研究领域

  • 1. 微纳制造及智能传感

 

针对微纳结构多材料表/界面调控的关键难题,提出了微纳尺度域内多材料表/界面的结构场调控成型与驱动理论模型,发现了多材料体相结构的调控机制,提出了多材料表/界面设计与精确调控的理论模型,发展了多材料表/界面结构的纳米精度制造与微域调控方法,突破了微域光信息的精确操控难题。

 

1 多材料表/界面结构的纳米精度外场调控制造原理与方法

  • 2. 光电子器件的跨尺度制造及应用

针对大幅面微纳米结构一致性制造的难题,发展了外场调控的连续滚压印制造技术,实现了幅面为700×800 mm2,特征结构尺寸<500nm周期的二维光栅、直径650 mm的圆光栅及ϕ500mm的“超精密圆光栅角度传感器”的高精度制造。开发的在非平面结构化光阑,保证了异形面上微结构图形的一致性,解决了航天用红外探测器视场不规则、一致性较差的难题,推广应用于国防工业的高精密测量系统或装置中。

2 大幅面二维光栅的跨尺度制造及应用

  • 3. 超精密测量

提出了弱干涉信号的位姿解析理论模型,发展了时空域光栅纳米级细分新技术,实现了光栅信号的实时全参量闭环补偿和多自由度读数系统,测量分辨率达到0.25 nm。技术上不仅突破了国外技术封锁、产品禁运的卡脖子局面,自制知识产权的核心技术在国际行业内上形成了互补性。

3 二维光栅弱干涉信号的读数技术与读数系统

科研项目

没有找到条目。
项目编号 项目名称 项目来源 起讫时间 承担角色 项目类别
50505037 聚合物太阳能电池p-n异质结截面的三维微结构压印成形 国家自然科学基金项目 2006-1~2008-1 负责人 纵向项目
2003CB716203 高性能电子产品设计制造精微化、数字化新原理和新方法/微压印成形的相变构型与保真转移 973项目课题 2006-1~2008-1 骨干成员 纵向项目
2006E109 有机太阳能电池异质结三维微结构压印成形 陕西省基金项目 2006-1~2008-1 负责人 纵向项目
20060405 微位移阵列式传感器技术开发研究 横向研究 2005-1~2006-1 负责人 横向项目
2005037242 压印光刻工艺中微尺度流道动力学研究 博士后基金项目 2004-1~2006-1 负责人 纵向项目
2002AA420050 IC制造中压印光刻工艺与设备的研究开发 “863”高科技项目 2003-1~2005-1 骨干成员 纵向项目
2003AA404040 新型三维结构刻蚀技术 “863”高科技项目 2003-1~2005-1 骨干成员 纵向项目

专利

没有找到条目。
专利名称 申请号 专利类型 申请日期
[10] 连续逆压印图型直接转移式制造图案化磁记录介质的方法 ZL200710018124.2 发明 2016.01.01
[9] 聚合物太阳能电池的深亚微米三维异质结界面及制备方法 ZL200510042776 发明 2016.01.01
[6] 基于多孔介电材料薄膜的弹道场发射显示器件阴极的制备方法 ZL201110136861.9 发明 2016.01.01
深亚微米三维滚压模具及其制作方法 ZL200510042777.5 发明 2016.01.01
量子点植入反射式主动光栅及制造方法 ZL201110009472.X 发明 2016.01.01
[4] 半导体气敏传感器的定向纳米纤维化三维立体叉指电极的制作方法 ZL201110170715.8 发明 2015.01.01
[5] 层叠薄膜及其波形周线控制表面传导电子发射源制作方法 ZL201010516898.X 发明 2015.01.01
机床用超长光栅尺逆滚压印成型方法 ZL20110127212.2 发明 2015.01.01
[2] 一种具有微结构的聚偏氟乙烯压电薄膜的制备方法 ZL200910023561.2 发明 2014.01.01
动力学压印反射式光栅的制作方法 ZL201210371250.7 发明 2013.01.01
以时间基准为参照的精密光栅制造方法 201210371250.7 发明 2012.09.28
以石墨烯键长作为计量基准的长度计量溯源方法 201210371352.9 发明 2012.09.28
以石墨烯键长为基准的超精密制造装备精度比对及精度补偿方法 201210371547.3 发明 2012.09.28
一种单码道绝对式光栅尺辊压印模具制造方法 201210247415.X 发明 2012.07.17
单码道绝对式光栅尺辊压印制造方法 201210247527.5 发明 2012.07.17
一种机床用长光栅辊压印模具精密电铸加工方法 201210247375.9 发明 2012.07.17
激光辅助辊压印制造机床用反射型长光栅工艺方法 201210247466.2 发明 2012.07.17
超长光栅尺辊压模具表面图形化的快速加工方法 201110455884.6 发明 2011.12.30
一种机床测量用光栅尺保护膜的涂覆方法 201110455547.7 发明 2011.12.30
一种SED显示器电子发射源纳米缝阵列的制备方法 201110191515.0 发明 2011.07.11

