Blank9

1. S. Li, R. Cao, M. Xu, Y. Deng, L. Lin, S. Yao, X. Liang, M. Peng, Z. Gao, Y. Ge, J. Liu*, W. Li, W. Zhou*, D. Ma*. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for ydrogenation reaction. Natl.Sci. Rev., 2022, 9, nwab026.(ESI高被引论文)

2.  S. LiY. Xu, Y. Chen, W. Li, L. Lin, M. Li, Y. Deng, X. Wang, B. Ge, C. Yang, S. Yao, J. Xie, Y. Li, X. Liu*, D. Ma*. Tuning the Selectivity of the Catalytic CO2 Hydrogenation Reaction by Strong Metal-Support Interaction in Ir/CeO2 Catalysts. Angew. Chem. Int. Ed. 2017, 56, 10761-10765. (ESI 高被引论文)

3. S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang, Y. Du, X. Han, J. Sun, P. Xu*. Recent Advance in Plasmonic Nanostructure Enhanced Photocatalysis and Electrocatalysis. Adv. Mater., 2021, 33, 2000086. (ESI热点论文、高被引论文)

4. S. Li, J. Yang, C. Song, Q. Zhu, D. Xiao, D. Ma*. Iron Carbides: Control Synthesis and Catalytic Applications in COx Hydrogenation and Electrochemical HER. Adv. Mater., 2019, 31, 1907896.

5. B. Guo, H. Huo, Q. Zhuang, X. Ren, X. Wen, X. Huang*,Q. Chang*, Siwei Li*. Iron oxyhydroxides: structure and application in electrocatalytic oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2300557.

ArticlesWeb

2024:

​​​​​​​[47]H. Huo, B. Guo, G. Ma, Y. Xiang, H. Lv, Siwei Li*, F. Huang*, Z. Liu, Y. Xu*, F. Zhang*. Recent progress in strategies to enhance the photocatalytic performance of cyclohexane. J. Environ. Chem. Eng. 2024, 10.1016/j.jece.2024.113504. (IF=7.4)

 

[46]Y. Zhou, J. Hu*, Y. Liu, W. Fan, P. Tao,R. Yang, H. Feng, H Huang, X. Cao*, H. Li, Siwei Li*​​​​​​. Boosting alkaline water splitting efficiency: NiOOH-MnOOH heterojunctions via in situ anodic oxidation​​​​​​​. Mater. Chem. Front., 2024, 8, 3290-3299 (IF=6)

[45]J. Hu*, P. Tao, W. Fan, R. Yang, H. Feng, B. Guo, H. Li, L. Xu*, Siwei Li*​​​​​​. Synthesis and Electrochemical application of two-dimensional manganese-based materials. Inorg. Chem. Front., 2024, 10.1039/d4qi01119h10.1039/d4qi01119h. (IF=6.1)

[44]B. Guo, M. Chen, Siwei Li*, R. Gao, B. Sang, X. Ren, Z. Liu, X. Cao, J. Liu, Y. Ding*, P. Xu*, Y. Xu*. Construction of iron oxohydroxide/nickel sulfate hydroxide hybrid catalyst for efficient oxygen evolution. Rare metals 2024, https://doi.org/10.1007/s12598-024-02841-3. (IF=9.6)

[43] B. Guo, X. Wen, L. Xu, X. Ren, S. Niu*, R. Yang, G. Ma, J. Zhang, Y. Guo*, P. Xu*,Siwei Li*. Noble metal phosphides: Robust electrocatalysts towards hydrogen evolution reaction. Small methods 2024, https://doi.org/10.1002/smtd.202301469 (IF=10.7)

[42] B. Guo, J. Zhao, Y. Xu, X. Wen, X. Ren, X. Huang*, S. Niu*, Y. Dai, R. Gao, P. Xu*,Siwei Li*. Noble metal phosphides supported on CoNi metaphosphates for efficient overall water splitting . ACS Appl. Mater. Interfaces 2024, 16, 8939-8948. (IF=8.3)

2023:

[41] Siwei Li, L. Lin, Z. Wang, D. Ma*. Direct utilization of crude and waste H2 via CO tolerant hydrogenation. The Innovation, 2023, 4, 100353.(Cell综合类子刊,IF=32.1)

[40] Xiaoqian Ren, Y. Dai, X. Wen, B. Guo, C. Shi, X. Huang*, Y. Guo*, Siwei Li*. CoOOH: synthesis and application in alkaline electrochemical oxygen evolution reaction. Adv. Sustain. Syst. 2023, 8, 2300379. (IF=6.5)

