Z. Ma P.X., Guo B.L.*, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photo-thermal antibacterial activity to promote full-thickness skin regeneration during wound healing, Small 2019, 15, 1900046.

[68]. Deng Z., Hu T., Lei Q., He J., Ma P.X., Guo B.L.*, Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing, ACS Applied Materials & Interfaces 2019, 11(7), 6796-6808.

[67]. Qu J., Zhao X., Liang Y.P., Zhang T.L., Ma P.X., Guo B.L.*, Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing, Chemical Engineering Journal 2019, 362, 548-560.

[66]. Guo B.L.*, Qu J., Zhao X., Zhang M.Y., Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration, Acta Biomaterialia 2019, 84, 180-193. 

[65]. Liang Y.P., Zhao X., Ma P.X., Guo B.L.*, Han X.Z. *, pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery, Journal of Colloid and Interface Science 2019, 536, 224-234. 

 

♦ 2018

 

[64]. Qu J., Zhao X., Liang Y.P., Zhang T.L., Ma P.X., Guo B.L.*, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing, Biomaterials, 2018, 183, 185-199.(ESI 热点论文)

(科技日报头版报道:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2018-09/03/content_402931.htm?div=-1)

(西交大主页报道:http://news.xjtu.edu.cn/info/1033/98368.htm)

[63]. Zhao X., Guo B.L.*, Wu H., Liang Y.P., Ma P.X.*, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing, Nature Communications, 2018, 9: 2784. (ESI 高被引论文)

(科技日报头版报道:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2018-07/30/content_400434.htm?div=-1&from=groupmessage&isappinstalled=0)

(西交大主页报道:http://news.xjtu.edu.cn/info/1004/96735.htm)

[62]. Guo B.L., Ma P.X., Conducting polymers for tissue engineering, Biomacromolecules, 2018, 19(6), 1764–1782. (ESI 高被引论文)

[61]. Deng Z.X., Guo Y., Ma P.X.*, Guo B.L.*, Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity, Journal of Colloid and Interface Science, 2018, 526, 281-294.

[60]. Qu J., Zhao X., Ma P.X., Guo B.L.*, Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release, Acta Biomaterialia, 2018, 72, 55-69.

[59]. Deng Z.X., Guo Y., Zhao X., Ma P.X., Guo B.L.*, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions, Chemistry of Materials, (2018), 30(5), 1729-1742.  (ESI 高被引论文)

[58]. Wu Y., Wang L., Hu T., Ma P.X.*, Guo B.L.*, Conductive micropatterned polyurethane films as tissue engineering scaffolds for Schwann cells and PC12 cells, Journal of Colloid and Interface Science, 2018, 518, 252–262. 

57]. Chen J., Yu M., Guo B.L.*, Ma P.X.*, Yin Z.H.*, Conductive nanofibrous composite scaffolds based on In-situ formed polyaniline nanoparticle and polylactide for bone regeneration, Journal of Colloid and Interface Science, 2018, 514, 517-527. 

 

♦ 2017

 

[56]. Zhao X., Dong R., Guo B.L.*, Ma P.X.*, Dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability and enhanced C2C12 myogenic differentiation, ACS Applied Materials & Interfaces, 2017, 9(35), 29595-29611.

[55]. Dong R., Zhao X., Guo B.L.*, Ma P.X.*, Biocompatible elastic conductive films significantly enhanced myogenic differentiation of myoblast for skeletal muscle regeneration, Biomacromolecules, 2017, 18(9), 2808-2819. 

[54]. Ren Y., Zhao X., Liang X., Ma P.X., .Guo B.L.*, Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat parkinson’s disease, International Journal of Biological Macromolecules, 2017, 105, 1079-1087.

[53]. Wang L., Wu Y., Guo B.L.*, Ma P.X. *, Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators, Acta Biomaterialia, 2017, 59, 68-81.   