发表论文

(1) Ye, Guoyong; Liu, Hongzhong; Wang, Yang; Lei, Biao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng; Ratiometric-Linearization-Based High-Precision Electronic Interpolator for Sinusoidal Optical Encoders, IEEE Transactions on Industrial Electronics, 2018, 65(10)8224-8231.
(2) Guoyong, Ye; Guobo, Zhao; Hongzhong, Liu; Bingheng, Lu; Precise Phase Demodulation Algorithm for Sinusoidal Encoders and Resolvers, IEEE Transactions on Industrial Electronics, 2020, 67(10)
8778-8787.
(3) Yu, Haoyu; Liu, Hongzhong; Ye, Guoyong; Fan, Shanjin; Shi, Yongsheng; Yin, Lei; Chen, Bangdao; Jiang, Weitao; Transverse sensitivity suppression using multi-axis surface encoder with parasitic error compensation, Applied Physics Letters, 2017, 111(11)
0-113507.
(4) Gu Tongkai; Wang Lanlan; Mao Mao; Han Jie; Li Rui; Zhang Yajun; Lei Biao; Jiang Weitao; Liu Hongzhong; Bilayer liquid-filled compound microlens arrays: A way to compensate aberration, Journal of Applied Physics, 2020, 128(16)
163101.
(5) Zhang Yajun; Jiang Weitao; Gu Tongkai; Han Jie; Lei Biao; Wang Lanlan; Liu Hongzhong; Yin Lei; Chen Bangdao; Shi Yongsheng; Multidomain Oriented Particle Chains Based on Spatial Electric Field and Their Optical Application., Langmuir, 2020, 36(39)
11546-11555.
(6) Guoyong Ye; Hongzhong Liu; Yaowen Ban; Yongsheng Shi; Lei Yin; Bingheng Lu; Development of a reflective optical encoder with submicron accuracy, Optics Communications, Optics Communications, 2018, 411
126-132.

(7) Guobo, Zhao; Guoyong, Ye; Hui, Liu; Biao, Lei; Xuan, Li; Weiliang, Han; Hongzhong, Liu; ElectronicInterpolation  Interface Based on Linear Subdivision Method for Sinusoidal Optical Encoders, IEEE Sensors Journal, 2020, 20(7)3646-3654.
(8) Guoyong Ye; Yuhao Zhang; Wei Jiang; Siren Liu; Lei Qiu; Xiaojun Fan; Hongwen Xing; Pingping Wei; Bingheng Lu; Hongzhong Liu; Improving measurement accuracy of laser triangulation sensor via integrating a
diffraction grating, Optics and Lasers in Engineering, 2021, 143(0143-8166).