[39] Ranran Liang, Bin Zhang, Y. Du, X. Han, Siwei Li*, Ping Xu*. Understanding the anion effect of basic cobalt salts for electro reaction. ACS Catal. 2023, 13,8821-8829.(IF=11.3)

[38] Mengxin Chen, Yuanyuan Zhang, Ran Wang, Bin Zhang, Bo Song, Yanchao Guan, Siwei Li*, Ping Xu*. Surface Reconstruction of Se-Doped NiS2 Enables High-Efficiency Oxygen Evolution Reaction. J. Energy. Chem. 2023, 84,173-180. (IF=14.0)

[37]B. Guo, H. Huo, Q. Zhuang, X. Ren, X. Wen, X. Huang*,Q. Chang*, Siwei Li*. Iron oxyhydroxides: structure and application in electrocatalytic oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2300557. (IF=18.5)

[36]B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren,  P. Xu*,Siwei Li*. Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water splitting. Nano-Micro Lett. 2023, 15, 57. (IF=31.6,ESI热点论文、高被引论文)

[35]Y. Zhang, J. Wu, B. Guo, H. Huo, S. Niu*,  Siwei Li*, P. Xu*,. Recent advances of transition metal metaphosphates for efficient electrocatalytic water splitting. Carbon Energy 2023,4, e375. (IF=19.5)

[34]J. Zhao, Y. Zhang, Y. Xia, B. Zhang, Y. Du, B. Song, H. Wang*, Siwei Li*, P. Xu*. Strong phosphide-metaphosphate interaction in RuP/CoNiP4O12 for enhanced electrocatalytic water splitting. Appl. Catal. B. 2023,328, 122447. (IF=20.2)

[33]J. Wu, X. Qin, Y. Xia, Y. Zhang, B. Zhang, Y. Du, H. Wang*, Siwei Li*, P. Xu*. Surface oxidation protection strategy of CoS2 by V2O5 for electrocatalytic hydrogen Evolution Reaction. Nanoscale Horiz. 2023, 8, 338-345. (IF=8)

[32]P. Guo, S. Yuan, B. Guo,  Siwei Li*, Y. Gao*. Chitosan-derived carbon supported CoO combined with CdS facilitates visible light catalytic hydrogenation. Catal. Sci. Technol. 2023, 13, 1128-1139. (IF=4.4, 新锐科学家专刊)

[31]X. Wen, L. Lin*, Siwei Li*.  Current trends in MOF (metal-organic framework) and metal X-ides. Int. J. Mol. Sci. 2023, (IF=4.9)

2022:

[30] Siwei Li, R. Cao, M. Xu, Y. Deng, L. Lin, S. Yao, X. Liang, M. Peng, Z. Gao, Y. Ge, J. Liu*, W. Li, W. Zhou*, D. Ma*. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for ydrogenation reaction. Natl.Sci. Rev., 2022, 9, nwab026.(IF=16.3, ESI高被引)

[29] Na Wang, Yonglei Liu, Can Wu,  Siwei Li*, Bojing Sun, Ziqiu Ren, XiaoXuan Yi, Xijiang Han, Yunchen Du*, Jingyu Wang*. SnO2 shells-induced rich Co2+ sites and oxygen vacancies in FexCo3-xO4 nanocubes: Enhanced peroxymonosulfate activation performance for water remediation.  Chem. Eng. J. 2022, 135682. (IF=16.744)

[28] Bojing Sun, Jiaqi Bu, XIaoyu Chen, Dingge Fan, S. Li*, Zhenzi Li, Wei Zhou, Yunchen Du*. In-situ interstitial zinc doping-mediated efficient charge separation for ZnIn2S4 nanosheets visible-light photocatalysts towards optimized overall water splitting. Chem. Eng. J. 2022, 435, 135074. (IF=16.744)

[27] Mengxin Chen, Chuqiao Song, Ce Liang, Bin Zhang, Yanchun Sun, Siwei Li*, Lili Lin*, Ping Xu*. Crystalline phase induced Raman enhancement on molybdenum carbide. Inorg. Chem. Front. 2022, 9, 2575-2582. (IF=6.1)

[26] J. Wu, Y. Zhang, B. Zhang, S. Li*, P. Xu*. Zn-doped CoS2 Nanoarrays for Efficient Oxygen Evolution Reaction: Understanding the Doping Effect for Precatalyst. ACS Appl. Mater. Interfaces. 2022, 14, 14235-14242. (IF=8.3)

2021:

