Blank

    (19) Ma, P.*, Svatunek, D.; Zhu, Z.; Boger, D.; Duan, X.; Houk, K. N.* Computational Studies of  Reactions of 1,2,4,5−Tetrazines with Enamines in HFIP and MeOH. J. Am. Chem. Soc. 2024, XXX. https://doi.org/10.1021/jacs.4c06067

(西安交通大学新闻网: http://news.xjtu.edu.cn/info/1219/211951.htm)

    (18) Gutkin, S.; Shelef, O.; Babjaková, Z.; Tomanová, L. A.; Babjak, M.; Spitz, U.; Zhou, Q.; Ma, P.; Houk, K. N.; Shabat, D. Boosting Chemiexcitation of

      Phenoxy-1,2-Dioxetanes through 7-Norbornyl and Homocubanyl Spirofusion. ChemRxiv. 2024doi:10.26434/chemrxiv-2024-07rl1

     (17) David, M.; Leirikh, T.; Shelef, O.; Gutkin, S.; Kopp, T.; Zhou, Q.; Ma, P.; Fridman, M.; Houk, K. N.; Shabat, D. Chemiexcitation Acceleration of 1,2-      

      Dioxetanes via a Spiro-Fused Inductive Electron-Withdrawing Motifs. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-4nr8m

     (16) Yan, B.; Ma, P.; Shu, X.; Yin, W.; Guo, W. Merging of Palladium and Organocatalysis Enabled Asymmetric Decarboxylative (2+1) Cycloadditions toward

      Cyclopropanes. Org. Lett. 2024, 26, 4274. https://doi.org/10.1021/acs.orglett.4c01088

(15) Jiang, B.; Gao, L.; Wang, H.; Sun, Y.; Zhang, X.; Ke, H.; Liu, S.; Ma, P.; Liao, Q.; Wang, Y.; Wang, H.; Liu, Y.; Du, R.; Rogge, T.; Li, W.;

Shang, Y.; Houk, K. N.; Xiong, X.; Xie, D.; Huang, S.; Lei, X.; Yan, J. Characterization and Heterologous Reconstitution of Taxus

Biosynthetic Enzymes Leading to Baccatin III. Science 2024, 383 (6683), 622–629. https://doi.org/10.1126/science.adj3484.

(14) Tannous, R.; Shelef, O.; Gutkin, S.; David, M.; Leirikh, T.; Ge, L.; Jaber, Q.; Zhou, Q.; Ma, P.; Fridman, M.; Spitz, U.; Houk, K. N.;

Shabat, D. Spirostrain-Accelerated Chemiexcitation of Dioxetanes Yields Unprecedented Detection Sensitivity in Chemiluminescence

Bioassays. ACS Cent. Sci. 2024, 10 (1), 28–42. https://doi.org/10.1021/acscentsci.3c01141.

(13) Roy, S.#; Vargas, D. A.#; Ma, P.#; Sengupta, A.; Zhu, L.; Houk, K. N.; Fasan, R. Stereoselective Construction of β-, γ- and δ-

Lactam Rings via Enzymatic C–H Amidation. Nat Catal 2023, 7 (1), 65–76. https://doi.org/10.1038/s41929-023-01068-2.共同一作)

    Reported by C&ENhttps://cen.acs.org/synthesis/biocatalysis/Engineered-enzyme-constructs-lactams/101/web/2023/12

          Reported by RSC's Chemistry World: https://www.chemistryworld.com/news/biocatalysis-breakthrough-enables-synthesis-of-lactam-building-

        blocks-for-drugs/4018553.article

          Reported by UCLA: https://www.chemistry.ucla.edu/news/chemists-design-enzymes-to-synthesize-lactam-drugs/

          Selected by Benjamin List and Marian Guillen as SynFact of the month in the organo- and biocatalysis category: https://www.thieme-

         connect.com/products/ejournals/abstract/10.1055/s-0043-1773112

(12)  Yeh, A. H.-W.; Norn, C.; Kipnis, Y.; Tischer, D.; Pellock, S. J.; Evans, D.; Ma, P.; Lee, G. R.; Zhang, J. Z.; Anishchenko, I.; Coventry,

B.; Cao, L.; Dauparas, J.; Halabiya, S.; DeWitt, M.; Carter, L.; Houk, K. N.; Baker, D. De Novo Design of Luciferases Using Deep Learning.