(9) Li, Xuan; Ye, Guoyong; Liu, Hongzhong; Ban, Yaowen; Shi, Yongsheng; Yin, Lei; Lu, Bingheng; A novel optical rotary encoder with eccentricity self-detection ability, Review of Scientific Instruments, 2017, 88(11)0-115005.
(10) Guoyong, Ye; Hui, Liu; Biao, Lei; Dong, Niu; Hongwen, Xing; Pingping, Wei; Bingheng, Lu; Hongzhong, Liu; Optimal design of a reflective diffraction grating scale with sine-trapezoidal groove for interferential optical encoders, Optics and Lasers in Engineering, 2020, 134
0-106196.
(11) Ye, Guoyong; Liu, Hongzhong; Li, Xuan; Yu, Haoyu; Lu, Bingheng; Development of a polar-coordinate optical encoder: principle and application, Optical Engineering, 2018, 57(1)
0-014108.
(12) Ban, Yaowen; Ye, Guoyong; Liu, Hongzhong; Liu, Xiaohui; Lei, Biao; Zhao, Tingting; Shi, Yongsheng; Yin, Lei; Lu, Bingheng; Pre-stress-assisted nanoimprint lithography for fabricating high-density diffraction
gratings, Journal of Micromechanics and Microengineering, 2018, 28(10)
0-105013.
(13) Guobo Zhao; Guoyong Ye; Zeze Wu; Hongwen Xing; Siren Liu; Xiaojun Fan; Yingjiang Li; Pingping Wei; Hongzhong Liu; On-line angle self-correction strategy based on a cobweb-structured grating scale, Measurement Science and Technology, 2021, 32(5).
(14) Ye, Guoyong; Xing, Hongwen; Liu, Hui; Li, Yingjiang; Lei, Biao; Niu, Dong; Li, Xuan; Lu, Bingheng; Liu, Hongzhong; Total error compensation of non-ideal signal parameters for Moire encoders, Sensors and Actuators
A: Physical, 2019, 298
0-111539.
(15) Guobo Zhao; Biao Lei; Guoyong Ye; Yaowen Ban; Xuan Li; Hui Liu; Hongzhong Liu; Improved Eccentricity Self-Detection Method Based on Least Square Algorithm for Polar Coordinate Encoder, IEEE Sensors Journal, 2021
, 21(23)26902-26911.
(16) Ye, Guoyong; Wu, Zeze; Xu, Zhengchen; Wang, Yang; Shi, Yongsheng; Liu, Hongzhong; Development of a digital interpolation module for high-resolution sinusoidal encoders, Sensors and Actuators A: Physical, 2019, 285
501-510.
(17) Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei; Fabrication of high edge-definition steel-tape gratings for optical encoders, Review of Scientific Instruments, 2017, 88(10)
0-105006.
(18) Niu, Dong; Jiang, Weitao; Ye, Guoyong; Lei, Biao; Luo, Feng; Liu, Hongzhong; Lu, Bingheng; Photothermally triggered soft robot with adaptive local deformations and versatile bending modes, Smart Materials and Structures, 2019, 28(2)
0-02LT01. SCIE.
(19) Jiang, Weitao; Niu, Dong; Wei, Lanlan; Ye, Guoyong; Wang, Lanlan; Liu, Hongzhong; Chen, Ping; Luo, Feng; Lu, Bingheng; Controllable actuation of photomechanical bilayer nanocomposites for in vitro cell manipulation, Carbon, 2018, 139
1048-1056.
(20) Gu, Tongkai; Wang, Lanlan; Li, Rui; Dong, Yanzhen; Zhang, Yajun; Jia, Mengchao; Jiang, Weitao; Liu, Hongzhong; Liquid microsphere arrays for imaging magnification, Optics Communications, 2018, 428
89-94. SCIE.