[25] S.Niu, X. Kong, S. Li*, Y. Zhang, J. Wu, W. Zhao*, P. Xu*. Low Ru loading RuO2/(Co, Mn)3Onanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B. Environ., 2021,297, 120422. (IF=20.2)

[24] J. Wu, Z. Yu, Y. Zhang, S. Niu, J. Zhao, S. Li*, P. Xu*. Understand the effect of second metal on Co-M (M=Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction. Small 2021, 17(51), 2105150. (IF=14.5)

[23] Y. Li, S. Li*, J. Hu, Y. Zhang, Y. Du, X. Han, X. Liu*, P. Xu*. Hollow FeCo-FeCoP@C Nanocubes Embedded in Nitrogen-Doped Carbon Nanocages for Effient Overall Water Splitting. J. Energy Chem., 2021, 53, 1-8. (IF=14.0)

[22] Bojing Sun, Yun Han, S. Li*, P. Xu, Xijiang Han, Ayman Nafady, Shengqian Ma*, Yunchen Du*. Cotton cloth supported tungsten carbide/carbon nanocomposites as a Janus film for solar driven interfacial water evaporation. J. Mater. Chem. A. 2021, 9, 23140-23148. (IF=10.7)

[21] Dmitrii Rakov, Chunyu Sun, Ziang Lu, S. Li*, Ping Xu* . NiSe@Ni1-xFexSe2 Core–Shell Nanostructures as a Bifunctional Water Splitting Electrocatalyst in Alkaline Media. Adv. Energy Sustainability Res. 2021, 2100071

2020:

[20] S. Li, P. Miao, Y. Zhang, J. Wu, B. Zhang, Y. Du, X. Han, J. Sun, P. Xu*. Recent Advance in Plasmonic Nanostructure Enhanced Photocatalysis and Electrocatalysis. Adv. Mater., 2020, 32, 2000086. (IF=27.4,ESI高被引论文)

[19] Y. Li, Z. Wang, J. Hu, S. Li*, Y. Du, X. Han, P. Xu*. Metal Organic Frameworks Derived Interconnected Bimetallic Metaphosphate Nanoarrays for Efficient Electrocatalytic Oxygen Evolution. Adv. Funct. Mater., 2020, 30, 1910498. (IF=18.5)

[18] S. Li#, J Liu#, Z. Yin#, P. Ren, L. Lin, Y. Gong, C. Yang, X. Zheng, R. Cao, S. Yao, Y. Deng, X. Liu*, L. Gu, J. Zhu, X. Wen, B. Xu, D. Ma*. Impact of the Coordination Environment on Atomically Dispersed Pt Catalysts for Oxygen Reduction Reaction. ACS Catal., 2020, 10, 907-913. (11.3,ESI高被引论文)

[17] S. Niu, S. Li*, Y. Du, X. Han, P. Xu*. How to Reliably Report the Overpotential of an E1ectrocatalyst. ACS Energy Lett., 2020,5,1083-1087. (IF=23.991,ESI高被引论文)

[16] J. Hu, S. Li*, Y. Li, J. Wang, Y. Du, X. Han, P. Xu*. Crystalline-Amorphous Ni-Ni(OH)2 Core-Shell Catalyst for Alkaline Hydrogen Evolution Reaction. J. Mater. Chem. A. 2020, 8, 23323-23329. (IF=14.511)

[15] Y. Ma, Z. Lu, S. Li*, J. Wu, J. Wang, Y. Du, J. Sun, P. Xu*. In-Situ Growth of Amorphous Fe(OH)3 on Nickel Nitrate Hydroxide Nanoarrays for Enhanced Electrocatalytic Oxygen Evolution. ACS Appl. Mater. Interfaces, 2020, 12(11), 12668-12676. (IF=8.3).

[14] C. Liang, Z. Lu, J. Wu, M. Chen, Y. Zhang, B. Zhang, G. Gao, S. Li*, P. Xu*. Recent Advances in Plasmon-Promoted Organic Transformations using Silver-Based Catalysts. ACS Appl. Mater. Interfaces. 2020, 12, 54266-54284. (IF=8.3)

[13] J. Wu, Z. Wang, S. Li*, S. Niu, Y. Zhang, J. Hu, J. Zhao*, P. Xu*. FeMoO4 Nanorods for Efficient Ambient Electrochemical Nitrogen Reduction. Chem. Commun. 2020,56, 6834-6837. (IF=6.065)

[12]J. Wang, S. Li*, J. Hu, S. Niu, Y. Li, P. Xu*. Acid-directed morphology control of molybdenum carbide embedded in a nitrogen doped carbon matrix for enhanced electrocatalytic hydrogen evolution. Inorg. Chem. Front., 2020, 7, 1995-2005. (IF=6.1)

