Publications

[40] B. You*, Optimal distributed control of the three dimensional planetary geostrophic equations, Journal of Dynamical and Control Systems, Accepted.

 

[39] B. You*, Trajectory statistical solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines, Discrete and Continuous Dynamical Systems-B, doi:10.3934/dcdsb.2021251.

 

[38] B. You*, Dynamics of the three dimensional viscous primitive equations of large-scale moist atmosphere, Communication in Mathematical Science. 19(6) (2021) 1673-1701.

 

[37] B. You*, Pullback exponential attractors for some non-autonomous dissipative dynamical systems, Mathematical Methods in the Applied Sciences. 44(13) (2021) 10361-10386.

 

[36] C. X. Zhao, B. You*, Dynamics of the three dimensional primitive equations of large-scale atmosphere, Applicable Analysis, https://doi.org/10.1080/00036811.2021.1877676.

 

[35] Fang Li, B. You*, On the dimension of global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions, Discrete and Continuous Dynamical Systems-B,  http://dx.doi.org/10.3934/dcdsb.2021024.

 

[34] B. You*, Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics, Evolution Equations and Control Theory. 10(4) (2021) 937-963..

 

[33] B. You*, Well-posedness for the three dimensional stochastic planetary geostrophic equations of large-scale ocean circulation, Discrete and Continuous Dynamical Systems. 41(4) (2021) 1579-1604.

 

[32] B. You*, C. X. Zhao, Approximation of stationary statistical properties of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation, Discrete and Continuous Dynamical Systems-B. 25(8) (2020) 3183-3198.

 

[31] F. Li, B. You*, Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping, Discrete and Continuous Dynamical  Systems-B. 25(1) (2020) 55-80.

 

[30] Fang Li, B. You*, Optimal distributed control for a model of homogeneous incompressible two-phase flows, Journal of Dynamical and Control Systems. 27(1) (2021) 153-177. 

 

[29] B. You*, Pullback attractor for the three dimensional non-autonomous primitive equations of large-scale ocean and atmosphere dynamics, Computational and Mathematical Methods. 2(2) (2020) e1066, pp26.

 

[28] B. You*, S. Ma, Approximation of stationary statistical properties of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics, Zeitschrift fur angewandte Mathematik und Physik. 70(5) (2019), Paper No. 151, pp33.

 

[27] X. L. Feng, B. You*, Random attractors for the two dimensional stochastic g-Navier-Stokes equations, Stochastics. 92(4) (2020) 613-626.

 

[26] S. C. Pei, Y. R. Hou, B. You, A linearly second-order energy stable scheme for the phase field crystal model. Applied Numerical Mathematics. 140 (2019) 134-164.

 

[25] B. You*, F. Li, Optimal distributed control of the Cahn-Hilliard-Brinkman system with regular potential. Nonlinear Analysis. 182 (2019) 226-247.

 

[24] B. You*, Pullback exponential attractors for the viscous Cahn-Hilliard-Navier-Stokes system with dynamic boundary conditions. Journal of Mathematical Analysis and Applications. 478(2) (2019) 321-344.

 

[23] B. You*, Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines, Communications on Pure and Applied Analysis. 18(5) (2019) 2283-3398.

 

[22] Q. Li, L. Q. Mei, B. You, A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model. Applied Numerical Mathematics. 134 (2018) 46-65. 

 

[21] B. You*, F. Li, Global attractor of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics. Zeitschrift fur angewandte Mathematik und Physik. 69(5) (2018) 114.

 

[20] F. Li, B. You*, Random attractor for the stochastic Cahn–Hilliard–Navier–Stokes system with small additive noise. Stochastic Analysis and Applications. 36(3) (2018) 546-559.

 

[19]  F. Li, B. You*, Y. Xu, Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete and Continuous Dynamical Systems-B. 23(10) (2018) 4267-4284.

 

[18] B. You, F. Li, C. Zhang, Finite dimensional global attractor of the Cahn-Hilliard-Navier-Stokes system with dynamic boundary conditions. Communications in Mathematical Sciences. 16(1) (2018) 53-76.

 

[17] F. Li, B. You*, C. K. Zhong, Multiple equilibrium points in global attractors for some p-Laplacian equations. Applicable Analysis. 97(9) (2018) 1591-1599. 

 

[16] B. You*, The existence of a random attractor for the three dimensional damped Navier-Stokes equations with additive noise. Stochastic Analysis and Applications. 35(4) (2017) 691-700.

 

[15] B. You*, Random attractors for the three-dimensional stochastical planetary geostrophic equations of large-scale ocean circulation.  Stochastics. 89(5) (2017) 766-785. 

 

[14] J. Zhang, C. K. Zhong, B. You*, The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems II. Nonlinear Analysis: Real World Applications. 36 (2017) 44-55.

 

[13]  B. You*, F. Li, Pullback attractors of the two-dimensional non-autonomous simplified Ericksen-Leslie system for nematic liquid crystal flows. Zeitschrift fur angewandte Mathematik und physik. 67(4) (2016) 1-20. 

 

[12] B. You*, F. Li,Random attractor for the three-dimensional planetary geostrophic equations of large-scale ocean circulation with small multiplicative noise.  Stochastic Analysis and Applications. 34(2) (2016) 278-292. 

 

[11]  B. You*, F. Li,Well-posedness and global attractor of the Cahn-Hilliard-Brinkman system with dynamic boundary conditions.  Dynamics of Partial Differential Equations. 13(1) (2016) 75-90.

 

[10] F. Li*, C. K. Zhong, B. You, Finite-dimensional global attractor of the Cahn–Hilliard–Brinkman system.  Journal of Mathematical Analysis and Applications. 434 (2016) 599-616. 

 

[9] B. You*, F. Li, The existence of a pullback attractor for the three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Nonlinear Analysis: Theory, Methods and Applications. 112 (2015) 118-128.

 

[8] F. Li, B. You*, Pullback attractors for the non-autonomous complex Ginzburg-Landau type equation with p-Laplacian. Nonlinear Analysis: Modelling and Control. 20(2) (2015) 233-248.

 

[7] F. Li, B. You*, Global attractors for the complex Ginzburg–Landau equation. Journal of Mathematical Analysis and Applications. 415 (2014) 14-24. 

 

[6] B. You*, C. K. Zhong, F. Li, Pullback attractors for three dimensional non-autonomous planetary geostrophic viscous equations of large-scale ocean circulation. Discrete and Continuous Dynamical Systems-B. 19(4) (2014) 1213-1226.

 

[5] B. You*, Y. R. Hou, F. Li, J. P. Jiang, Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with p-Laplacian. Discrete and Continuous Dynamical Systems-B. 19(6) (2014) 1801-1814.

 

[4] B. You*, F. Li, Pullback attractor for the non-autonomous p-Laplacian equations with dynamic flux boundary conditions. Electronic Journal of Differential Equations. 2014(74) (2014) 1-11. 

 

[3] B. You, F. Li*, C. K. Zhong, The existence of multiple equilibrium points in a global attractor for some p-Laplacian equation. Journal of Mathematical Analysis and Applications. 418 (2014) 626-637.

 

[2] C. K. Zhong, B. You*, R. Yang, The existence of multiple equilibrium points in global attractor for some symmetric dynamical systems. Nonlinear Analysis: Real World Applications. 19 (2014) 31-44.

 

[1] B. You*, C. K. Zhong, Global attractors for p-Laplacian equations with dynamic flux boundary conditions. Advanced Nonlinear Studies.13 (2013)  391–410.