[52]. Wu Y., Wang L., Guo B.L.*, Ma P.X., Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy, ACS Nano, 2017, 11(6), 5646-5659. 

[51]. Qu J., Zhao X., Ma P.X., Guo B.L.*, pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy, Acta Biomaterialia. 2017, 58, 168-180.

[50]. Zhang M., Guo B.L.*, Electroactive 3D scaffolds based on silk fibroin and water-borne polyaniline for skeletal muscle tissue engineering, Macromolecular Bioscience, 2017, 17, 1700147.

[49]. Zhao X., Wu H., Guo B.L.*, Dong R. Qui Y. Ma P.X., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials, 2017, 122,34-47. (ESI 高被引论文, ESI 热点论文) 

[48]. He J.K., Xu F., Dong R., Guo B.L., Li D.C., Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes, Biofabrication, 2017, 9(1): 015007.

  

 

♦ 2016

 

 [47]. Zhao X., Zhang M., Guo B.L.*, Ma P.X.*, Mussel-inspired injectable supramolecular and covalent bonds crosslinked hydrogels with rapid self-healing and recovery via a facile approach under metal-free conditions, Journal of Materials Chemistry B, 2016, 4 (41), 6644-6651.  

[46]. Deng Z.X., GuoY., Zhao X., Li L.C., Dong R.N. Guo B.L.*, Ma P.X.*, Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation, Acta Biomaterialia. 2016, 46, 234-244. 

[45]. Wu Y.B., Wang L., Zhao X., Hou S., Guo B.L.*, Ma P.X.*, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly, Biomaterials, 2016, 104, 18-31.  

[44]. Dong R.N., Zhao X., Guo B.L.*, Ma P.X*, Self-healing conductive injectable hydrogels with anti-bacterial activity as cell delivery carrier for cardiac cell therapy, ACS Applied Materials & Interfaces, 2016, 8(27): 17138-17150.  (ESI 高被引论文) 

[43]. Chen J., Ge J., Guo B.L.*, Ma P.X*, Nanofibrous polylactide composite scaffolds with electroactivity and sustained release capacity for tissue engineering, Journal of Materials Chemistry B, 2016, 2016, 4, 2477 - 2485.  

[42]. Wang H.,* Lu X., Li L.C., Li B., Cao D., Wu Q., Li Z., Yang G.,* Guo B.L.,* Niu C.M. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries, Nanoscale, 2016, 8, 7595-7603.  

[41]. Wu Y.B., Wang L., Guo B.L.*, Shao Y.P., Ma P.X.*, Electroactive biodegradable polyurethane significantly enhanced schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering, Biomaterials, 2016, 87, 18-31.  

[40]. Li L.C., Yu M., Peter X Ma, Guo B.L.* Electroactive degradable copolymers enhancing osteogenic differentiation from bone marrow derived mesenchymal stem cells, Journal of Materials Chemistry B, 2016, 4, 471-481.  

 

♦ 2015

 

[39]. Chen J, Dong R.N, Ge J, Guo B.L.*, Ma P.X.*. Biocompatible biodegradable and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering, ACS Applied Materials & Interfaces, 2015,  7(51)28273-28285. 

[38]. Li L.C., Ge J., Ma P.X., Guo B.L.* Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties, RSC Advances 2015, 5, 92490–92498.  

[37]. Zhao X, Guo B.L.*, Ma P.X.*. Single component thermo-gelling electroactive hydrogels from poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone)-graft-aniline tetramer amphiphilic copolymers, Journal of Materials Chemistry B, 2015, 3, 8459-8468. (JMCB Back Cover, JMCB, Hot Paper

[36]. Xie M.H., Wang L., Guo B.L.*, Wang Z., Chen Y.E., Ma P.X.*. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation, Biomaterials, 2015, 71,158-167.  

[35]. Wang L., Wu Y, Guo B.L.*, Ma P.X.*. Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation and differentiation, ACS Nano, 2015, 9(9): 9167-9179.  