[11]Y. Zhang, C. Liang, J. Wu, H. Liu, B. Zhang, Z. Jiang, S. Li*, P. Xu*. Recent Advances in Magnetic Field-Enhanced Electrocatalysis. ACS Appl. Energy Mater., 2020, 3, 10303-10316. (IF=6.959)

[10] S. Li, B. Dong, Y. Zhang P. Xu*, Synthesis of porous Mo2C/nitrogen-doped carbon nanocomposites for efficient hydrogen evolution reaction. ChemistrySelect, 2020, 5, 14307-14311. (IF=2.307)

2019:

[9]S. Li, J. Yang, C. Song, Q. Zhu, D. Xiao, D. Ma*. Iron Carbides: Control Synthesis and Catalytic Applications in COx Hydrogenation and Electrochemical HER. Adv. Mater., 2019, 31, 1907896. (IF=27.4)

[8]J. Hu, S. Li*, J. Chu, S. Niu, J. Wang, Y. Du, Z. Li, X. Han*, P. Xu*. Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. ACS Catal., 2019, 9, 10705-10711. (IF=11.3,ESI高被引论文)

[7]S. Niu, S. Li*, J. Hu, Y. Li, Y. Du, X. Han, P. Xu*. Fabrication of Uniform Ru-Doped NiFe2O4 Nanosheets as Efficient Hydrogen Evolution Electrocatalyst. Chem. Commun., 2019, 55, 14649-14652. (IF=4.3)

2018:

[6]S. Li#, P. Ren.#, C. Yang#, X. Liu*, Z. Yin, W. Li., H. Yang, J. Li, X. Wang, Y. Wang, R. Cao, L. Lin, S. Yao, X. Wen, D. Ma*. Fe5C2 Nanoparticles as Low-Cost HER Electrocatalyst: the Importance of Co Substitution. Sci. Bull., 2018, 63, 1358-1363. (IF=18.8,卓越计划领军期刊)

2017:

[5]S. Li#Y. Xu#, Y. Chen, W. Li, L. Lin, M. Li, Y. Deng, X. Wang, B. Ge, C. Yang, S. Yao, J. Xie, Y. Li, X. Liu*, D. Ma*. Tuning the Selectivity of the Catalytic CO2 Hydrogenation Reaction by Strong Metal-Support Interaction in Ir/CeO2 Catalysts. Angew. Chem. Int. Ed. 2017, 56, 10761-10765. (IF=16.823,ESI 高被引论文)

[4] S. Li#, C. Yang#, Z. Yin#, H. Yang, Y. Chen, L. Lin, M. Li, W. Li, G. Hu, D. Ma*. Wet-Chemistry Synthesis of Cobalt Carbide Nanoparticles as Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. Nano Res., 2017, 10, 1322-1328. (IF=10.269,卓越计划领军期刊)

Before 2016(本科阶段成果):

[3] L. Xiong#, S. Li#, B. Zhang,* Y. Du, P. Miao, Y. Ma, Y. Han, H. Zhao, and P. Xu*. Galvanic replacement-mediated synthesis of hollow Cu2O-Au nanocomposites and Au nanocages for catalytic and SERS applications. RSC Adv., 2015, 5, 76101-76106. (IF=4.036)

[2] S. Li, L. Xiong, S. Liu, P. Xu*. Fast Fabrication of Homogeneous Ag Nanostructures on Dual-Acid Doped Polyaniline for SERS Applications. RSC Adv., 2014, 4, 16121-16126. (IF=4.036)

[1]S. Li, P. Xu*, Z. Ren, B. Zhang, Y. Du, X. Han, N. Mack, H. Wang. Fabrication of Thorny Au Nanostructures on Polyaniline Surfaces for Sensitive Surface Enhanced Raman Spectroscopy. ACS Appl. Mater. Interfaces, 2013, 5(1), 49-54. (IF=8.3)

Blank

[1] Lin L. L., Yao S. Y., Gao R., Liang X., Yu Q. L., Deng Y. C., Liu J. J., Peng M., Jiang Z., S. Li, Li Y. W., Wen X. D., Zhou W.* & Ma D.*A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol., 2019, 14, 354–361.

[2] Yin Z.*, Wang Y., Song C. Q., Zheng L. H., Ma N., Liu X., S. Li, Lin L. L., Li M. Z., Xu Y., Li W. Z., Hu G., Fang Z. Y., Ma D.* Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced raman scattering. J. Am. Chem. Soc., 2018, 140, 864-867.

