学术论文

  1. Kim J, Zhang T, Zhou P, et al. Polymer tunneling vibration sensors using hot embossing technique[J]. Sensors and Actuators A: Physical, 2022, 344: 113705. (IF: 4.291)
  2. Zhou P, Zhang T, Xu Y, et al. Microfluidic Electrochemical Sensor for Heavy Metal Detection Using Pyrolytic Carbon Electrodes and Valveless Micropump[C]//2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2022: 1-6.
  3. Zhang T, Zhou P, Simon T, et al. Vibrating a sessile droplet to enhance mass transfer for high-performance electrochemical sensors[J]. Sensors and Actuators B: Chemical, 2022, 362: 131788. (IF: 9.211)
  4. Zhang T, Zhou P, Simon T, et al. Vibrating an air bubble to enhance mass transfer for an ultra-sensitive electrochemical sensor[J]. Sensors and Actuators B: Chemical, 2022, 354: 131218. (IF: 9.211)
  5. Zhou P, Zhang T, Simon T W, et al. Simulation and experiments on a valveless micropump with fluidic diodes based on topology optimization[J]. Journal of Microelectromechanical Systems, 2021, 31(2): 292-297. (IF: 2.829)
  6. Kim J, Zhang T, Guan Q, et al. Polymer based Acoustic Wave Sensor Using Hot Embossing Technique[C]//2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). IEEE, 2021: 1275-1278.
  7. Zhou P, Zhang T, Simon T, et al. A fluidic diode and its application to a valveless micropump[C]//2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021: 1005-1008.
  8. Zhang T, Zhou P, Simon T, et al. A Circular Vibrating Electrode with Enhanced Mass Transfer for High-Performance Electrochemical Sensors[C]//2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021: 779-782.
  9. Zhang T, Liu Q, Wei X, et al. A vibrating membrane working electrode for highly sensitive anodic stripping voltammetry[J]. Sensors and Actuators B: Chemical, 2020, 311: 127948. (IF: 9.211)
  10. Zhang T, Zhou P, Simon T, et al. Effect of membrane electrode vibration on mass transfer for electrochemical micro sensors[C]//24th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2020. Chemical and Biological Microsystems Society, 2020: 524-525.
  11. Zhang T, Guo C, Jiang Z, et al. Internal resonance between the extensional and flexural modes in micromechanical resonators[J]. Journal of Applied Physics, 2019, 126(16): 164506. (IF: 2.877)
  12. Zhang T, Wei X, Jiang Z, et al. Sensitivity enhancement of a resonant mass sensor based on internal resonance[J]. Applied Physics Letters, 2018, 113(22): 223505. (IF: 3.971)
  13. Zhang T, Jiang Z, Wei X. Numerical Investigation of Modal Amplitude Saturation in Micromechanical Cantilever Beam Resonators[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017, 58165: V004T09A008.
  14. Chen X, Pu D, Zhang T, et al. A micromechanical resonant optical power meter[C]//2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). IEEE, 2017: 656-659.
  15. Wei X, Zhang T, Jiang Z, et al. Frequency latching in nonlinear micromechanical resonators[J]. Applied Physics Letters, 2017, 110(14): 143506. (IF: 3.971)
  16. Zhang T, Ren J, Wei X, et al. Nonlinear coupling of flexural mode and extensional bulk mode in micromechanical resonators[J]. Applied Physics Letters, 2016, 109(22): 224102. (IF: 3.971)
  17. Wang S, Ren J, Zhang T, et al. A MEMS resonant tilt sensor with high sensitivity maintained in the whole 360° measurement range[C]//2016 IEEE SENSORS. IEEE, 2016: 1-3.