Nature 2023, 614 (7949), 774–780. https://doi.org/10.1038/s41586-023-05696-3.

(11)  Liu, S.#; Ma, P.#; Zhang, L.; Shen, S.; Miao, H.-J.; Liu, L.; Houk, K. N.; Duan, X.-H.; Guo, L.-N. A Cheap Metal Catalyzed Ring

Expansion/Cross-Coupling Cascade: A New Route to Functionalized Medium-Sized and Macrolactones. Chem. Sci. 2023, 14 (19),

5220–5225. https://doi.org/10.1039/D2SC06157K. 共同一作)

(10)  He, X.#; Ma, P.#; Tang, Y.; Li, J.; Shen, S.; Lear, M. J.; Houk, K. N.; Xu, S. Phosphine-Catalyzed Activation of Cyclopropenones: A

Versatile C 3 Synthon for (3+2) Annulations with Unsaturated Electrophiles. Chem. Sci. 2022, 13 (43), 12769–12775.

https://doi.org/10.1039/D2SC04092A. 共同一作)

(9)  Zuo, L.#; Ma, P.#; Liu, T.; Chen, X.; Lavroff, R. H.; Chen, W.-P.; Houk, K. N.; Guo, W. Ambiphilic Reactivity of Vinyl Pd-Oxyallyl for

Expeditious Construction of Highly Functionalized Cyclooctanoids. Org. Lett. 2021, 23 (19), 7330–7335.

https://doi.org/10.1021/acs.orglett.1c02401. 共同一作)

 

Before XJTU

(8)  Wang, S.; Ma, P.; Shaik, S.; Chen, H. Valence-Inverted States of Nickel(II) Complexes Perform Facile C–H Bond Activation. J. Am.

Chem. Soc. 2022, 144 (32), 14607–14613. https://doi.org/10.1021/jacs.2c03835.

(7)   Liu, Q.; Long, L.; Ma, P.; Ma, Y.; Leng, X.; Xiao, J.; Chen, H.; Deng, L. Synthesis, Structure, and C–H Bond Activation Reaction of an

Iron(IV) Terminal Imido Complex Bearing Trifluoromethyl Groups. Cell Rep. Phys. Sci. 2021, 2 (6), 100454.

https://doi.org/10.1016/j.xcrp.2021.100454.

(6)  Chen, P.-P.#; Ma, P.#; He, X.; Svatunek, D.; Liu, F.; Houk, K. N. Computational Exploration of Ambiphilic Reactivity of Azides and

Sustmann’s Paradigmatic Parabola. J. Org. Chem. 2021, 86 (8), 5792–5804. https://doi.org/10.1021/acs.joc.1c00239. 共同一作)

(5)   Ma, P.; Wang, S.; Chen, H. Reactivity of Transition-Metal Complexes in Excited States: C–O Bond Coupling Reductive Elimination

of a Ni(II) Complex Is Elicited by the Metal-to-Ligand Charge Transfer State. ACS Catal. 2020, 10 (1), 1–6.

https://doi.org/10.1021/acscatal.9b03827.

(4) Ma, P.; Chen, H. Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catal. 2019, 9 (3), 1962–

1972. https://doi.org/10.1021/acscatal.8b04532.

(3)  Han, B.#; Ma, P.#; Cong, X.; Chen, H.; Zeng, X. Chromium- and Cobalt-Catalyzed, Regiocontrolled Hydrogenation of Polycyclic

Aromatic Hydrocarbons: A Combined Experimental and Theoretical Study. J. Am. Chem. Soc. 2019, 141 (22), 9018–9026.

https://doi.org/10.1021/jacs.9b03328. 共同一作)

(2)  Cong, X.#; Fan, F.#; Ma, P.#; Luo, M.; Chen, H.; Zeng, X. Low-Valent, High-Spin Chromium-Catalyzed Cleavage of Aromatic Carbon–

Nitrogen Bonds at Room Temperature: A Combined Experimental and Theoretical Study. J. Am. Chem. Soc. 2017, 139 (42), 15182–15190.

https://doi.org/10.1021/jacs.7b08579. 共同一作)

(1)  Zhou, B.; Ma, P.; Chen, H.; Wang, C. Amine-Accelerated Manganese-Catalyzed Aromatic C–H Conjugate Addition to α,β-

Unsaturated Carbonyls. Chem. Commun. 2014, 50 (93), 14558–14561. https://doi.org/10.1039/C4CC07598F.