[34]. Zhao X, Li P, Guo B.L.*, Ma P.X.*. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering, Acta Biomaterialia. 2015, 15 (26):236-248.  

[33]. Chen J, Guo B.L.(共同第一作者), Eyster TW, Ma P.X.* Super stretchable electroactive elastomer formation driven by aniline trimer self-assembly, Chemistry of Materials 2015, 27 (16), 5668–5677. Co-first author  

[32]. Fu B, Lu R, Liu M, Gao K, Tong Y, Zhou X, Guo B.L., Yang Y.D., Wang Y.P. Variations of local piezoelectricity in multiferroic CoFe 2 O 4Pb (Zr 0.3, Ti 0.7) O 3 composite nanofibers, Materials letters 2015, 157, 311-314.  

[31]. Zhang M, Wu Y, Zhao X, Gao K, Ma PX, Guo B.L.* Biocompatible degradable injectable hydrogels from methacrylated poly(ethylene glycol)-co-poly (xylitol sebacate) and cyclodextrins for release of hydrophilic and hydrophobic drugs, RSC Advances 2015, 5 (82), 66965-66974.  

[30]. Xie M.H., Wang L., Ge J., Guo B.L.*, Ma P.X.*. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering, ACS Applied Materials & Interfaces, 2015, 7(12)6772-6781.  

[29]. Guo B.L., Lei B., Li P., Ma P.X.*. Functionalized scaffolds to enhance tissue regeneration, Regenerative Biomaterials, 2015, 2 (1): 47-57. (Invited paper) 

 

♦ 2014

 

[28]. Wu Y., Guo B.L.*, Ma P.X.*. Injectable electroactive hydrogels formed via host-guest interactions, ACS Macro Letters 2014, 3: 1145-1150.  

[27]. Zhao J., Zhao X., Guo B.L.*, Ma P.X.*. Multi-functional interpenetrating polymer network hydrogels based on methacrylated alginate for delivery of small molecule drugs and sustained protein release, Biomacromolecules 2014, 15:3246-3252.  

[26]. Li L, Ge J., Wang L., Guo B.L.*, Ma P.X.*. Electroactive nanofibrous biomimetic scaffolds by thermal induced phase separation, Journal of Materials Chemistry B, 2014, 2:6119-6130.  

[25]. Zhang L., Li Y., Li L., Guo B.L.*, Ma P.X.*. Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels, Reactive and Functional Polymers, 2014, 82, 81-88. 

[24]. Wu Y., Wang L., Guo B.L.*, Ma P.X.*. Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation, Journal of Materials Chemistry B, 2014, 2, 3674-3685.  

[23]. Zhao J., Guo B.L.*, Ma P.X.*. Injectable alginate microsphere/PLGA-PEG-PLGA composite hydrogels for sustained drug release, RSC Advances 2014, 4, 17736-17742. 

[22]. Ma X.J., Ge J., Li Y., Guo B.L.*, Ma P.X.*.Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering, RSC Advances 2014, 4: 13652–13661.  

[21]. Li L., Ge J., Guo B.L.*, Ma P.X.*. In situ forming biodegradable electroactive hydrogels, Polymer Chemistry 2014, 5:2880–2890.  

[20]. Guo B.L., Ma P.X. Synthetic biodegradable functional polymers for tissue engineering-A brief review, Science China Chemistry 2014, 57 (4), 490-500. (Invited paper) 

[19]. Zhang L., Wang L., Guo B.L.*, Ma P.X.* Cytocompatible injectable carboxymethyl chitosan / N-isopropylacrylamide hydrogels for localized drug delivery, Carbohydrate Polymers 2014, 103:110-118.

 

 

♦ 2013

 

[18]. Guo B.L., Glavas L., Albertsson A-C. Biodegradable and electrically conducting polymers for biomedical applications, Progress in Polymer Science 2013, 38:1263-1286. (ESI 高被引论文) 

 

♦ Before 2012

 

[17]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chemistry of Materials, 2011, 23(5):1254-1262.  