(21) Rui, Li; Lanlan, Wang; Jingshuang, Dang; Lan, Mi; Jie, Han; Mao; Bangdao, Chen; Hongzhong, Liu; Reconfigurable and tunable photo-controlled hydrogel using hydrogen bonding to drive molecule self-assembly and cross-linking, Journal of Materials Science, 2020, 55(30)
14740-14750.
(22)
蔡崇文; 叶国永; 刘红忠; 基于Vold-Kalman滤波的光栅谐波动态抑制方法, 仪器仪表学报, 2021, 42(03)17-24.
(23) Jiang, Weitao; Wang, Lanlan; Ye, Guoyong; Chen, Bangdao; Yin, Lei; Shi, Yongsheng; Liu, Hongzhong; Biomimetic magnetic-responsive cilia-like soft device: surface energy control and external field actuation, Journal of Materials Science: Materials in Electronics, 2019, 30(4)
3767-3772.
(24) Li, Dachao; Liu, Hongzhong; Chen, Bangdao; Niu, Dong; Lei, Biao; Ye, Guoyong; Jiang, Weitao; Shi, Yongsheng; Yin, Lei; Lai, Guoquan; Amorphous Carbon-Induced Surface Defect Repair for Reinforcing the Mechanical Properties of Carbon Fiber, Materials, 2019, 12(8)
0-1244.
(25) Zhang, Yajun; Wang, Lanlan; Gao, Wei; Gu, Tongkai; Li, Zhenjun; Li, Xuan; Li, Rui; Ye, Guoyong; Jiang, Weitao; Zhu, Yongkai; Liu, Hongzhong; Bioinspired from butterfly wings: programmable actuation of isolated rods architectures for magnetic-assisted microswitches, Smart Materials and Structures, 2019, 28(7)
0-075014.
(26) Jie Han; Weitao Jiang; Dong Niu; Yiding Li; Yajun Zhang; Biao Lei; Hongzhong Liu; Yongsheng Shi; Bangdao Chen; Lei Yin; Xiaokang Liu; Donglin Peng; Bingheng Lu; Untethered Soft Actuators by Liquid–Vapor Phase
Transition: Remote and Programmable Actuation, Advanced Intelligent Systems, 2019, 1(8)
1900109.
(27) Zhao, Tingting; Jiang, Weitao; Niu, Dong; Liu, Hongzhong; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng; Flexible pyroelectric device for scavenging thermal energy from chemical process and as self-powered temperature monitor, Applied Energy, 2017, 195
754-760.
(28) Jiang, Weitao; Zhao, Tingting; Liu, Hongzhong; Jia, Rui; Niu, Dong; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng; Laminated pyroelectric generator with spin coated transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes for a flexible self-powered stimulator, RSC Advances, 2018, 8(27)
15134-15140. SCIE.
(29) Tian Li; Weitao Jiang; Jie Han; Dong Niu; Hongzhong Liu; Bingheng Lu; Enhancements of Loading Capacity and Moving Ability by Microstructures for Wireless Soft Robot Boats, Langmuir, 2020, 36(48)
14728-14736.
(30) Jie, Han; Weitao, Jiang; Hongjian, Zhang; Yajun, Zhang; Xueming, Feng; Lanlan, Wang; Dong, Niu; Biao, Lei; Hongzhong, Liu; Untethered, ultra-light soft actuator based on positively charged 3D fluffy silica micro-nanofibers by electrospinning, Journal of Materials Science, 2020, 55(27)
12789-12800.

(31) Jie Han; Weitao Jiang; Hongjian Zhang; Biao Lei; Lanlan Wang; Hongzhong Liu; Submersible Soft‐Robotic Platform for Noise‐Free Hovering Utilizing Liquid–Vapor Phase Transition, Advanced Intelligent Systems, 2021, 3(1)2000147.

(32) Fahao Qin; Lanlan Wang; Weitao Jiang; Yajun Zhang; Hongzhong Liu; Three-dimensional patterned distribution of thermal conductivity in the volume for effective thermal concentration, Journal of Applied Physics, 2021, 12955102.