[3] Ge Y. Z., Qin X. T., Li A. W., Deng Y. C., Lin L. L., Zhang M. T., Yu Q. L., S. Li, Peng M., Xu Y., Zhao X. Y., Xu M. Q., Zhou W.*, Yao S. Y.*, Ma D*.Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production. J. Am. Chem. Soc. In Press.

[4] Yi Li, Huanhuan Wang, Cameron Priest, S. Li, Ping Xu*, Gang Wu*. Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Adv. Mater., 2020, 32, 2000381.

[5] Zhao, Y. F., Gao, W., S. Li, Gareth R. W., Ma, D.* Solar versus thermal-driven catalysis for energy conversion. Joule, 2019, 3, 920.

[6] Gao W., Gao R., Zhao Y. F., Peng M., Song C. Q., Li M. Z.,S. Li, Liu J. J., Li W. Z., Deng Y. C., Zhang M. T., Xie J. L., Hu G., Zhang Z. S., Long R., Wen X. D.*, Ma D.* Photo-Driven Syngas Conversion to Lower Olefins over Oxygen-Decorated Fe5C2 Catalyst. Chem, 2018, 4, 2917-2928.

[7] Yunrui Zhang, Yongjun Gao*, Siyu Yao*, S. Li, Hiroyuki Asakura, Kentaro Teramura, Haijun Wang and Ding Ma*.Sublimation-Induced Sulfur Vacancies in MoS2 Catalyst for One-Pot Synthesis of Secondary Amines. ACS Catal., 2019, 9, 7967-7975.

[8] Yang C., Zhao B., Gao R., Yao S. Y., Zhai P., S. Li, Yu J., Hou Y. L.* and Ma D*. Construction of Synergistic Fe5C2/Co Heterostructured Nanoparticles as an Enhanced Low Temperature Fischer-Tropsch Synthesis Catalyst. ACS Catal., 2017, 9, 5661-5667.

[9] Pengqi Yan, Wenhan Guo, Zibin Liang, Wei Meng, Zhen Yin, S. Li, Mengzhu Li, Mengtao Zhang, Jie Yan, Dequan Xiao, Ruqiang Zou*, Ding Ma*. Highly efficient K-Fe/C catalysts derived from metal-organic frameworks towards ammonia synthesis. Nano Res, 2019, 12, 2341-2347.

[10] Yao S. Y., Yang C., Zhao H. B., S. Li, Lin L. L., Wen W., Liu J. X., Hu G., Li W. X., Hou Y. L.*, Ma D.* Reconstruction of the Wet Chemical Synthesis Process: The Case of Fe5C2 Nanoparticles. J. Phys. Chem. C, 2017, 121, 5154-5160.

[11] Hongtao Zhao,* Zhigang Li,* Nan Zhang, Yunchen Du, S. Li, Lin Shao, Deyu Gao, Xijiang Han and Ping Xu*. γ-irradiation induced one-step synthesis of electromagnetic functionalized reduced graphene oxide-Ni nanocomposites. RSC Adv., 2014, 4 (57), 30467 - 30470.

[12] Hongtao Zhao, Zhigang Li, Nan Zhang, S. Li, Lu Xiong, Shuai Liu, Wen Jin, Leilei Kang, Ping Xu*. Gamma-irradiation induced direct fabrication of SERS-active Ag nanoparticles on glass substrates. RSC Adv., 2014, 4 (39), 20247 - 20251.

[13]Jing Wang, Jing Hu, Siqi Niu, Siwei Li, Yunchen Du, Ping Xu*. Crystalline-Amorphous Ni2P4O12/NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In-situ Surface Reconstruction. Small 2021

[14] Yuanyuan Zhang, Ping Guo, Siwei Li, Wei Wang, Bo Song, Xiaoxuan Yang, Xianjie Wang, Zaixing Jiang, Gang Wu*, Ping Xu*. Magnetic Field Assisted Electrocatalytic Oxygen Evolution Reaction of Nickel-Based Materials. J. Mater. Chem. A 2021

[15] Jing Hu*, Adel Al-Salihy, Bin Zhang, Siwei Li, Ping Xu*. Mastering the D-Band Center of Iron-Series Metal-BasedElectrocatalysts for Enhanced Electrocatalytic Water Splitting. Int. J. Mol. Sci. 2022, 23, 15405

[16] Y. Li, B. Lan, C. Dai, S. Li, F. Zhang*, Z. Lin*. Molten salt derived Mo2AlB2 with excellent HER catalytic performance.  Mater. Res. Lett. 2023, 11, 571