[16]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Simple route to size-tunable degradable and electroactive nanoparticles from the self-assembly of conducting coil-rod-coil triblock copolymers. Chemistry of Materials, 2011, 23(17):4045-4055.  

[15]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer. Biomacromolecules 2010, 11(4):855-863. 

[14]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules 2011, 12(7):2601-2609.  

[13]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Enhanced electrical conductivity by macromolecular architecture: Hyperbranched electroactive and degradable block copolymers based on Poly(epsilon-caprolactone) and aniline pentamer. Macromolecules 2010, 43(10):4472-4480.  

[12]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Universal two-step approach to degradable and electroactive block copolymers and networks from combined ring-opening polymerization and post-functionalization via oxidative coupling reactions. Macromolecules 2011, 44(13):5227-5236.  

[11]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Electroactive hydrophilic polylactide surface by covalent modification with tetraaniline. Macromolecules, 2012 45(2):652-659.  

[10]. Guo B.L., Sun Y., Finne-Wistrand A., Mustafa K., Albertsson A-C. Electroactive tubular porous scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomaterialia 2012, 8(1):144-153.  

[9]. Guo B.L., Finne-Wistrand A., Albertsson A-C. Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. Journal of Polymer Science Part A-Polymer Chemistry 2011, 49(9):2097-2105.  

[8]. Guo, B. L.; Yuan, J. F.; Gao, Q. Y., Preparation and characterization of temperature and pH-sensitive chitosan material and its controlled release on coenzyme A. Colloids and Surfaces B-Biointerfaces 2007, 58, (2), 151-156.  

[7]. Guo, B. L.; Yuan, J. F.; Gao, Q. Y., pH and ionic sensitive chitosan/carboxymethyl chitosan IPN complex films for the controlled release of coenzyme A. Colloid and Polymer Science 2008, 286, (2), 175-181.  

[6]. Guo, B. L.; Yuan, J. F.; Gao, Q. Y., Preparation and release behavior of temperature- and pH-responsive chitosan material. Polymer International 2008, 57, (3), 463-468. 

[5]. Guo, B. L.; Yuan, J. F.; Yao, L.; Gao, Q. Y., Preparation and release profiles of pH/temperature-responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel. Colloid and Polymer Science 2007, 285, (6), 665-671.  

[4]. Guo, B. L.; Gao, Q. Y., Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs. Carbohydrate Research 2007, 342, (16), 2416-2422. (他引145) 

[3]. Guo, B. L.; Yuan, J. F.; Gao, Q. Y., Preparation and characterization of pH sensitive comb-shaped chitosan material for the controlled release of coenzyme A. Journal of Materials Science-Materials in Medicine 2007, 18, (5), 753-757.  

[2]. Guo, B. L.; Yuan, J. F.; Gao, Q. Y., Temperature and pH sensitive star-shaped material for the controlled release of coenzyme A. Journal of Applied Polymer Science 2007, 104, (2), 1279-1284.  

[1]. Guo, B. L.; Yuan, J. F.; Gao, Q. Y., Preparation and release behavior of pH and ionic sensitive chitosan/poly(vinylpyrrolidone) semi-IPN beads for coenzyme A. E-Polymers 2006, No. 082.  

 

 

期刊审稿人:Nature Chemsitry, Nature Biomedical Engineering, Chemical Reviews, Progress in Polymer Science, Advanced Materials, Advanced Functional Materials, ACS Nano, Nano Letters, Nano Today, Nature Communicaions, Biomaterials, Small, ACS Applied Materails and Interfaces, Chemical Communications, Nanoscale, Biomacromolecules, Acta Biomaterialia, Physical Chemistry Chemical Physics (PCCP), Journal of Materials Chemistry B, Polymer Chemistry等40余种生物材料和高分子期刊审稿。